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Design and simulate fuzzy logic systems

Fuzzy Logic Toolbox provides MATLAB® functions, apps, and a Simulink® block for analyzing,
designing, and simulating fuzzy logic systems. The product lets you specify and configure inputs,
outputs, membership functions, and rules of type-1 and type-2 fuzzy inference systems.

The toolbox lets you automatically tune membership functions and rules of a fuzzy inference system
from data. You can evaluate the designed fuzzy logic systems in MATLAB and Simulink. Additionally,
you can use the fuzzy inference system as a support system to explain artificial intelligence (Al)-based
black-box models. You can generate standalone executables or C/C++ code and IEC 61131-3
Structured Text to evaluate and implement fuzzy logic systems.



What Is Fuzzy Logic?

What Is Fuzzy Logic?

Description of Fuzzy Logic

In recent years, the number and variety of applications of fuzzy logic have increased significantly. The
applications range from consumer products such as cameras, camcorders, washing machines, and
microwave ovens to industrial process control, medical instrumentation, decision-support systems,
and portfolio selection.

To understand why use of fuzzy logic has grown, you must first understand what is meant by fuzzy
logic.

Fuzzy logic has two different meanings. In a narrow sense, fuzzy logic is a logical system, which is an
extension of multivalued logic. However, in a wider sense fuzzy logic (FL) is almost synonymous with
the theory of fuzzy sets, a theory which relates to classes of objects without crisp, clearly defined
boundaries. In such cases, membership in a set is a matter of degree. In this perspective, fuzzy logic
in its narrow sense is a branch of FL. Even in its more narrow definition, fuzzy logic differs both in
concept and substance from traditional multivalued logical systems.

In Fuzzy Logic Toolbox software, fuzzy logic should be interpreted as FL, that is, fuzzy logic in its
wide sense. The basic ideas underlying FL are explained in “Foundations of Fuzzy Logic” on page 1-
7. What might be added is that the basic concept underlying FL is that of a linguistic variable, that
is, a variable whose values are words rather than numbers. In effect, much of FL may be viewed as a
methodology for computing with words rather than numbers. Although words are inherently less
precise than numbers, their use is closer to human intuition. Furthermore, computing with words
exploits the tolerance for imprecision and thereby lowers the cost of solution.

Another basic concept in FL, which plays a central role in most of its applications, is that of a fuzzy if-
then rule or, simply, fuzzy rule. Although rule-based systems have a long history of use in Artificial
Intelligence (AI), what is missing in such systems is a mechanism for dealing with fuzzy consequents
and fuzzy antecedents. In fuzzy logic, this mechanism is provided by the calculus of fuzzy rules. The
calculus of fuzzy rules serves as a basis for what might be called the Fuzzy Dependency and
Command Language (FDCL). Although FDCL is not used explicitly in the toolbox, it is effectively one
of its principal constituents. In most of the applications of fuzzy logic, a fuzzy logic solution is, in
reality, a translation of a human solution into FDCL.

A trend that is growing in visibility relates to the use of fuzzy logic in combination with
neurocomputing and genetic algorithms. More generally, fuzzy logic, neurocomputing, and genetic
algorithms may be viewed as the principal constituents of what might be called soft computing.
Unlike the traditional, hard computing, soft computing accommodates the imprecision of the real
world. The guiding principle of soft computing is: Exploit the tolerance for imprecision, uncertainty,
and partial truth to achieve tractability, robustness, and low solution cost. In the future, soft
computing could play an increasingly important role in the conception and design of systems whose
MIQ (Machine IQ) is much higher than that of systems designed by conventional methods.

Among various combinations of methodologies in soft computing, the one that has highest visibility at
this juncture is that of fuzzy logic and neurocomputing, leading to neuro-fuzzy systems. Within fuzzy
logic, such systems play a particularly important role in the induction of rules from observations. An
effective method developed by Dr. Roger Jang for this purpose is called ANFIS (Adaptive Neuro-Fuzzy
Inference System). This method is an important component of the toolbox.

1-3
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Fuzzy logic approximates human reasoning and does a good job of balancing the tradeoff between
precision and significance. For instance, when warning someone of an object falling toward them,
being precise about the exact mass and speed is not necessary.

Precision and Significance in the Real World I

A 1500 kg mass ‘ ‘
is approaching
your head at
453 m's
g

Precision Significance

Fuzzy logic is a convenient way to map an input space to an output space. Consider the following
examples.

* With information about how good your service was at a restaurant, a fuzzy logic system can tell
you what the tip should be.

* With your specification of how hot you want the water, a fuzzy logic system can adjust the faucet
valve to the right setting.

* With information about how far away the subject of your photograph is, a fuzzy logic system can
focus the lens for you.

* With information about how fast the car is going and how hard the motor is working, a fuzzy logic
system can shift gears for you.

A fuzzy system behaves like a black box that maps an input space to an output space. For example,
you can map the input space of all possible restaurant service ratings to all possible tip values.

Input Space Output Space
tal!:lmf:rt:f:t ;n:r:}ne (all possible tips)

Black
tonight's servca Box

quality

the "right" tip
for tonight

An inputfoutput map for the tipping problem:
“Given the quality of service, how much should | tip?”



What Is Fuzzy Logic?

Determining the appropriate amount of tip requires mapping inputs to the appropriate outputs.
Between the input and the output, the preceding figure shows a black box that can contain any
number of things: fuzzy systems, linear systems, expert systems, neural networks, differential
equations, interpolated multidimensional lookup tables, or even a spiritual advisor, just to name a few
of the possible options. Clearly the list could go on and on.

Of the dozens of ways to make the black box work, it turns out that fuzzy is often the very best way.
Why should that be? As Lotfi Zadeh, who is considered to be the father of fuzzy logic, once remarked:
"In almost every case you can build the same product without fuzzy logic, but fuzzy is faster and
cheaper."

Why Use Fuzzy Logic?
Here is a list of general observations about fuzzy logic:
* Fuzzy logic is conceptually easy to understand.

The mathematical concepts behind fuzzy reasoning are very simple. Fuzzy logic is a more intuitive
approach without the far-reaching complexity.

» Fuzzy logic is flexible.

With any given system, it is easy to layer on more functionality without starting again from
scratch.

» Fuzzy logic is tolerant of imprecise data.

Everything is imprecise if you look closely enough, but more than that, most things are imprecise
even on careful inspection. Fuzzy reasoning builds this understanding into the process rather than
tacking it onto the end.

» Fuzzy logic can model nonlinear functions of arbitrary complexity.

You can create a fuzzy system to match any set of input-output data. This process is made
particularly easy by adaptive techniques like Adaptive Neuro-Fuzzy Inference Systems (ANFIS),
which are available in Fuzzy Logic Toolbox software.

» Fuzzy logic can be built on top of the experience of experts.

In direct contrast to neural networks, which take training data and generate opaque, impenetrable
models, fuzzy logic lets you rely on the experience of people who already understand your system.

» Fuzzy logic can be blended with conventional control techniques.

Fuzzy systems don't necessarily replace conventional control methods. In many cases fuzzy
systems augment them and simplify their implementation.

* Fuzzy logic is based on natural language.

The basis for fuzzy logic is the basis for human communication. This observation underpins many
of the other statements about fuzzy logic. Because fuzzy logic is built on the structures of
qualitative description used in everyday language, fuzzy logic is easy to use.

The last statement is perhaps the most important one and deserves more discussion. Natural
language, which is used by ordinary people on a daily basis, has been shaped by thousands of years of
human history to be convenient and efficient. Sentences written in ordinary language represent a
triumph of efficient communication.

1-5
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When Not to Use Fuzzy Logic

Fuzzy logic is not a cure-all. When should you not use fuzzy logic? The safest statement is the first
one made in this introduction: fuzzy logic is a convenient way to map an input space to an output
space. If you find it's not convenient, try something else. If a simpler solution already exists, use it.
Fuzzy logic is the codification of common sense — use common sense when you implement it and you
will probably make the right decision. Many controllers, for example, do a fine job without using fuzzy
logic. However, if you take the time to become familiar with fuzzy logic, you'll see it can be a very
powerful tool for dealing quickly and efficiently with imprecision and nonlinearity.

What Can Fuzzy Logic Toolbox Software Do?

Using Fuzzy Logic Toolbox software, you can:

* Create and edit fuzzy inference systems using command-line functions or the Fuzzy Logic
Designer app.

* Automatically generate fuzzy systems using clustering or adaptive neuro-fuzzy techniques.

» Automatically tune the parameters of a fuzzy logic system using optimization methods such as
genetic algorithms and particle swarm optimization. For more information, see “Tuning Fuzzy
Inference Systems” on page 3-2.

* Simulate your fuzzy system within a Simulink model using the Fuzzy Logic Controller block.

* Automatically generate code for evaluating fuzzy inference systems. For more information, see
“Deploy Fuzzy Inference Systems” on page 6-2.

See Also

More About

. “Foundations of Fuzzy Logic” on page 1-7
. “Fuzzy vs. Nonfuzzy Logic” on page 1-30
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Foundations of Fuzzy Logic

Overview

The point of fuzzy logic is to map an input space to an output space, and the primary mechanism for
doing this is a list of if-then statements called rules. All rules are evaluated in parallel, and the order
of the rules is unimportant. The rules themselves are useful because they refer to variables and the
adjectives that describe those variables. Before you can build a system that interprets rules, you must
define all the terms you plan on using and the adjectives that describe them. To say that the water is
hot, you need to define the range within which the water temperature can be expected to vary as well
as what you mean by the word hot.

In general, fuzzy inference is a method that interprets the values in the input vector and, based on
some set of rules, assigns values to the output vector.

This topic guides you through the fuzzy logic process step-by-step by providing an introduction to the
theory and practice of fuzzy logic.

Fuzzy Sets

Fuzzy logic starts with the concept of a fuzzy set. A fuzzy set is a set without a crisp, clearly defined
boundary. It can contain elements with only a partial degree of membership.

To understand what a fuzzy set is, first consider the definition of a classical set. A classical set is a
container that wholly includes or wholly excludes any given element. For example, the set of days of
the week unquestionably includes Monday, Thursday, and Saturday. It just as unquestionably excludes
butter, liberty, and dorsal fins, and so on.

Shoe .
Polish Monday Liberty
Thursday
Saturday Dorsal
Butter Fins

Days of the week

This type of set is called a classical set because it has been around for a long time. It was Aristotle
who first formulated the Law of the Excluded Middle, which says X must either be in set A or in set
not-A. Another version of this law is:

Of any subject, one thing must be either asserted or denied.

To restate this law with annotations: "Of any subject (say Monday), one thing (a day of the week)
must be either asserted or denied (I assert that Monday is a day of the week)." This law demands that
opposites, the two categories A and not-A, should between them contain the entire universe.
Everything falls into either one group or the other. There is no thing that is both a day of the week
and not a day of the week.

Now, consider the set of days comprising a weekend. The following diagram attempts to classify the
weekend days.

Most would agree that Saturday and Sunday belong in the weekend set, but what about Friday? It
feels like a part of the weekend, but somehow it seems like it should be technically excluded.

1-7
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Therefore, Friday "straddles the fence." Classical sets do not tolerate this kind of classification. Either
something is in a set or it is out of a set. Human experience suggests something different, however,
straddling the fence is part of life.

Shoe Liberty
Polish
Eteilliclzly Friday Thursday
Monday
Sunday
Dorsal
Butter Fins

Days of the weekend

Of course, individual perceptions and cultural background must be taken into account when you
define what constitutes the weekend. Even the dictionary is imprecise, defining the weekend as the
period from Friday night or Saturday to Monday morning. You are entering the realm where sharp-
edged, yes-no logic stops being helpful. Fuzzy reasoning becomes valuable exactly when you work
with how people really perceive the concept weekend as opposed to a simple-minded classification
useful for accounting purposes only. More than anything else, the following statement lays the
foundations for fuzzy logic.

In fuzzy logic, the truth of any statement becomes a matter of degree.

Any statement can be fuzzy. The major advantage that fuzzy reasoning offers is the ability to reply to
a yes-no question with a not-quite-yes-or-no answer. Humans do this kind of thing all the time (think
how rarely you get a straight answer to a seemingly simple question), but it is a rather new trick for
computers.

How does it work? Reasoning in fuzzy logic is just a matter of generalizing the familiar yes-no
(Boolean) logic. If you give true the numerical value of 1 and false the numerical value of 0, this value
indicates that fuzzy logic also permits in-between values like 0.2 and 0.7453. For instance:

Q: Is Saturday a weekend day?

A: 1 (yes, or true)

Q: Is Tuesday a weekend day?

A: 0 (no, or false)

Q: Is Friday a weekend day?

A: 0.8 (for the most part yes, but not completely)
Q: Is Sunday a weekend day?

A: 0.95 (yes, but not quite as much as Saturday).

The plot on the left shows the truth values for weekend-ness if you are forced to respond with an
absolute yes or no response. On the right is a plot that shows the truth value for weekend-ness if you
are allowed to respond with fuzzy in-between values.

s
o
-
=

weekend-ness
weekend-ness

Thursday Friday Saturday  Sunday  Monday Thursday  Friday Saturday Sunday  Monday

ﬂ
u
I

Days of the weekend two-valued membership Days of the weskand multivalued membership
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Technically, the representation on the right is from the domain of multivalued logic (or multivalent
logic). If you ask the question "Is X a member of set A?" the answer might be yes, no, or any one of a
thousand intermediate values in between. Thus, X might have partial membership in A. Multivalued
logic stands in direct contrast to the more familiar concept of two-valued (or bivalent yes-no) logic.

To return to the example, now consider a continuous scale time plot of weekend-ness shown in the
following plots.

waakand-nass

=
=

Thursday Friday Saturday Sunday Manday Thursday Friday Saturday Sunday Manday

Days of the weskend twa-valued mambarship Days of the weskand multivalued meambarship

By making the plot continuous, you are defining the degree to which any given instant belongs in the
weekend rather than an entire day. In the plot on the left, notice that at midnight on Friday, just as
the second hand sweeps past 12, the weekend-ness truth value jumps discontinuously from 0 to 1.
This is one way to define the weekend, and while it may be useful to an accountant, it may not really
connect with your own real-world experience of weekend-ness.

The plot on the right shows a smoothly varying curve that accounts for the fact that all of Friday, and,
to a small degree, parts of Thursday, partake of the quality of weekend-ness and thus deserve partial
membership in the fuzzy set of weekend moments. The curve that defines the weekend-ness of any
instant in time is a function that maps the input space (time of the week) to the output space
(weekend-ness). Specifically, it is known as a membership function. See “Membership Functions” on
page 1-9 for a more detailed discussion.

As another example of fuzzy sets, consider the question of seasons. What season is it right now? In
the northern hemisphere, summer officially begins at the exact moment in the earth's orbit when the
North Pole is pointed most directly toward the sun. It occurs exactly once a year, in late June. Using
the astronomical definitions for the season, you get sharp boundaries as shown on the left in the
figure that follows. But what you experience as the seasons vary more or less continuously as shown
on the right in the following figure (in temperate northern hemisphere climates).

10 Spri summer fall winter 10 spring summer fall winter
degree degree
of of
member- member-
ship ship
0.0 0.0

Mareh June Saptember Decamber  March Mareh June September Dacambar  March
Time of the Time of the
year year

Membership Functions
A membership function (MF) is a curve that defines how each point in the input space is mapped to a

membership value (or degree of membership) between 0 and 1. The input space is often referred to
as the universe of discourse.
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One of the most commonly used examples of a fuzzy set is the set of tall people. In this case, the
universe of discourse is all potential heights, say from three feet to nine feet. The word tall
corresponds to a curve that defines the degree to which any person is tall. If the set of tall people is
given the well-defined (crisp) boundary of a classical set, you might say all people taller than six feet
are officially considered tall. However, it is unreasonable to call one person short and another one tall
when they differ in height by an inch.

excellent!
.

You must be
taller than
this line to
be
considered
TALL

If the kind of distinction shown previously is unworkable, then what is the right way to define the set
of tall people? Much as with the plot of weekend days, the following figure shows a smoothly varying
curve that passes from not-tall to tall. The output axis is a number known as the membership value
between 0 and 1. The curve is known as a membership function and is often given the designation of
u. For example, the following figure shows both crisp and smooth tall membership functions. In the
top plot, the two people are classified as either entirely tall or entirely not-tall. In the bottom plot, the
smooth transition allows for different degrees of tallness. Both people are tall to some degree, but
one is significantly less tall than the other. The taller person, with a tallness membership of 0.95 is
definitely a tall person, but the person with a tallness membership of 0.3 is not very tall.

1.0 p— | tall (n=1.0
sharp-edged (+ )
membership
degree of function for
membership, g TALL
0.0 | not tall (1 =0.0)
height
* .
1.0 definitely a tall

continuous

membership person (= 0.95)

ree of function for
membership, g TALL

b

Subjective interpretations and appropriate units are built into fuzzy sets. If you say "She's tall," then
the tall membership function should already take into account whether you are referring to a six-year-
old or a grown woman. Similarly, the units are included in the curve since it makes no sense to say "Is
she tall in inches or in meters?"

really not very
tall at all (n=0.30)

0.0

height
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Membership Functions in Fuzzy Logic Toolbox Software

The only condition a membership function must satisfy is that its membership values must vary
between 0 and 1. The function itself can be an arbitrary optimized for your desired combination of
simplicity, convenience, speed, and efficiency.

A classical set might be expressed as:
A= {x|x>6}

A fuzzy set is an extension of a classical set. If X is the universe of discourse and its elements are
denoted by x, then a fuzzy set A in X is defined as a set of ordered pairs.

A{x, pa(x) | x € X}

Ha(x) is called the membership function (or MF) of x in A. The membership function maps each
element of X to a membership value between 0 and 1.

Fuzzy Logic Toolbox software includes 13 built-in membership function types. These functions are, in
turn, built from several basic functions.

* Piecewise linear functions

* Gaussian distribution function

* Sigmoid curve

* Quadratic and cubic polynomial curves

The simplest membership functions are formed using straight lines. These straight-line membership
functions have the advantage of simplicity.

* trimf — Triangular membership function

* trapmf — Trapezoidal membership function

* linzmf — Linear z-shaped membership function open to the left

¢ linsmf — Linear s-shaped membership function open to the right

linzmf trimf trapmf linsmf

Two membership functions are derived from Gaussian distributions: a simple Gaussian curve
(gaussmf) and a two-sided composite of different Gaussian curves (gauss2mf).

The generalized bell-shaped membership function (ghellmf) has a similar smooth transition between

0 and 1. It has a third parameter that you can use to adjust the steepness of the transition from 0 to
1.
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Because of their smoothness and concise notation, Gaussian and bell-shaped membership functions
are popular methods for specifying fuzzy sets. Both of these curves have the advantage of being
smooth and nonzero at all points.

gaussmf gauss2mf gbellmf

Although the Gaussian and bell-shaped curves achieve smoothness, they are unable to specify
asymmetric membership functions, which are important in certain applications. To do so, you can use
the sigmoidal membership function (sigmf), which is a smooth membership function that is open to
either the left or right. You can create asymmetric and closed membership functions based on either
the difference (dsigmf) or product (psigmf) of two sigmoidal functions.

sigmf dsigmf psigmf sigmf

You can also create smooth membership functions using polynomial-based curves that are named for
their shapes.

* zmf — Z-shaped membership function open to the left

* smf — S-shaped membership function open to the right

* pimf — Pi-shaped membership function, which is the product of an s-shaped and z-shaped
membership function

zmf pimf smf

You can also create your own custom membership functions. For more information, see “Build Fuzzy
Systems Using Custom Functions” on page 2-86.
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Logical Operations

Now that you understand the fuzzy inference, you need to see how fuzzy inference connects with
logical operations.

The most important thing to realize about fuzzy logical reasoning is the fact that it is a superset of
standard Boolean logic. In other words, if you keep the fuzzy values at their extremes of 1 (completely
true), and 0 (completely false), standard logical operations hold. As an example, consider the
following standard truth tables.

A B AandB A B AorB A not A
0 0 0 0 0 0 0 1
0 1 0 0 1 1 0
1 0 0 1 0 1
1 1 1 1 1 1

AND OR NOT

Considering that, in fuzzy logic, the truth of any statement is a matter of degree, can these truth
tables be altered? The input values can be real numbers between 0 and 1. What function preserves
the results of the AND truth table (for example) and also extend to all real numbers between 0 and 1?

One answer is the min operation. That is, resolve the statement A AND B, where A and B are limited
to the range (0,1), by using the function min(A,B). Using the same reasoning, you can replace the OR
operation with the max function, so that A OR B becomes equivalent to max(A,B). Finally, the
operation NOT A becomes equivalent to the operation 1 — A. The previous truth table is completely

unchanged by this substitution.

A B min(A,B) A B max(A,B) A 1-A
0 0 0 0 0 0 1
0 1 0 0 1 1 0
1 0 0 1 0 1
1 1 1 1 1 1

AND OR NOT

Moreover, because there is a function behind the truth table rather than just the truth table itself, you
can now consider values other than 1 and 0.

The next figure uses a graph to show the same information. In this figure, the truth table is converted
to a plot of two fuzzy sets applied together to create one fuzzy set. The upper part of the figure
displays plots corresponding to the preceding two-valued truth tables, while the lower part of the
figure displays how the operations work over a continuously varying range of truth values A and B
according to the fuzzy operations you have defined.
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A A A
Two-valued ® . —
logic
Aor B
A and B not A
% B N /
Multivalued
|DgiC Aor B
t A
. B/\ M \
AND OR NOT
min(A,B) max(A,B) (1-A)

Given these three functions, you can resolve any construction using fuzzy sets and the fuzzy logical
operation AND, OR, and NOT.

Additional Fuzzy Operators

In this case, you defined only one particular correspondence between two-valued and multivalued
logical operations for AND, OR, and NOT. This correspondence is by no means unique.

In more general terms, you are defining what are known as the fuzzy intersection or conjunction
(AND), fuzzy union or disjunction (OR), and fuzzy complement (NOT). The classical operators for
these functions are: AND = min, OR = max, and NOT = additive complement. Typically, most fuzzy
logic applications make use of these operations and leave it at that. In general, however, these
functions are arbitrary. Fuzzy Logic Toolbox software uses the classical operator for the fuzzy
complement as shown in the previous figure, but also enables you to customize the AND and OR
operators.

The intersection of two fuzzy sets A and B is specified in general by a binary mapping T, which
aggregates two membership functions as follows:

B n B(X) = T(1a(x), pp(x))

For example, the binary operator T may represent the multiplication of u,(x) and pp(x). These fuzzy
intersection operators, which are usually referred to as T-norm (triangular norm) operators, meet the
following basic requirements:

A T-norm operator is a binary mapping T¥(.,.) with the following properties:

* Boundary — T(0,0)=0, T(a,1) =T(1,a) =a

* Monotonicity — T(a,b) = T(c,d)ifa<cand b <d
* Commutativity — T(a, b) = T(b, a)

* Associativity — T(a, T(b, ¢)) = T(T(a, b), ¢)

The first requirement imposes the correct generalization to crisp sets. The second requirement
implies that a decrease in the membership values in A or B cannot produce an increase in the
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membership value in A intersection B. The third requirement indicates that the operator is indifferent
to the order of the fuzzy sets to be combined. Finally, the fourth requirement allows us to take the
intersection of any number of sets in any order of pair-wise groupings.

Like fuzzy intersection, the fuzzy union operator is specified in general by a binary mapping S:
Ha v B(X) = S(na(x), up(x))

For example, the binary operator S can represent the addition of u,(x) and pp(x). These fuzzy union
operators, which are often referred to as T-conorm (or S-norm) operators, must satisfy the following
basic requirements:

A T-conorm (or S-norm) operator is a binary mapping S(.,.) with the following properties:

* Boundary — S(1,1) =1, S(a,0) = S(0,a) =a

* Monotonicity — S(a,b) = S(c,d)ifa<cand b =d

* Commutativity — S(a, b) = S(b, a)

* Associativity — S(a, S(b, ¢)) = S(S(a, b), ¢)

Several parameterized T-norms and dual T-conorms have been proposed in the past, such as those of

Yager [11], Dubois and Prade [1], Schweizer and Sklar [8], and Sugeno [9]. Each of these provides a
way to vary the gain on the function so that it can be very restrictive or very permissive.

If-Then Rules

Fuzzy sets and fuzzy operators are the subjects and verbs of fuzzy logic. These if-then rule statements
are used to formulate the conditional statements that comprise fuzzy logic.

A single fuzzy if-then rule assumes the form
IfxisA, thenyis B

where A and B are linguistic values defined by fuzzy sets on the ranges (universes of discourse) X and
Y, respectively. The if-part of the rule "x is A" is called the antecedent or premise, while the then-part
of the rule "y is B" is called the consequent or conclusion. An example of such a rule might be

If service is good then tip is average

The concept good is represented as a number between 0 and 1, and so the antecedent is an
interpretation that returns a single number between 0 and 1. Conversely, average is represented as a
fuzzy set, and so the consequent is an assignment that assigns the entire fuzzy set B to the output
variable y. In the if-then rule, the word is gets used in two entirely different ways depending on
whether it appears in the antecedent or the consequent. In MATLAB terms, this usage is the
distinction between a relational test using "==" and a variable assignment using the "=" symbol. A
less confusing way of writing the rule would be

If service == good, then tip = average
In general, the input to an if-then rule is the current value for the input variable (in this case, service)
and the output is an entire fuzzy set (in this case, average). This set will later be defuzzified,

assigning one value to the output. The concept of defuzzification is described in the next section.

Interpreting an if-then rule involves two steps:
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* Evaluation of the antecedent — Fuzzifying the inputs and applying any necessary fuzzy operators.

* Application of the result to the consequent.

The second step is known as implication. For an if-then rule, the antecedent, p, implies the
consequent, ¢q. In binary logic, if p is true, then q is also true (p = q). In fuzzy logic, if p is true to
some degree of membership, then q is also true to the same degree (0.5p = 0.5¢q). In both cases, if p
is false, then the value of g is undetermined.

The antecedent of a rule can have multiple parts.
If sky is gray and wind is strong and barometer is falling, then ...

In this case, all parts of the antecedent are calculated simultaneously and resolved to a single number
using the logical operators described in the preceding section. The consequent of a rule can also have
multiple parts.

If temperature is cold, then hot water valve is open and cold water valve is shut

In this case, all consequents are affected equally by the result of the antecedent. How is the
consequent affected by the antecedent? The consequent specifies a fuzzy set be assigned to the
output. The implication function then modifies that fuzzy set to the degree specified by the
antecedent. The most common ways to modify the output fuzzy set are truncation using the min
function (where the fuzzy set is truncated as shown in the following figure) or scaling using the prod
function (where the output fuzzy set is squashed). Both are supported by the toolbox, but you use
truncation for the examples in this section.

Antecedent Consequent

e e, e e

If service is excellent or  food is delicious then tip = generous
excellent delicious
1. Fuzzify m _/
mDUtS food (crisp)
U(service==excellent) = 0 .0 H(food==delicious) = 0 .7
If ( 0.0 or 0.7 ) then tip = generous
2. Apply
T
OR operator
(max)
max(0.0, 0.7) = 0.7
If ( 0.7 ) then tip = generous
3. Apply |
implication T o
operator (min) generous I
min(0.7, generous)
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Summary of If-Then Rules

Interpreting if-then rules is a three-part process. This process is explained in detail in the next
section:

1 Fuzzify inputs: Resolve all fuzzy statements in the antecedent to a degree of membership
between 0 and 1. If there is only one part to the antecedent, then this is the degree of support for
the rule.

2 Apply fuzzy operator to multiple part antecedents: If there are multiple parts to the
antecedent, apply fuzzy logic operators and resolve the antecedent to a single number between 0
and 1. This is the degree of support for the rule.

3 Apply implication method: Use the degree of support for the entire rule to shape the output
fuzzy set. The consequent of a fuzzy rule assigns an entire fuzzy set to the output. This fuzzy set
is represented by a membership function that is chosen to indicate the qualities of the
consequent. If the antecedent is only partially true, (i.e., is assigned a value less than 1), then the
output fuzzy set is truncated according to the implication method.

In general, one rule alone is not effective. Two or more rules that can play off one another are
needed. The output of each rule is a fuzzy set. The output fuzzy sets for each rule are then
aggregated into a single output fuzzy set. Finally the resulting set is defuzzified, or resolved to a
single number. “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15 shows how the
whole process works from beginning to end for a particular type of fuzzy inference system called a
Mamdani type.
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Fuzzy Inference Process

Fuzzy Inference Process

Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy
logic. The mapping then provides a basis from which decisions can be made, or patterns discerned.
The process of fuzzy inference involves all the pieces that are described in “Membership Functions”
on page 1-9, “Logical Operations” on page 1-13, and “If-Then Rules” on page 1-15.

This section describes the fuzzy inference process and uses the example of the two-input, one-output,
three-rule tipping problem from “Fuzzy vs. Nonfuzzy Logic” on page 1-30. The fuzzy inference
system for this problem takes service and food quality as inputs and computes a tip percentage using
the following rules.

1 [f the service is poor or the food is rancid, then tip is cheap.

2 If the service is good, then tip is average.

3 If the service is excellent or the food is delicious, then tip is generous.

Dinner for Two
a 2 input, 1 output, 3 rule system

If service is poor or food is rancid,
bIL then tip is cheap.

Input 1

Service (0-10)

Rule 2 If service is good, then tip is average.

AN
Input 2 /

Output
Tip (5-25%)

Food (0-10)

Rule 3 [fservice is excellent or food is
delicious, then tip is generous.

The inputs are crisp All rules are The results of the The resultis a
(non-fuzzy) evaluated in paralle! rules are combined crisp (non-fuzzy)
numbers limited to a using fuzzy and distilled number.

specific range. reasoning. (defuzzified).

The parallel nature of the rules is an important aspect of fuzzy logic systems. Instead of sharp
switching between modes based on breakpoints, logic flows smoothly from regions where one rule or
another dominates.

The fuzzy inference process has the following steps.

» Fuzzification of the input variables on page 1-19

* Application of the fuzzy operator (AND or OR) in the antecedent on page 1-20
* Implication from the antecedent to the consequent on page 1-21

» Aggregation of the consequents across the rules on page 1-22

» Defuzzification on page 1-22

Fuzzify Inputs
The first step is to take the inputs and determine the degree to which they belong to each of the

appropriate fuzzy sets via membership functions (fuzzification). In Fuzzy Logic Toolbox software, the
input is always a crisp numerical value limited to the universe of discourse of the input variable (in
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this case, the interval from 0 through 10) . The output is a fuzzy degree of membership in the
qualifying linguistic set (always the interval from 0 through 1). Fuzzification of the input amounts to
either a table lookup or a function evaluation.

This example is built on three rules, and each of the rules depends on resolving the inputs into
several different fuzzy linguistic sets: service is poor, service is good, food is rancid, food is delicious,
and so on. Before the rules can be evaluated, the inputs must be fuzzified according to each of these
linguistic sets. For example, to what extent is the food delicious? The following figure shows how well
the food at the hypothetical restaurant (rated on a scale from 0 through 10) qualifies as the linguistic
variable delicious using a membership function. In this case, we rate the food as an 8, which, given
the graphical definition of delicious, corresponds to u = 0.7 for the delicious membership function.

1. Fuzzify
inputs. delicious Result of
fuzzification

food is delicious ‘

food =8

input

In this manner, each input is fuzzified over all the qualifying membership functions required by the
rules.

Apply Fuzzy Operator

After the inputs are fuzzified, you know the degree to which each part of the antecedent is satisfied
for each rule. If the antecedent of a rule has more than one part, the fuzzy operator is applied to
obtain one number that represents the result of the rule antecedent. This number is then applied to
the output function. The input to the fuzzy operator is two or more membership values from fuzzified
input variables. The output is a single truth value.

As described in “Logical Operations” on page 1-13, any number of well-defined methods can fill in for
the AND operation or the OR operation. In the toolbox, two built-in AND methods are supported: min
(minimum) and prod (product). Two built-in OR methods are also supported: max (maximum) and
probor (probabilistic OR). The probabilistic OR method (also known as the algebraic sum) is
calculated according to the equation:

probor(a,b) =a+ b -ab

In addition to these built-in methods, you can create your own methods for AND and OR by writing
any function and setting that to be your method of choice. For more information, see “Build Fuzzy
Systems Using Custom Functions” on page 2-86.

The following figure demonstrates the OR operator max by evaluating the antecedent of the third rule
of the tipping calculation. For the given service and food ratings, the two elements of the antecedent
(service is excellent and food is delicious) produce the fuzzy membership values 0.0 and 0.7,
respectively. The fuzzy OR operator selects the maximum of the two values, 0.7. The probabilistic OR
method would still result in 0.7.
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1. Fuzzify 2. Apply
inputs. OR operator (max).
excellent 0.7
0.7
0.0 delicious 0.0 result of
fuzzy operator
service is excellent or food is delicious

service=3 food =8

input 1 input 2

Apply Implication Method

Before applying the implication method, you must determine the rule weight. Every rule has a weight
(a number from 0 through 1), which is applied to the number given by the antecedent. Generally, this
weight is 1 (as it is for this example) and thus has no effect on the implication process. However, you
can decrease the effect of one rule relative to the others by changing its weight value to something
other than 1.

After proper weighting has been assigned to each rule, the implication method is implemented. A
consequent is a fuzzy set represented by a membership function, which weights appropriately the
linguistic characteristics that are attributed to it. The consequent is reshaped using a function
associated with the antecedent (a single number). The input for the implication process is a single
number given by the antecedent, and the output is a fuzzy set. Implication is implemented for each
rule. Two built-in methods are supported, and they are the same functions that are used by the AND
method: min (minimum), which truncates the output fuzzy set, and prod (product), which scales the
output fuzzy set.

Antecedent Consegquent
A N
”~ N A
1. Fuzzfy 2. Apply 3. A;lnplyl
. OR Implication
inputs. operator (max) operaor (min).
edxoelent ‘
e ] o _N
If  servioe s exosllent or food s delcious then fp=generous | result of
implication
service = 3 food = 8
input 1 input 2

Note Sugeno systems always use the product implication method.
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Aggregate All Outputs

Since decisions are based on testing all the rules in a FIS, the rule outputs must be combined in some
manner. Aggregation is the process by which the fuzzy sets that represent the outputs of each rule
are combined into a single fuzzy set. Aggregation only occurs once for each output variable, which is
before the final defuzzification step. The input of the aggregation process is the list of truncated
output functions returned by the implication process for each rule. The output of the aggregation
process is one fuzzy set for each output variable.

As long as the aggregation method is commutative, then the order in which the rules are executed is
unimportant. Three built-in methods are supported.

* max (maximum)

* probor (probabilistic OR)

* sum (sum of the rule output sets)

In the following diagram, all three rules are displayed to show how the rule outputs are aggregated
into a single fuzzy set whose membership function assigns a weighting for every output (tip) value.

2 Apply 3. Apply
1. Fuzzify inputs. fuzzy implication
operation method (min).
l | (OR = max).
1 L] poor rancid ‘ ] cheap
4] 30% o 30%
| If service is poor or food is rancid then tip = cheap |
| | - average,
2 L rule 2 has
no dependency
good | on input 2 |
o] 30% o 30%
‘ If service is good then tip = average |
excellent
3 ® delicious generous I \
) 309 0 30% 4. Apply
| It service is excellent  or food is delicious  then tip = generous | igfg;}ﬁ_’,:x)_
service =3 food =8
input 1 input 2 ’_/-\’_\
0 30%
Resultof =~
aggregation

Note Sugeno systems always use the sum aggregation method.

Defuzzify

The input for the defuzzification process is the aggregate output fuzzy set and the output is a single
number. As much as fuzziness helps the rule evaluation during the intermediate steps, the final
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desired output for each variable is generally a single number. However, the aggregate of a fuzzy set
encompasses a range of output values, and so must be defuzzified to obtain a single output value
from the set.

There are five built-in defuzzification methods supported: centroid, bisector, middle of maximum (the
average of the maximum value of the output set), largest of maximum, and smallest of maximum.
Perhaps the most popular defuzzification method is the centroid calculation, which returns the center
of the area under the aggregate fuzzy set, as shown in the following figure.

5. Defuzzify the

aggregate output

0 309  (centroid).

tip = 16.7%

Result of

defuzzification
While the aggregate output fuzzy set covers a range from 0% though 30%, the defuzzified value is

between 5% and 25%. These limits correspond to the centroids of the cheap and generous
membership functions, respectively.

Fuzzy Inference Diagram

The fuzzy inference diagram is the composite of all the smaller diagrams presented so far in this
section. It simultaneously displays all parts of the fuzzy inference process you have examined.
Information flows through the fuzzy inference diagram as shown in the following figure.

—
ﬁ

Interpreting the
fuzzy inference
diagram

input 1 input 2

output
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In this figure, the flow proceeds up from the inputs in the lower left, across each row, and then down
the rule outputs to the lower right. This compact flow shows everything at once, from linguistic
variable fuzzification all the way through defuzzification of the aggregate output.

The following figure shows the actual full-size fuzzy inference diagram for the basic tipping problem.
Using a fuzzy inference diagram, you can learn a lot about how the system operates. For instance, for
the particular inputs in this diagram, you can see that the implication method is truncation with the
min function. The max function is used for the fuzzy OR operation. Rule 3 (the bottom-most row in the
diagram shown previously) has the strongest influence on the output. To for more information on
viewing the rule inference diagram for a fuzzy system, see “Analyze Fuzzy System Using Fuzzy Logic
Designer” on page 2-61.

2. Apply

. fuzzy 3. Apply
1. Fuzzify inputs. operetron implication
{OR max). method (min).
|
1 " poor rancid ] cheap
I_\_ |
0 10 0 30% 0% 30%
If service is poor or food is rancid then tip = cheap
‘ ‘ average, |
/\ rule 2 has ] ’ \ ’ \ |
no dependency
on input 2 | |
0% 80% 0% 30%
service is good then tip = average
|
excellent
3 generous |
delicious ‘
0% 30% 0% 30% 4. Apply
| If  service is excellent or food is delicious then tip = generous aggregation
method (max).
service = 3 food = 8
input 1 input 2
G (5 Defu?jz]ify
centroid).
tip = 16.7% 0% 30%
output
See Also
More About
. “Foundations of Fuzzy Logic” on page 1-7
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Defuzzification Methods

This example describes the built-in methods for defuzzifying the output fuzzy set of a type-1 Mamdani
fuzzy inference system.

Consider the following output fuzzy set, which is an aggregation of three scaled trapezoidal
membership functions.

X =0:0.1:20;

mfl = trapmf(x,[0 2 8 12]);
mf2 = trapmf(x,[5 7 12 14]);
mf3 = trapmf(x,[12 13 18 19]);

mf = max(0.5*mf2,max(0.9*mf1l,0.1*mf3));

figure('Tag', 'defuzz')
plot(x,mf, 'LineWidth"',3)
h gca = gca;

h gca.YTick = [0 .5 1] ;
ylim([-1 1])

D5 T

0f N

Fuzzy Logic Toolbox™ software supports five built-in methods for computing a single crisp output
value for such a fuzzy set.

* Centroid
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» Bisector

* Middle of maximum

* Smallest of maximum
* Largest of maximum

You can also define your own custom defuzzification method. For more information, see “Build Fuzzy
Systems Using Custom Functions” on page 2-86.

Centroid

Centroid defuzzification returns the center of gravity of the fuzzy set along the x-axis. If you think of
the area as a plate with uniform thickness and density, the centroid is the point along the x-axis about
which the fuzzy set would balance. The centroid is computed using the following formula, where p(x;)

is the membership value for point x; in the universe of discourse.

xCentroid = M

2iH(x)
Compute the centroid of the fuzzy set.
xCentroid = defuzz(x,mf, 'centroid');

Indicate the centroid defuzzification result on the original plot.

hCentroid = line([xCentroid xCentroid],[-0.2 1.2],'Color','k");
tCentroid = text(xCentroid,-0.2,' centroid', 'FontWeight', 'bold");
1 T T T T T T T T T
05 b

0f N

centroid
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Bisector

The bisector method finds the vertical line that divides the fuzzy set into two sub-regions of equal
area. It is sometimes, but not always, coincident with the centroid line.

xBisector = defuzz(x,mf, 'bisector');
Indicate the bisector result on the original plot, and gray out the centroid result.

hBisector line([xBisector xBisector],[-0.4 1.2], 'Color','k');
tBisector text(xBisector,-0.4,' bisector', 'FontWeight', 'bold");
gray = 0.7*[1 1 1];

hCentroid.Color = gray;

tCentroid.Color = gray;

bisector

Middle, Smallest, and Largest of Maximum

MOM, SOM, and LOM stand for middle, smallest, and largest of maximum, respectively. In this
example, since the aggregate fuzzy set has a plateau at its maximum value, the MOM, SOM, and LOM
defuzzification results have distinct values. If the aggregate fuzzy set has a unique maximum, then
MOM, SOM, and LOM all produce the same value.

XMOM = defuzz(x,mf, 'mom');
XSOM = defuzz(x,mf, 'som');
XLOM = defuzz(x,mf, 'lom');

Indicate the MOM, SOM, and LOM results on the original plot, and gray out the bisector result.
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hMOM = line([xMOM xMOM],[-0.7 1.2],'Color','k');
tMOM = text(xMOM,-0.7,' MOM', 'FontWeight', 'bold');
hSOM = line([xSOM xSOM],[-0.7 1.2],'Color"','k');
tSOM = text(xSOM,-0.7,' SOM', 'FontWeight', 'bold');
hLOM = line([xLOM xLOM],[-0.7 1.2],'Color"','k');
tLOM = text(xLOM,-0.7,' LOM', 'FontWeight', 'bold');
hBisector.Color = gray;
tBisector.Color = gray;
1 T T T T T T T
05 b
0 1~\u..

S50M MOM LOM

Choosing Defuzzification Method

In general, using the default centroid method is good enough for most applications. Once you have
created your initial fuzzy inference system, you can try other defuzzification methods to see if any
improve your inference results.

Highlight the centroid result, and gray out the MOM, SOM, and LOM results.

hCentroid.Color = 'red';
tCentroid.Color = 'red';
hMOM. Color = gray;
tMOM.Color = gray;
hSOM.Color = gray;
tSOM.Color = gray;
hLOM.Color = gray;
tLOM.Color = gray;
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D5 T

centroid

See Also

More About

. “Foundations of Fuzzy Logic” on page 1-7
. “Fuzzy Inference Process” on page 1-19
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Fuzzy vs. Nonfuzzy Logic

1-30

In this example, to illustrate the value of fuzzy logic, you examine both linear and fuzzy approaches to
determining the correct amount to tip a waitperson at a restaurant. First, you use a conventional
nonfuzzy approach that defines piecewise-linear relations between the inputs (service and food
quality) and the output (tip percentage). Then, you implement a fuzzy approach using linguistic
variables and if-then rules.

Basic Tipping Problem

The basic tipping problem in this examples is as follows — Given a number from 0 through 10 that
represents the quality of service at a restaurant, where 10 is excellent, and another number from 0
through 10 that represents the quality of the food, where 10 is delicious, what should the tip be?

Tipping behavior varies depending on local traditions and personal preferences. In this example, the
problem is based on tipping as it is typically practiced in the United States. An average tip for a meal
in the US is 15%. A generous tip could be as high as 25% and a cheap tip could be 5%.

The actual amount of the tip can vary depending on the quality of the service and food.
Nonfuzzy Approach

As a starting point, consider the simplest possible relationship, that is, the tip always equals 15% of
the total bill.

S =20:.5:10;

tip = 0.15*%ones(size(S));
plot(S,tip)
xlabel('Service')
ylabel('Tip"')

ylim([0.05 0.25])
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[}25 T T T T T T T T T

0.2 T
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2015
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Service

This does not account for the quality of the service, so you must add service term S to the equation
for tip T. Since service is rated on a scale from 0 through 10, increase the tip linearly from 5% if the
service is bad to 25% if the service is excellent.

_ 0.2-S
T=0.05+=—r"

Plot the resulting relation.

tip = (.20/10)*S + 0.05;
plot(S,tip)
xlabel('Service"')
ylabel('Tip")

ylim([0.05 0.25])
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Service

To account for the food quality, add food-quality term F to the tip formula. Here, the service and food
are rated as equally important in the tip calculation.

_ 0.2-(S+F)
T=0.05+=—=50"")

Plot the resulting relation.

food = 0:.5:10;

[F,S] = meshgrid(food,S);

tip = (0.20/20).*(S+F) + 0.05;
surf(S,F,tip)
xlabel('Service')
ylabel('Food")

zlabel('Tip")
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0.25 -
0.2

2015
=

In this case, the results look satisfactory. However, suppose that you want the service to be a more
important factor than the food quality. To do so, you can add a service ratio R to the formula.

0.2-(R-S+(1-R)-F)

T=0.05+ 10

Specify that service accounts for 80% of the overall tipping grade and the food makes up the other
20%.

R =0.8;

tip = (0.2/10)*(R*S + (1-R)*F) + 0.05;
surf(S,F,tip)

xlabel('Service')

ylabel('Food")

zlabel('Tip")
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Suppose further that you want a more flat response in the middle, that is, you want to give a 15% tip
in general, but you also want to specify a variation when the service is exceptionally good or bad. In
this case, the previous linear mappings are not sufficient. Instead, you can create a piecewise-linear
construction. Returning to the service-only calculation, create a conditional tip assignment using
logical indexing.

tip = zeros(size(S));
tip(S<3) = (0.10/3)*S(S<3) + 0.05;
tip(S>=3 & S<7) = 0.15;
tip(S>=7 & S<=10) = ...
(0.10/3)*(S(S>=7 & S<=10)-7) + 0.15;
plot(S,tip)
xlabel('Service')
ylabel('Tip"')
ylim([0.05 0.25])
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Service

Then, add a linear dependence on food service to the piecewise-linear service formula.

R =10.8;

tip = zeros(size(S));

tip(S<3) = ((0.10/3)*S(S<3)+0.05)*R + ...
(1-R)*(0.20/10*F(S<3)+0.05);

tip(S>=3 & S<7) = (0.15)*R + ...
(1-R)*(0.20/10*F(S>=3 & S<7)+0.05);

tip(S>=7 & S<=10) = ((0.10/3)*(S(S>=7 & S<=10)-7)+0.15)*R + ...
(1-R)*(0.20/10*F(S>=7 & S<=10)+0.05);

surf(S,F,tip)

xlabel('Service')

ylabel('Food")

zlabel('Tip")
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The plot looks good, but the calculation is complicated. It is not apparent how the algorithm works to
someone who did not see the original design process.

Fuzzy-Logic Approach

To solve this problem using fuzzy logic, first capture the essentials of the desired tipping behavior,
leaving aside all the factors that could be arbitrary. If you make a list of what really matters in this
problem, you could create the following rule descriptions for tipping based on service quality.

» If service is poor, then tip is cheap
» If service is good, then tip is average
» If service is excellent, then tip is generous

Similarly, for tipping based on food quality, you could create the following rules.

o If food is rancid, then tip is cheap
» If food is delicious, then tip is generous

Then, combine these rules into three compound if-then rules.

» If service is poor or the food is rancid, then tip is cheap
» If service is good, then tip is average

» If service is excellent or food is delicious, then tip is generous
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The rules use linguistic terms, such as cheap and delicious, to define the levels of service, food
quality, and tip.

To implement the fuzzy logic-based solution, you create a fuzzy inference system (FIS) that contains
the if-then rule base and defines the linguistic terms used in the rules.

Load a fuzzy inference system (FIS) that implements the rule-based solution.
fis = readfis('tipper');

View the rules for the FIS, which match the rules defined previously.
fis.Rules

ans =
1x3 fisrule array with properties:

Description
Antecedent
Consequent
Weight
Connection

Details:
Description

=

"service==poor | food==rancid => tip=cheap (1)"
"service==good => tip=average (1)"
3 "service==excellent | food==delicious => tip=generous (1)"

N

This FIS has two inputs (service and food quality) and one output (tip percentage). Each input and
output variable contains membership functions that define the linguistic terms used in the if-then
rules.

For example, the following membership functions represent the tip percentage.

plotmf(fis, "output",1)
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View the input-output relation defined by this FIS.

gensurf(fis)
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fuzzy system is based on a set of common sense rules that are easily understandable by someone
did not create the system.

To change the behavior of this system for different regions or personal preferences, you can add or
modify rules, variable ranges, and linguistic term definitions. For example, to adjust the average,
minimum, and maximum tip values, you can change the range of the output variable and modify the
membership functions accordingly.

As an example, shift the tip range up by five percent.

fis.
fis.

fis

fis

Outputs(1l).Range = fis.Outputs(l).Range + 5;
Outputs(1l) .MembershipFunctions(1l).Parameters = ...
fis.Outputs(1l).MembershipFunctions(1l).Parameters + 5;

.Outputs(1l) .MembershipFunctions(2).Parameters = ...

fis.Outputs(1l).MembershipFunctions(2).Parameters + 5;

.Outputs(1l) .MembershipFunctions(3).Parameters = ...

fis.Outputs(1l).MembershipFunctions(3).Parameters + 5;

plotmf(fis, "output",1)
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The tipping logic of the FIS, as defined by the if-then rule base, remains the same. However the
definition of what the different tip levels mean has changed.

For more complicated changes, you can modify the rule base by modifying existing rules or adding
and removing rules.

See Also

Related Examples
. “Build Fuzzy Systems at the Command Line” on page 2-77
. “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15
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* “Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2

* “Type-2 Fuzzy Inference Systems” on page 2-8

* “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15

* “Get Started Using Fuzzy Logic Designer” on page 2-35

* “Define Membership Functions Using Fuzzy Logic Designer” on page 2-44
* “Define Fuzzy Rules Using Fuzzy Logic Designer” on page 2-54

* “Analyze Fuzzy System Using Fuzzy Logic Designer” on page 2-61

* “Export FIS and Simulation Data from Fuzzy Logic Designer” on page 2-71
* “Build Fuzzy Systems at the Command Line” on page 2-77

* “Build Fuzzy Systems Using Custom Functions” on page 2-86

* “Fuzzy Trees” on page 2-96

* “Fuzzy PID Control with Type-2 FIS” on page 2-102

* “Fuzzy Logic Image Processing” on page 2-116
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Mamdani and Sugeno Fuzzy Inference Systems
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Fuzzy Logic Toolbox software supports two types of fuzzy inference systems:

* Mamdani systems
* Sugeno systems

Fuzzy Inference System Advantages

Mamdani * Intuitive

*  Well-suited to human input

* More interpretable rule base
* Have widespread acceptance

Sugeno * Computationally efficient

*  Work well with linear techniques, such as PID control
*  Work well with optimization and adaptive techniques
* Guarantee output surface continuity

* Well-suited to mathematical analysis

For both Mamdani and Sugeno systems, you can create both type-1 and type-2 fuzzy systems. This
topic discusses the inference processes for type-1 systems. For more information on inference for
type-2 systems, see “Type-2 Fuzzy Inference Systems” on page 2-8.

Mamdani Fuzzy Inference Systems

Mamdani fuzzy inference was first introduced as a method to create a control system by synthesizing
a set of linguistic control rules obtained from experienced human operators [1]. In a Mamdani
system, the output of each rule is a fuzzy set.

Since Mamdani systems have more intuitive and easier to understand rule bases, they are well-suited
to expert system applications where the rules are created from human expert knowledge, such as
medical diagnostics.

The inference process of a Mamdani system is described in “Fuzzy Inference Process” on page 1-19
and summarized in the following figure.
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The output of each rule is a fuzzy set derived from the output membership function and the
implication method of the FIS. These output fuzzy sets are combined into a single fuzzy set using the
aggregation method of the FIS. Then, to compute a final crisp output value, the combined output
fuzzy set is defuzzified using one of the methods described in “Defuzzification Methods” on page 1-
25.

Sugeno Fuzzy Inference Systems

Sugeno fuzzy inference, also referred to as Takagi-Sugeno-Kang fuzzy inference, uses singleton
output membership functions that are either constant or a linear function of the input values. The
defuzzification process for a Sugeno system is more computationally efficient compared to that of a
Mamdani system, since it uses a weighted average or weighted sum of a few data points rather than
compute a centroid of a two-dimensional area. [2]

Each rule in a Sugeno system operates as shown in the following diagram, which shows a two-input
system with input values x and y.
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Each rule generates two values:
* 2z, — Rule output level, which is either a constant value or a linear function of the input values:
Zi = aix + b,-y + G

Here, x and y are the values of input 1 and input 2, respectively, and a;, b;, and c; are constant
coefficients. For a zero-order Sugeno system, z; is a constant (a = b = 0).

* w; — Rule firing strength derived from the rule antecedent
w; = AndMethod(F1(x), Fo(y))
Here, F(...) and F,(...) are the membership functions for inputs 1 and 2, respectively.
The output of each rule is the weighted output level, which is the product of w; and z;.

The easiest way to visualize first-order Sugeno systems (a and b are nonzero) is to think of each rule
as defining the location of a moving singleton. That is, the singleton output spikes can move around in
a linear fashion within the output space, depending on the input values. The rule firing strength then
defines the size of the singleton spike.

The final output of the system is the weighted average over all rule outputs:

N
21 Wiz

1=

N

2 Wi

i=1

Final Output =

where N is the number of rules.

The following figure shows the fuzzy inference process for a Sugeno system.
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Note Sugeno systems always use product implication and sum aggregation.

Because of the linear dependence of each rule on the input variables, the Sugeno method is ideal for
acting as an interpolating supervisor of multiple linear controllers that are to be applied, respectively,
to different operating conditions of a dynamic nonlinear system. For example, the performance of an
aircraft may change dramatically with altitude and Mach number. Linear controllers, though easy to
compute and suited to any given flight condition, must be updated regularly and smoothly to keep up
with the changing state of the flight vehicle. A Sugeno fuzzy inference system is suited to the task of
smoothly interpolating the linear gains that would be applied across the input space; it is a natural
and efficient gain scheduler. Similarly, a Sugeno system is suited for modeling nonlinear systems by
interpolating between multiple linear models.

Convert Between FIS Types
You can convert between Mamdani and Sugeno fuzzy systems.
Mamdani to Sugeno

When you convert a Mamdani system to a Sugeno system, the resulting Sugeno system has constant
output membership functions that correspond to the centroids of the Mamdani output membership
functions. As a result, you lose the information contained in the output membership function fuzzy
sets of the Mamdani system.

To convert a Mamdani system in the Fuzzy Logic Designer app, on the Design tab, click Mamdani
to Sugeno. The app creates a Sugeno version of the active Mamdani system and adds it to the
Design Browser.
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You can also convert a Mamdani system into a Sugeno system at the MATLAB command line using the
convertToSugeno function. The resulting Sugeno system has constant output membership functions
that correspond to the centroids of the Mamdani output membership functions.

Sugeno to Mamdani

When you convert a Sugeno system to a Mamdani system, the resulting Mamdani system has
triangular output membership functions centered at output values that match the constant term of
the Sugeno output membership functions. The width of the triangular membership functions depends
on the linear terms of the Sugeno membership functions.

To convert a Sugeno system in the Fuzzy Logic Designer app, on the Design tab, click Sugeno to
Mamdani. The app creates a Mamdani version of the active Sugeno system and adds it to the
Design Browser.

I DESIGN
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fippersg_1 Mamdani Type-1 |\/\/|
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Converting a Sugeno system to a Mamdani system is not supported at the MATLAB command line.
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Type-2 Fuzzy Inference Systems

2-8

For any value in the universe of discourse, a traditional type-1 membership function has a single
membership value. Therefore, while a type-1 membership function models the degree of membership
in a given linguistic set, it does not model uncertainty in the degree of membership. To model such
uncertainty, you can use interval type-2 membership functions. In such type-2 membership functions,
the degree of membership can have a range of values.

For examples that use type-2 fuzzy inference systems, see “Fuzzy PID Control with Type-2 FIS” on
page 2-102 and “Predict Chaotic Time Series Using Type-2 FIS” on page 3-89.

Interval Type-2 Membership Functions

An interval type-2 membership function is defined by an upper and lower membership function. The
upper membership function (UMF) is equivalent to a traditional type-1 membership function. The
lower membership function (LMF) is less than or equal to the upper membership function for all
possible input values. The region between the UMF and LMF is the footprint of uncertainty (FOU).
The following diagram shows the UMF (red), the LMF (blue), and the FOU (shaded) for a type-2
triangular membership function.

Membership

Universe of Discourse

For each input value in the universe of discourse, the degree of membership is the range of values
between the LMF and UMF values.

Type-2 Fuzzy Inference Systems

Using Fuzzy Logic Toolbox software, you can create both type-2 Mamdani and Sugeno fuzzy inference
systems.

* In type-2 Mamdani systems, both the input and output membership functions are type-2 fuzzy
sets.

* In type-2 Sugeno systems, only the input membership functions are type-2 fuzzy sets. The output
membership functions are the same as for a type-1 Sugeno system — constant or a linear function
of the input values.

To create type-2 Mamdani and Sugeno systems at the command line, use mamfistype2 and
sugfistype?2 objects, respectively. These objects have the same parameters as the type-1 mamfis
and sugfis objects along with an additional TypeReductionMethod parameter.
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You can create a type-2 fuzzy inference system by converting an existing type-1 system, such as one
created using the genfis function. To do so, use the convertToType2 function.

Once you create a type-2 fuzzy inference system, you can:

» Evaluate the fuzzy system using the evalfis functions

* Simulate the fuzzy system using the Fuzzy Logic Controller block

* Tune the parameters of the fuzzy system using the tunefis function

» Deploy the fuzzy system as described in “Deploy Fuzzy Inference Systems” on page 6-2

You can also create type-2 fuzzy inference system using the Fuzzy Logic Designer app.

Fuzzy Inference Process for Type-2 Fuzzy Systems

Antecedent Processing

For type-2 fuzzy inference systems, input values are fuzzified by finding the corresponding degree of
membership in both the UMFs and LMFs from the rule antecedent. Doing so generates two fuzzy
values for each type-2 membership function. For example, the fuzzification in the following figure
shows the membership value in the upper membership function (f;;) and the lower membership
function (f7).

="

Next, a range of rule firing strengths is found by applying the fuzzy operator to the fuzzified values of
the type-2 membership functions, as shown in the following figure. The maximum value of this range
(wy) is the result of applying the fuzzy operator to the fuzzy values from the UMFs. The minimum
value (wy) is the result of applying the fuzzy operator to the fuzzy values from the LMFs
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IR

Antecedent processing is the same for both Mamdani and Sugeno systems.

Consequent Processing

For a Mamdani system, the implication method clips (min implication) or scales (prod implication)
the UMF and LMF of the output type-2 membership function using the rule firing range limits. This
process produces an output fuzzy set for each rule. The following figure shows the output fuzzy set
(dark gray region) produced by applying min implication to the UMF (red) and LMF (blue).

For a type-2 Sugeno system, the output level z; for the ith rule is computed in the same manner as for
a type-1 Sugeno system.

; M
zi=cop+ > CjXj
i=1

Here, j is the input index, x; is the value of the jth input variable, and the ¢ terms are the upper
membership function parameters
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Unlike a type-1 Sugeno system, the rule firing strengths are not used to process the consequent of
each rule. Instead, the output level and rule firing strengths are used during the aggregation process.

Aggregation
The goal of the aggregation stage is to derive a single type-2 fuzzy set from the rule output fuzzy sets.

For a type-2 Mamdani system, the software finds an aggregate type-2 fuzzy set by applying the
aggregation method to the UMFs and LMFs of the output fuzzy sets of all the rules. The following
figure shows the aggregation of two type-2 fuzzy sets (the outputs for a two-rule system) using max
aggregation.

4 10

For a type-2 Sugeno system, the aggregate fuzzy set is derived using the following steps:
1  Sort the rule output levels (z;) from all the rules into ascending order. These output level values
define the universe of discourse for the aggregate type-2 fuzzy set.

2 For each output level, define the UMF value using the maximum firing range value from the
corresponding rule.

3  For each output level, define the LMF value using the minimum firing range value from the
corresponding rule.

For example, suppose you have a type-2 Sugeno system with seven rules. Further, assume these rules
have the following output levels and firing range limits.

Rule Output Level (z) Minimum Firing Value |Maximum Firing
Value
1 6.3 0.1 0.5
2 4.9 0.4 0.5
3 1.6 0.3 0.5
4 5.8 0.5 0.7
5 5.4 0.2 0.6
6 0.7 0.5 0.8
7 3.2 0.2 0.7

The following figure shows the aggregated type-2 fuzzy set for this Sugeno system with its associated
UMF (red) and LMF (blue).
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Output Level (z)

Type Reduction and Defuzzification

To find the final crisp output value for the inference process, the aggregate type-2 fuzzy set is first
reduced to an interval type-1 fuzzy set, which is a range with lower limit c¢; and upper limit cz. This
interval type-1 fuzzy set is commonly referred to as the centroid of the type-2 fuzzy set. In theory, this
centroid is the average of the centroids of all the type-1 fuzzy sets embedded in the type-2 fuzzy set.
In practice, it is not possible to compute the exact values of ¢; and ci. Instead, iterative type-
reduction methods are used to estimate these values.

For a given aggregate type-2 fuzzy set, the approximate values of ¢; and cy are the centroids of the
following type-1 fuzzy sets (green).

R
Mathematically, these centroids are found using the following equations. [1]

L N
_ 2,’ = 1Xipumf(xi) + E,’ =1+ 1Xiﬂlmf(xi)

L= —Cr N
Ei = 1llumf(xi) + 21’ =L+ 1ﬂlmf(xi)
R N
_ Ei - 1 Xilimf(X;) + Ei - R 4+ 1 XiHumf(%))
- R N
E,‘ = 1Vlmf(xi) + E,’ =R+ 111umf(xi)
Here:
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* N is the number of samples taken across the output variable range, specified using
evalfisOptions.

* X; is the ith output value sample.
*  ymsis the upper membership function.
* s the lower membership function.

* L and R are switch points that are estimated by the various type-reduction methods. For a list of
supported methods, see “Type-Reduction Methods” on page 2-13.

For both Mamdani and Sugeno systems, the final defuzzified output value (y) is the average of the two
centroid values from the type reduction process.

_CL+CR
==

Type-Reduction Methods

Fuzzy Logic Toolbox software supports four built-in type-reduction methods. These algorithms differ
in their initialization methods, assumptions, computational efficiency, and terminating conditions.

To set the type-reduction method for a type-2 fuzzy system, set the TypeReduction property of the
mamfistype2 or sugfistype2 object.

Method TypeReduction Description
property Value

Karnik-Mendel (KM) |"karnikmendel" First type-reduction method developed

[2]

Enhanced Karnik- "ekm" Modification of the Karnik-Mendel algorithm with an

Mendel (EKM) [3] improved initialization, modified termination condition,
and improved computational efficiency

Iterative algorithm |"iasc" [terative improvement to brute force methods

with stop condition

(IASC) [4]

Enhanced iterative |"eiasc" Improved version of the IASC algorithm

algorithm with stop
condition (EIASC) [5]

In general, the computational efficiency of these methods improve as you move down the table.

You can also use your own custom type-reduction method. For more information, see “Build Fuzzy
Systems Using Custom Functions” on page 2-86.
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Build Fuzzy Systems Using Fuzzy Logic Designer

This example shows how to interactively create a type-1 Mamdani fuzzy inference system (FIS) to
solve the tipping problem defined in “Fuzzy vs. Nonfuzzy Logic” on page 1-30. For this problem,
tipping behavior is defined using the following three rules.

1 If the service is poor or the food is rancid, then the tip is cheap.

2 If the service is good, then the tip is average.

3 If the service is excellent or the food is delicious, then the tip is generous.

While this example creates a type-1 Mamdani FIS, the general methods used apply to creating type-2
and Sugeno systems as well. For more information on the different types of fuzzy systems, see
“Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2 and “Type-2 Fuzzy Inference Systems”
on page 2-8.

For more information on building a FIS at the command line, see “Build Fuzzy Systems at the
Command Line” on page 2-77.

For this example, you build a tipper FIS from scratch. Alternatively, you can load the system from the
tipper. fis file. To do so, use the following command.

fuzzylLogicDesigner('tipper.fis"')

Create FIS Structure

To build the FIS yourself, first open the app. On the Apps tab, under Control System Design and
Analysis, click the app icon.

The apps opens a Getting Started dialog box. For more information the options for creating your
initial FIS structure, see “Get Started Using Fuzzy Logic Designer” on page 2-35.

For this example, since you are creating a type-1 Mamdani system with the two inputs and one
output, you can use a built in template as a starting point. To do so:

1 Since you will define the rules for your FIS manually, clear the Generate rules automatically
check box.

2  Under Template Fuzzy Inference Systems, select Mamdani Type-1.

2-15



2 Fuzzy Inference System Modeling

{4\ Fuzzy Logic Designer - Getting Started

MATLAB

Open

Create

I [] Generate rules aulomaticallyl

Open from File

Open from Werkspace | Select v |

Recent Files

Learn

Get Started
[ Mamdani and Sugeno Systems

Define Fuzzy Rules Using App
Define Membership Functions Using App

EEEEEEE
5

+ General Fuzzy Inference Systems (FIS)

E_r.- = E_r.— =
Custom FIS from
FIS Data

~ Template Fuzzy Inference Systems (FIS)

Sloa Boa gom
‘ i ‘ | ‘ ll—l
Mamdani Mamdani Sugeno Sugeno
Type-1 Type-2 Type-1 Type-2

The app creates the template FIS and loads it in the app.
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DESIGN TUNING [2]
r [ A “H
o @ O 3 s Si= g2 | [A] | Number of Samples Input Data: Select = = @ 75! 2
o} o == ol o \..

New Save Import Input Cutput Rule AgdAl T amdani Type-1 = Outout Data: Select = Rule Contral System |7 Siore Currant | Export

- - Rules to Sugeno  to Type-2 = AR M Inference Surface Validation Design -

FILE ADD COMPOMNENTS CONVERT FIS SIMULATION DESIGNS EXPORT

DESIGN BROWSER Fuzzy Inference System (FIS) Plot Membership Function (MF) Editor Rule Editor PROPERTY EDITOR: FIS

Set Active Design System: mamdanitype1 Type: Mamdani Type-1

Active

Design Type Compare Name mamdanitype1

v

mamdaniype1 Mamdani Type-1 And method [mn -]

Implication method EE‘

SYSTEM BROWSER

= |2=| mamdanitype1 Defuzzification method m Ad \
2

h'd
» & Inputs inputt (3 MFs) Tz
&
v & Outputs Mamdani Outputs 1
o= Rules Rl
Rules: 0

outputi (3 MFs)

input2 (3 MFs)

System mamdanitype1: 2 input, 1 output, O rule

L4

In the Property Editor section, you can specify the name of your FIS along with its inference
methods. For this example, use the default inference methods. For more information on the available
inference methods, see “Fuzzy Inference Process” on page 1-19 and “Foundations of Fuzzy Logic” on
page 1-7.

In the Name field, enter the name tipper.
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PROPERTY EDITOR: FIS

Type: Mamdani Type-1

Mame | tipper |
And method | min | b ]
Cr method | miax | b |
Implication method | min | v |
Aggregation method | max | L4 |
Defuzzification method | centroid | v |
Inputs: 2

Cutputs: 1

Rules: 0

Define Input Variables

For this example, the template FIS already has two input variables. In the System Browser section,
click Inputs. The app displays the properties of the input variables in the Property Editor.

DESIGN TUNING (=]
n (555 Al ~H A
o @ & g i [l | NumberofSamples Input Data: Select ~ 5 e @ 2
Mew Save Import Input Mamdani  Type-1 = Output Data: Select = Rule Centrel System Store Current | Export
- - to Sugeno  to Type-2 “ B Inference Surface Validation Design =
FILE ADD COMPOMNENTS CONVERT FIS SIMULATION DESIGNS EXPORT
DESIGN BROWSER Fuzzy Inference System (FIS) Plot Membership Function (MF) Editor Rule Editor PROPERTY EDITOR: INPUTS
S EEELT Sl Tove Name Range | Number of MFs
Active | Design Type Compare 1 |input [01] 3
v tipper Mamdani Type-1 2 input2 o1 3

SYSTEM BROWSER

~ | tipper
» g Inputs input1 (3 MFs)
v & Outputs Mamdani
ot= Rules Tt

output1 (3 MFs)

input? (3 MFs)

System tipper: 2 input, 1 output, 0 rule

rl
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In the Property Editor, define the following properties for each input variable.

* Name — Input variable name. For this example, name the first input service and the second
input food.

* Range — Input variable range. For this example, both inputs are rated on a scale from 0 through
10. Therefore, specify each variable range as [0 10]

PROPERTY EDITOR: INPUTS

Name Range Llumber of MFs
1 sernvice [0 10] i
2| |food [010] i
\ .

You can add more input variables if they are required for your application. To do so, on the Design
tab, in the Add Components gallery, click Input.

| DESIGM
G H O[3 B @
' (o) Am| Ll
Mew Save Import Input Mamdani  Type-1
- - to Sugeno  to Type-2
FILE ADD COMPOMENTS COMVERT FIS
DESIGN BROWSER Fuzzy Inference System (FIS) Plot

[Set Active Design] System: tipper

Define Output Variables

For this example, the template FIS already has one input variable. In the System Browser section,
click Outputs. The app displays the properties of the output variable in the Property Editor.

In the Property Editor, define the following properties for the output variable.

* Name — Output variable name. For this example, name the output variable tip.
* Range — Output variable range. For this example, specify the output variable range as [0 30]

PROPERTY EDITOR: OUTPUTS

. Y

Name Range I'Iumber of MFs
1 tip [0 30] 3
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You can add output variables if they are required for your application. To do so, in the Add
Components gallery, click OQutput.

| DESIGN
- Bl R
' O A Lasl
Mew Save Import Output Mamdani  Type-1
o - to Sugenc  to Type-2
FILE ADD COMPOMEMNTS COMVERT FIS
DESIGN BROWSER Fuzzy Inference System (FIS) Plot !
|~Set Active Design | | L-,—E',J | ﬁ” System: tipper

Define Membership Functions

To add or remove membership functions for a given variable, select the variable in the System
Browser or click the variable in the Fuzzy Inference System document. For example, select the
food input variable. In the Property Editor, the app shows the input variable and membership
function properties.

Fuzzy Inference System (FIS) Plot Membership Function (MF) Editor Rule Editar PROPERTY EDITOR: INPUT
System: tipper Mame |food |
Range [0 10] |

Mumber of MFs: 3

[ Evenly Distribute MFs |

Name Type Parameters
mf1 Triangular [-0.416667 0 0.416667]
mf2 Triangular [0.0833333 0.5 0.916667]
mf3 Triangular [0.583333 1 1.41667]
service (3 MFs)
Mamdani
Type 1

tip (3 MFs)

2-20

food (3 MFs)

System tipper: 2 input, 1 output, 0 rule

By default, the template adds three membership functions for each variable. For this example, the
service input variable and the tip output variable both require three membership functions.
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However, the food variable requires two membership functions. To remove one of the default
membership functions, in the System Browser, under food, right-click the membership function and
select Delete.

SYSTEM BROWSER

* || tipper
* & Inputs
b Sernvice
- food
mf1
mf2
mf3
b & Outputs
=1 Rules Delete I

Select in MF editor

Add a copy

You can add membership functions to a given variable if they are required for your application. To do
so, in the Add Components gallery, click MF.

e

w O g
Mew Save Import ’ Mamdani  Type-1
o - to Sugenc  to Type-2
FILE ADD COMPOMENTS COMVERT FIS
DESIGN BROWSER Fuzzy Inference System (FI1S) Plot

| Set Active Design | |£| ||| system: tipper

To edit membership function properties, in the System Browser, select the membership function or
the corresponding variable. Then, in the Property Editor, specify the following membership function
properties.

* Name — Membership function name

* Type — Membership function type

* Parameters — Membership function parameters

To view a plot of the membership functions for a given variable, select the variable in the System
Browser and open the Membership Function Editor document. The following figure shows the
membership functions for the service input variable.

Configure the membership functions for the service input using the properties shown in the following
figure.
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Fuzzy Inference System (FIS) Plot Membership Function (MF) Editor Rule Editor [+] PROPERTY EDITOR: INPUT

System: tipper Mame | service |

Membership Function Plot

- ' ' ' ' ' Range (10 10] |
poor good Number of MFs: 3
Evenly Distribute MFs
Mame Type Parameters
poor Gaussian [1.50]
good Gaussian [1.55]
excellent Gaussian [1.5 10]

Degree of Membership

0 1 2 3 4 5 6 7 8 9 10
Input Variable "service”

Similarly, configure the properties for the food input variable.
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Fuzzy Inference System (FIS) Plot Membership Function (MF) Editor Rule Editor o PROPERTY EDITOR: INPUT

System: tipper Mame | food |
Membership Function Plot

T . . . . . Range | [0 10] |
rancid delicious Mumber of MFs: 2
Evenly Distribute MFs
1

Name Type Parameters
rancid Trapezoidal  ([0013]
delicious Trapezoidal ([7 91010]

o

=

w

o

=

E

€

=

s

® 05+ .

=

@

o

0
] 1 2 3 4 5 6 7 8 9 10
Input Variable "foed”

Finally, define the membership functions for the tip output.
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Fuzzy Inference System (FIS) Plot Membership Function (MF) Editor Rule Editor PROPERTY EDITOR: OUTPUT
System: tipper MName |tip |
Membership Function Plot
' ' ' ' ' Range [ 10301 |
cheap average Number of MFs: 3
Evenly Distribute MFs
1F 4
\ Name Type Parameters
cheap Triangular [0 5 10]
\ average Triangular [1015 20]
-f—:‘ \ generous Triangular [20 25 30]
w i
=
3 \
E
@
=
5
e05r .
=
@
o \
0 \
0 5 10 15 20 25 30
Output Variable "tip"

For more information on defining membership functions, see “Define Membership Functions Using
Fuzzy Logic Designer” on page 2-44.

Define Rule Base

Once you define the variables and membership functions for your FIS, you can define the if-then rule
base for the system.

For this example, use the following rules.

1 If the service is poor or the food is rancid, then the tip is cheap.
2 If the service is good, then the tip is average.
3 If the service is excellent or the food is delicious, then the tip is generous.

Open the Rule Editor document.
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zrence System (FIS) Plot Membership Function {MF) Editor Fule Editor

System: tipper

[AudAM Possible F'.ules] ~lear All Rules

Rule Weight |Name

To add a rule, click . The app adds a rule to the rule table and shows the rule properties in the

Property Editor.

arence System (FIS) Plot | Membership Function (MF) Editor | Rule Editor
System: tipper Mame: rulei
| Add All Possible Rules | | Clear All Rules | Weight |1 |

Rule i Connection (®And () Or
1 If service is poor then tip is cheap 1|rulet If
senvice [is A | [poor A | and
food [is v | [none v |
Then
tip [is v | [cheap v

Modify the rule properties for the first rule — If the service is poor or the food is rancid, then the tip
is cheap.

1 Set the Connection parameter to Or.

2 For the service input, select poor as the linguistic term.
3  For the food input, select rancid as the linguistic term.
4  For the tip output, select cheap as the linguistic term.
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PROPERTY EDITOR: RULE

Mame: rule1

Weight 1

Connection () And (®)Or

If

service |:i5 v | |:pcrnr v | or
food [is v | [rancid v |
Then

tip :is v | |:cheap v

Similarly, add the next rule — If the service is good, then the tip is average. For this rule:

For the service input, select good as the linguistic term.
For the tip output, select average as the linguistic term.

Since this rule has only the service input in the antecedent, ignore the food input by setting its
linguistic term to None.

Finally, add the rule — If the service is excellent or the food is delicious, then the tip is generous. For
this rule:

1 Set the Connection parameter to Or.

2 For the service input, select excellent as the linguistic term.

3 For the food input, select delicious as the linguistic term.

4 For the tip output, select generous as the linguistic term.

View the final rule base in the Rule Editor.
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zrence System (FIS) Plot Membership Function (MF) Editor Fule Editor

System: tipper

 Add All Possible Rules | | Clear All Rules |

Rule Weight |Name |l—,_|—'|
1 If service is poor or food is rancid then tip is cheap 1| ruled
2 If service is good then tip is average 1| rule2
3 I senvice is excellent or food is delicious then tip is generous 1|rule3

For more information on specifying rules for your FIS, see “Define Fuzzy Rules Using Fuzzy Logic
Designer” on page 2-54

Analyze Design

Once you define your rule base, you can analyze your design using the following documents.

* Rule Inference — Specify input values and view the inference diagram and resulting output
value.

* Control Surface — Plot the output values for all combinations of two input variables.

+ System Validation — Compare the outputs from each FIS design with the corresponding output
value from the testing data.

* Error Distribution — For a given FIS design and testing data, view the output error for different
combinations of inputs.

For more information on FIS analysis methods, see “Analyze Fuzzy System Using Fuzzy Logic
Designer” on page 2-61.

For this example, analyze the FIS using the Rule Inference and Control Surface documents. To
open either document, on the Design tab, click the corresponding icon in the Simulation gallery.

DESIGN TUNING

r &= = -
d:,j E 'j == % E|L—-1L| |K_-1| Number of Samples  Input Data: Select ~ E L:o/

MNew Save Import Rule Add All "1 Mamdani Type-1 =i Qutput Data: Select + Rule Contrel System 3
- - Rules to Sugeno  to Type-2 g fitielen S Inference Surface Validation
FILE ADD COMPOMNENTS CONVERT FIS SIMULATION
DESIGN BROWSER [T Fioow Infarance Svstem (FIS) Plat Memhershin Function (MF\ Fditar Rule Fditor | PROPERTY EDITOR: RUI

Rule Inference

In the Rule Inference document, you specify values for your input variables, inspect the inference
process, and view the resulting output value.

For example, consider the case where the service was quite poor (1/10) but the food was very good
(9/10). Specify these input values using the Input values parameter. Alternatively, you can drag the
input bars in the inference diagram.
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Plot Membership Function (MF) Editor Rule Editor Fule Inference

System: tipper

Input values [19]

senvice =1 food=9 tip=13.2

OR

()

AND

{min)

o
5
g

The low service rating causes the first rule to fire with a high firing strength and the high food rating
causes the third rule to fire with a high firing strength. When the resulting output membership
functions are aggregated and defuzzified, the final tip value 15.2%.

For more information on fuzzy inference, see “Fuzzy Inference Process” on page 1-19.
Control Surface

The Control Surface document shows the FIS output value for all possible combinations of two input
variables. For this example, the plot shows the tip value for all service and food rating combinations.
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< Yot Membership Function (MF) Editor Fule Editor Control Surface = L7

System: tipper

Axes: X [sewice ‘v] Y [fuud '] z [tip r]
Mesh Points: X | 15 ¥ | 15~

Feference Inputs:

4

food 0D sarvice

Store and Modify Designs

You can store multiple FIS designs in the app, which allows you to explore possible design options. All

stored designs must have the same number of inputs and the same number of outputs.

A common design option to explore is converting a Mamdani system into a Sugeno system. In
general, Sugeno systems are more computationally efficient, which is an important consideration
when deploying a FIS.

To convert the FIS to a Sugeno system, on the Design tab, select Mamdani to Sugeno.

2-29



2 Fuzzy Inference System Modeling

o E= Eap! !
I:II:II:I E j == = A L] Mumber of 5a
Mew Save Import Rule Add All "1 Mamdani Type-1 1012
- - Rules to Sugeno | to Type-2 -n

FILE ADD COMPOMEMNTS COMVERT FIS
DESIGN BROWSER Yot Membership Function (MF) Editor Rule Edit

In the Design Browser section, the app creates a Sugeno version of the FIS called tipper 1.

[Set Active Design]

Active |[Design Type
o tipper Mamdani Type-1
fipper_1 Sugeno Type-1

To make this design active, select the design in the table and click Set Active Design.

You can also manually store a copy of your current FIS in the Design Browser. To do so, on the
Design tab, select Store Current Design.

DESIGN TUNING
T =6 lah b 7
or H O Si= $ ol [ | NumberofSamples Input Date: Select + (=] L3 73! &
New Save Import Rule Add All T Mamdani Type-d = B = Rule Control System 7 | store Current | Export
- E Rules to Sugeno toy;ffpe-z - Sl Sz Inference Surface Validation Design P'
FILE ADD COMPONENTS CONVERT FIS SIMULATION = T EXPORT
DESIGN BROWSER | Fuzzy Inference System (FI1S) Plot Membership Function (MF) Editor Rule Editor | PROPERTY EDITOR: RULES

You can then analyze the alternative design in the same manner as the first design.

The plot for the Sugeno system in the Control Surface document looks similar to the plot for the
Mamdani system.
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< 3 Function (MF) Editor Rule Editor Control Surface = | Rule Inference o

System: tipper_1

Axas: X [sewice v] i [fuud v] z [tip v]

Mesh Points: X | 15 v | 15[

-

Feference Inputs:

&, 8@0aaq

25

20

10

4
4

food 0

0 service

Using the Rule Inference document, you can see that, for the same service and food ratings, the
Sugeno system generates a 16.1% tip, which is similar to the 15.2% tip for the Mamdani system.
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3 Function (MF) Editor Rule Editor Control Surface Rule Inference

System: tipper_1

Input values [[1 9]

sernvice = 1 food=139 tip =161

on
(max)

\ AMND
2 aCal]

5 / OR
{max)

Export FIS

Once you design your FIS using Fuzzy Logic Designer, you can export the active and stored designs
to the MATLAB workspace for further simulations and deployment.

To export a FIS design to the MATLAB workspace, in Fuzzy Logic Designer, select Export > Export
Fuzzy Inference System to Workspace.
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by 2 L X £
xport
-

-

Rule Control Systermn Y| Store Current |[E
Inference Surface Validation Design
LATION £i>
- i Export Fuzzy Inference Systern To Workspace L}

IE Export Simulation Results To Workspace ... ule Editor

‘ |Rule |

The Export Fuzzy Inference System to Workspace dialog box lists the active FIS design along with
any stored designs.

4| Export Fuzzy Inference Systems to Workspace — O et

[smem,ﬂ.n] [Unsemcmu]

Export Fuzzy Inference System Export As
[] tipper tipper
[] tipper_1 tipper_1

eon ) (ool )

In the Export column, select one or more systems that you want to export.

In the Export As column, specify names for the workspace variables.

Click Export.

The app saves the FIS to the MATLAB workspace.

For more information on exporting and saving your FIS, see “Export FIS and Simulation Data from

Fuzzy Logic Designer” on page 2-71.

See Also
Fuzzy Logic Designer
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More About

“Build Fuzzy Systems at the Command Line” on page 2-77

“Simulate Fuzzy Inference Systems in Simulink” on page 5-2

“Define Fuzzy Rules Using Fuzzy Logic Designer” on page 2-54

“Define Membership Functions Using Fuzzy Logic Designer” on page 2-44
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Get Started Using Fuzzy Logic Designer

After you open the Fuzzy Logic Designer app, you can:

* Open an existing fuzzy inference system (FIS) from the MATLAB workspace or a FIS file (*. fis).
* Create a template FIS structure based on the number of input and output variables for your

application.

* Create a FIS based on input and output data.

4\ Fuzzy Logic Designer - Getting Started

Generate rules automatically

A AT 4 DL

MATLAB

Open Create
Open from File | Z‘ Browse . | ~ General Fuzzy Inference Systems (FIS)
Open from Workspace | Select v |

Recent Files

Sioa Sioa

FIS Data

~ Template Fuzzy Inference Systems (FIS)

Custom FIS from

Learn

[
[
[
[
B8]
[EEl
[
B8]

Get Started

Mamdani and Sugeno Systems

Fuzzy Logic Designer

Build Fuzzy Systems Using App

Define Fuzzy Rules Using App

Define Membership Functions Using App

Type-2 Fuzzy Inference Systems Mamdani Mamdani
Type-1 Type-2

After you open a FIS or create a new FIS structure, you must configure your system by defining:

* Membership functions for the input and output variables. For more information, see “Define
Membership Functions Using Fuzzy Logic Designer” on page 2-44.

* Fuzzy rules. For more information, see “Define Fuzzy Rules Using Fuzzy Logic Designer” on page

2-54.

After configuring your FIS, you can analyze its behavior within the app. For more information, see

“Analyze Fuzzy System Using Fuzzy Logic Designer” on page 2-61.

For an example that shows how to create, configure, and analyze a fuzzy inference system, see “Build

Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15.
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Open Existing FIS
You can open an existing FIS from MATLAB workspace or a FIS file.

To open a FIS from the MATLAB workspace, in the Open from Workspace drop-down list, select the
FIS.

MATLAB

Open Create
Open from File | % | Browse ... | - Gener
—— % R
Cpen from Wor}cspaté Select v
Select
Recent Files
fis1 (sugfis)

fis2 (mamfis)

fis3 (mamfis)

= Templ:

To open a FIS from a FIS file (*. fis), click Browse. Then, in the Open Fuzzy Inference System
dialog box, browse to the folder that contains the file, select the file, and click Open.

Create Template FIS Structure

You can create a template FIS structure for any of the supported FIS types.

* Type-1 Mamdani system

* Type-2 Mamdani system

* Type-1 Sugeno system

* Type-2 Sugeno system

If your application has two input variables and one output variable, in the Getting Started dialog box,

under Template Fuzzy Inference Systems, click the corresponding type of FIS that you want to
create.
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-~ Template Fuzzy Inference Systems (FIS)

Learn
Sio-a So-@ Som Sio-@
Get Started | | | | L1 | {111
Mamdani and Sugeno Systems . : e . !
Type-2 Fuzzy Inference Systems ‘ Mamdani i ) Mamdani i ) Sugeno ) ‘ Sugeno
Fuzzy Logic Designer Type-1 Type-2 Type-1 Type-2

B
L4
(]
=3
=
il
'
R
=
7
=3
i,
T
=]
=
n
—
=3
=
[=]
I
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If your application has more than two inputs or more than one output, in the Getting Started dialog
box, under General Fuzzy Inference Systems, click Custom FIS.

In the Custom System dialog box, select the type of FIS that you want to create and specify the FIS
name and the number of input and output variables.

4| Custom System — O >

System type Sugeno Type-1 b |

Mame fis

Mumber of inputs 3 %|

Mumber of outputs 2 %|
| oK | | Cancel |

When you create a template FIS structure, each input variable has three triangular membership
functions. For Mamdani systems, each output variable also has three triangular membership
functions. For Sugeno systems, each output variable has three constant membership functions.

Each input and output variable has a default range of 0 through 1.

Create FIS from Data

If you have input/output data that spans the operating ranges for your system variables, you can
create a FIS based on clusters derived from this data. To create a FIS from data, in the Getting
Started dialog box, under General Fuzzy Inference Systems, click FIS from Data.
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4. Create System from Data — U] X
Name fis
Input data :Select hd
Cutput data [SEIect v |
Clustering method [FGM clustering hd |
Clustering Options

System type [SUQEI'IID Type-1 v

Number of clusters auto

Exponent 2

Maximum iterations 100 ﬂ

Minimum improvement | 1e-5

Distance metric [Eu-:l idean v |
ok [ cmea )

In the Create System from Data dialog box, select the input and output data using the Input data
and Output data drop-down lists, respectively. Each list displays any valid numerical arrays available
in the MATLAB workspace.

When you select data consider the following:
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Input data must be an N-column numerical array, where N is the number of FIS inputs.
Output data must be an M-column array, where M is the number of FIS outputs.

When using the grid partition clustering method, the output data must have one column. If you
specify data with more than one column for grid partitioning, the app uses only the first column as
the output data.

The input and output data arrays must have the same number of rows.
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Then, select the type of clustering using the Clustering method drop-down list.
FCM Clustering

You can generate a Mamdani or Sugeno fuzzy system using membership functions derived from data
clusters found using FCM clustering of input and output data.

» Each input and output variable contains one membership function for each cluster.

* Input variables use Gaussian membership functions.

* For Mamdani systems, the output variables use Gaussian membership functions.

» For Sugeno systems, the output variables use linear membership functions.

To configure the FCM clustering, use the options shown in the following table.

Parameter Description

System type Fuzzy inference system type, specified as one of the
following values.

* Sugeno Type-1
* Mamdani Type-1

Number of clusters Number of clusters to create, specified as auto or an
integer greater than 1. When you specify auto, the app
estimates the number of clusters using subtractive
clustering.

Exponent Exponent for the fuzzy partition matrix, specified as a
scalar greater than 1. This option controls the amount of
fuzzy overlap between clusters, with larger values
indicating a greater degree of overlap.

Maximum iterations Maximum number of FCM iterations, specified as a
positive integer.

Minimum improvement Minimum improvement in the objective function between
two consecutive iterations, specified as a positive scalar.

Distance Metric Method for computing distance between data points and
cluster centers, specified as one of the following values.

¢ Euclidean — Compute distance using a Euclidean
distance metric, which corresponds to the classical
FCM algorithm.

* Mahalanobis — Compute distance using a
Mahalanobis distance metric, which corresponds to the
Gustafson-Kessel FCM algorithm.

For more information on the FCM clustering algorithm, see “Fuzzy Clustering” on page 4-2.
Grid Partition

You can generate input membership functions by uniformly partitioning the input variable ranges,
and create a single-output Sugeno fuzzy system with one membership function for each possible input
variable combination. You can specify the membership function type for the input and output
variables.
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To configure the FCM clustering, use the options shown in the following table.

Parameter Description

Input membership function type Input membership function type. For more
information on the types of membership
functions, see “Foundations of Fuzzy Logic” on

page 1-7.
Number Number of membership functions to use for input
variables, specified as an integer greater than 1.
Output membership function type Output membership function type, specified as

either Linear or Constant.

By default, the app uses the same membership function settings for all input variables. However, you
can use a different membership function number and type for each input variable. To do so, clear the
Use same membership function settings for each input parameter.

Clustering Options

|:| Use same membership function settings for each input

Input Membership Function Type Number
input1 Triangular 2
input2 Gaussian 2

Subtractive Clustering

You can generate a Sugeno fuzzy system using membership functions derived from data clusters
found using subtractive clustering of input and output data.

* Each input and output variable contains one membership function for each cluster.
* Input variables use Gaussian membership functions.
* Output variables use linear membership functions.

Each input and output variable contains one membership function for each cluster. For more
information on the subtractive clustering algorithm, see subclust.

To configure the clustering, use the options shown in the following table.
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Parameter

Description

Cluster influence range

Range of influence of the cluster center for each input
and output assuming the data falls within a unit
hyperbox, specified as one of the following values.

* Scalar value in the range [0 1] — Use the same
influence range for all inputs and outputs.

* Vector — Use different influence ranges for each
input and output.

Specifying a smaller range of influence usually creates
more and smaller data clusters.

Data scale

Data scale factors for normalizing input and output data
into a unit hyperbox, specified as a 2-by-N array, where
N is the total number of inputs and outputs. Each
column specifies the minimum value in the first row and
the maximum value in the second row for the
corresponding input or output data set.

When the data scale is auto, the app uses the actual
minimum and maximum values in the data to be
clustered.

Squash factor

Squash factor for scaling the range of influence of
cluster centers, specified as a positive scalar. A smaller
squash factor reduces the potential for outlying points to
be considered as part of a cluster, which usually creates
more and smaller data clusters.

Accept ratio

Acceptance ratio, defined as a fraction of the potential of
the first cluster center, above which another data point
is accepted as a cluster center, specified as a scalar
value in the range [0 1]. The acceptance ratio must be
greater than the rejection ratio.

Reject ratio

Rejection ratio, defined as a fraction of the potential of
the first cluster center, below which another data point
is rejected as a cluster center, specified as a scalar value
in the range [0 1]. The rejection ratio must be less than
acceptance ratio.

Custom cluster centers

Custom cluster centers, specified as a C-by-N array,
where C is the number of clusters and N is the total
number of inputs and outputs.

To automatically compute cluster centers, set the custom
centersto [].

Automatically Generate Rules

When you create a FIS, you can automatically populate the rule base. To do so, before creating the
FIS, select Generate rules automatically. By default, this option is selected.
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Fi I, la ml .
Open Create Generate rules automatically
Open from File = General Fuzzy Inference Systems (FIS)

Open from Werkspace | Select v |
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What rules are generated depend on how you create the FIS.
Rules for FIS Template Structure

When you generate rules for a FIS template structure, the app adds an AND-based rule for each
possible combination of input membership functions. For example, the following figure shows the
nine generated rules for a two-input system where each input variable has three membership
functions.

arence System (FIS) Plot Membership Function (MF) Editor Fule Editor

System: mamdanitype1

[Aud All Possible Hules] [Clearﬂll Rules]

Rule Weight |Name
1 If input1 is mf1 and input2 is mf1 then output1 is mi 1| rulet
2 If input1 is mf2 and input2 is mf1 then output1 is mf 1| rule2
3 If input1 is mf3 and input2 is mf1 then output1 is mf 1|rule3
4 If input1 is mf1 and input2 is mf2 then output1 is mf 1|ruled
5 If input1 is mf2 and input2 is mf2 then output1 is mf 1| rules
G If input1 is mf3 and input2 is mf2 then output1 is mf 1| ruleG
7 If input1 is mf1 and input2 is mf3 then output1 is mf 1|rule7
a If input1 is mf2 and input2 is mf3 then outputi is mi1 1|rules
g If input1 is mf3 and input2 is mf3 then output1 is mi1 1|ruleg

For all of the generated rules, the default consequent is the first membership function of the first
output variable.

FIS from Data

When you create a FIS from data, the generated rules depend on the type of clustering you select for
creating your FIS.

* (rid partitioning — One AND-based rule for each input membership function combination. The
consequent of each rule corresponds to a different output membership function. For example, the
following figure shows the four generated rules for a two-input system where each input variable
has two membership functions.
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€ y Inference System (FIS) Plot Membership Function (MF) Editor Fule Editor L]

System: fis

[Audml Possible Rules] [Clear.ﬁ.ll Rules]

Rule Weight |Name
1 [T input1 is intmf1 and input2 is in2mf1 then output is out1mf1 11 ruled
2 Ifinput1 is in1mf1 and inpui2 is in2mf2 then oufput is out1mf2 1| rule2
3 If input1 is in1mf2 and input2 is iIn2mf1 then output is out1mf3 1| rule3
4 Ifinput1 is in1mf2 and input2 is in2mf2 then output is out1mf4 1| ruled

* FCM or subtractive clustering — One AND-based rule for each fuzzy cluster. Each rule uses the
cluster-specific membership function from each input and output variable. For example, the
following figure shows the rules for a FIS with four clusters generated using FCM clustering.

Fuzzy Inference System (FIS) Plot Membership Function (MF) Editor Rule Editor o

System: fis

[Addhll Possible Rules] [mearm Rules]

Rule Weight |MName
1 ITin1 is in1clustert and in2 is in2cluster1 then out1 is outiclustert 1| rulet
2 |Ifim1 is in1cluster? and in2 is in2cluster2 then out1 is out1cluster2 1|rule2
3 |Ifin1is in1cluster3 and in2 is inZcluster3 then out1 is outicluster3 1|rule3
4 [Ifin1 is in1clusterd and in2 is inZclusterd then out1 is outiclusterd 1|ruled
See Also

Fuzzy Logic Designer

Related Examples

. “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15

. “Define Fuzzy Rules Using Fuzzy Logic Designer” on page 2-54

. “Define Membership Functions Using Fuzzy Logic Designer” on page 2-44

2-43



2 Fuzzy Inference System Modeling

Define Membership Functions Using Fuzzy Logic Designer

Once you add a variable to your fuzzy inference system (FIS) using Fuzzy Logic Designer, you can
define the membership functions for that variable.

Add MFs

To add membership functions to a given variable, select the variable in the System Browser or click
the variable in the Fuzzy Inference System document. In the Property Editor, the app shows the
input variable and membership function properties.

DESIGN TUNING [2]
~ R E Eh 1 A o
EE:' E j A [ [l Number of Samples  Input Data: Select ~ |\'_'_, m \Q
New Save Import MF T Mamdani Type-1 101~ Output Data: Select ~ Rule Contrel S){ste.m 7 Store Currant Export
- - to Sugeno  to Type-2 Inference Surface Validation Design -
FILE ADD COMPOMNENTS CONVERT FIS SIMULATION DESIGNS EXPORT
DESIGN BROWSER Fuzzy Inference System (FIS) Plot Membership Function (MF) Editor Rule Editor PROPERTY EDITOR: INPUT
[ set Active Design | | K | [@]| system: tipper Name [service |
Active | Design Type Compare Range [10 10 |

v tipper

Mamdani Type-1

Number of MFs: 0

[Evenly Distribute MFs |

Mame ‘Type |Parame|els

SYSTEM BROWSER

- | tipper
- & Inputs

¥ food
» & Outputs
b Zl= Rules
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service (0 MF)

Type 1

tip (3 MFs)

food (2 MFs)

System tipper: 2 input, 1 output, 2 rules

bl

To add an MF, on the Design tab, in the Add Components gallery, click MF.

| DESIGM
¢ E O % R
: Ll L
Mew Save Import Mamdani  Type-1
- - to Sugeno to Type-2
FILE ADD COMPOMENTS COMVERT FIS
DESIGN BROWSER Fuzzy Inference System (FIS) Plot
|\Set Active Design | | L-,—E',J | '@| System: tipper

In the System Browser, the app adds an MF with a default configuration to the selected variable.
You can view the properties of the MF in the table of the Property Editor
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PROPERTY EDITOR: INPUT

Name | service

Range [10101

Number of MFs: 1

Evenly Distribute MFs

Tyvpe

| Name

P;

Triangular

[mﬁ

105 10] |

DESIGN BROWSER Fuzzy Inference System (FIS) Plot Membership Function (MF) Editor Rule Editor
Set Active Design System: tipper
Active | Design Type Compare
v tipper Mamdani Type-1
SYSTEM BROWSER
~ | tipper
v &
& Inputs service (1 MF)
- semvice Mamdani
Type 1
» food
v & Outputs
b 2= Rules
tip (3 MFs)
food (2 MFs)
System tipper: 2 input, 1 output, 2 rules

r J

You can also create a copy of an existing MF. To do so, in the System Browser, under the variable,
right-click the membership function and select Add a copy.

SYSTEM BROWSER

- [ tipper
- & Inputs

- SEnice

mi1

v food
b & Outputs

b St= Rules

Select in MF editor

—L} Add a copy

Delete

The app creates a new MF with the same properties as the original MF and a modified name.

Distribute MFs Across Variable Range

New MFs added to a variable have default properties. You can configure the values of these MFs

manually. For more information, see “Configure MFs” on page 2-48.

You can also automatically distribute the existing MFs across the variable range. For example, the
following figure shows three triangular membership function with the same default parameters.
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Input Variable "service”

To distribute these MFs across the variable range, click Evenly Distribute MFs.
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Fuzzy Inference System (FIS) Plot Membership Function (MF) Editor Rule Editor o
System: tipper
Membership Function Plot
mia

1k 1
o
2
w
=
=
E
a
=
=]
=5+ .
=
a
a

°[ ]

0 1 2 3 4 5 6 7 8 10

PROPERTY EDITOR: INFUT [+
Mame | service |
Rangs 10 101 |
Number of MFs: 3
Evenly Distribute MFs

Name Type Parameters

il Triangular [0510]

mf2 Triangular [0510]

mf3 Triangular [0510]
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Input Variable "service”

Fuzzy Inference System (FIS) Plot Membership Function (MF) Editor Rule Editor o PROPERTY EDITOR: INPUT
System: tipper MName | service |
Membership Function Plot
T T T T T T T T T Range | [010] |
mil mf2 Number of MFs: 3
Evenly Distribute MFs
1k §
Name Type Parameters
mi1 Triangular [-4.16667 0 4.16667]
mf2 Triangular [0.833333 5 9.16667]
-:—:L mf3 Triangular [5.83333 10 14.1667]
w
=
=
E
@
=
5
=05 1
= \
@
o \
U \
0 1 2 3 4 5 6 7 8 9 10

View MFs

To view a plot of the membership functions for a given variable, first select the variable in the
System Browser. Then, open the Membership Function Editor document.

~ DESIGN BROWSER

Set Active Design

o

Fuzzy Inference System (FIS) Plot

System: tipper

Membership Function (MF) Editor

Rule Editor

o

Active | Design Type

Compare

Vv tipper Mamdani Type-1

¥ SYSTEM BROWSER

- | fipper
= § Inputs
» service
» food
+ & Outputs
¥ Z= Rules

Membership Function Plot

poor

Degree of Membership

good

4 5 6
Input Variable "service”

PROPERTY EDITOR: INPUT (-]
Name | service |
Range | 1010] |

Number of MFs

3

Evenly Distribute MFs

Name Type Parameters
poor Gaussian [1.510]
good Gaussian [155]
excellent Gaussian [1.510]
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You can view the properties of the MFs in the Property Editor.

Configure MFs

You can edit the properties of an MF in the Property Editor. The types of MFs available for a
variable and the MF properties depend on the type of FIS that you are designing.

Type-1 MFs
The following variables use type-1 MFs.

* Input and output variables of a type-1 Mamdani FIS
* Input variables of a type-1 Sugeno FIS

To configure a type-1 MF, specify the following properties.

* Name — Membership function name
* Type — Membership function type

* Parameters — Membership function parameters

PROPERTY EDITOR: INFUT

Mame | service |

Range | [0 10] |

Mumber of MFs: 3

 Evenly Distribute MFs |

MName Type Parameters
poor Gaussian [1.50]

qood Gaussian [1.5 5]
excellent Gaussian [1.510]

You can specify the built-in type-1 MFs in the following table.

Type Description More Information
Generalized bell |Generalized bell-shaped membership |gbellmf

function
Gaussian Gaussian membership function gaussmf
Two-sided Gaussian combination membership gauss2mf
Gaussian function
Triangular Triangular membership function trimf
Trapezoidal Trapezoidal membership function trapmf
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Type Description More Information

Linear S-shaped |Linear s-shaped saturation linsmf
membership function

Linear Z-shaped |Linear z-shaped saturation linzmf
membership function

Sigmoidal Sigmoidal membership function sigmf

Difference of Difference between two sigmoidal dsigmf

sigmoids membership functions

Product of Product of two sigmoidal membership |psigmf

sigmoids functions

Z-shaped Z-shaped membership function zmf

Pi-shaped Pi-shaped membership function pimf

S-shaped S-shaped membership function smf

You can also specify custom MFs. For more information, see “Build Fuzzy Systems Using Custom
Functions” on page 2-86.

Type-2 MFs
The following variables use type-2 MFs.

* Input and output variables of a type-2 Mamdani FIS
» Input variables of a type-2 Sugeno FIS

To configure a type-2 MF, specify the following properties.

* Name — Membership function name

* Type — Membership function type

* Upper Parameters — Upper membership function parameters
* Lower Scale — Lower membership function scale factor

* Lower Lag — Lower membership function delay factor, which defines the point at which the lower
membership function value starts increasing from zero based on the value of the upper
membership function. For example, a lag value of 0.1 indicates that the lower membership
function becomes positive when the upper membership function has a membership value of 0.1
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PROPERTY EDITOR: INPUT

Mame | senvice |

Range | [0 10] |

Mumber of MFs: 3

 Evenly Distribute MFs |

Mame Type Upper Lower |Lower
Parameters |Scale |lag
poor Gaussian [1.50] 1 0.z
good Gaussian [1.55] 1 0.z
excellent | Gaussian [1.510] 1 0.2

A type-2 MF consists of a type-1 upper MF and a scaled lower MF. The Type and Upper Parameters

properties define the upper MF and correspond to the Type and Parameters properties of a type-1
MF.

For more information on type-2 MFs, see “Type-2 Fuzzy Inference Systems” on page 2-8.

Sugeno Output MFs

For the output variables of type-1 and type-2 Sugeno systems, you can specify the following types of

MFs.

* Constant — The location of the singleton MF in the output range is a constant value.

* Linear — The location of the singleton MF in the output range is a linear function of the input
values.

For these membership functions, you can specify the following parameters.

* Name — Membership function name
* Type — Membership function type
* Parameters — Membership function parameters
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PROPERTY EDITOR: QUTPUT

Mame |tip |

Range |[n 30] |

Mumber of MFs: 3

[Evenl',f Distribute MFs]

Mame Type Parameters
cheap Constant 5002
average Constant 15

Qenerous Constant 24 998

For more information on Sugeno systems, see “Sugeno Fuzzy Inference Systems” on page 2-3.
Interactively Edit MFs
You can also interactively adjust the properties of a built-in type-1 or type-2 MF. To do so, in the

Membership Function Editor, first click the MFE. Then, you can modify the MF by dragging the
control points.
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Fuzzy Inference System (FIS) Plot Membership Function (MF) Editor Rul > @

System: mamdanitype1

Membership Function Plot

mf1 mf2

=
un

Degree of Membership

\

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.3 09 1
Input Variable "input1”

Interactively editing a Sugeno output MF or a custom MF is not supported.

Delete MFs

To delete an MF from a variable, in the System Browser, under the variable, right-click the
membership function and select Delete.
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SYSTEM BROWSER

* [ tipper
* % Inputs
b Sernvice
- food
mf1
mf2
mf3
b & Outputs
=l= Rules Delete I

Select in MF editor

Add a copy

When you delete an MF from a variable, any rules that contain that variable are also deleted.

See Also
Fuzzy Logic Designer

Related Examples

. “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15
. “Get Started Using Fuzzy Logic Designer” on page 2-35

. “Define Fuzzy Rules Using Fuzzy Logic Designer” on page 2-54

. “Analyze Fuzzy System Using Fuzzy Logic Designer” on page 2-61
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Define Fuzzy Rules Using Fuzzy Logic Designer

Once you create a fuzzy inference system (FIS) using Fuzzy Logic Designer and define the input
and output variables along with their respective membership functions, you can create a fuzzy rule
base for your system.

Each if-then rule in a fuzzy system has two components.

* Antecedent — The if portion of the rule, which specifies the input variable linguistic terms
* Consequent — The then portion of the rule, which specifies the output variable linguistic terms

For more information on fuzzy rule structure, see “Foundations of Fuzzy Logic” on page 1-7.

Once you define your rules, you can analyze the behavior of your FIS, including the rule inference
process. For more information, see “Analyze Fuzzy System Using Fuzzy Logic Designer” on page 2-
61.

Add Rules

To add a rule to your FIS, first open the Rule Editor document.

zrence System (FIS) Plot Membership Function {MF) Editor Fule Editor

System: tipper

 Add Al Possible Rules |

Rule Weight |Name |'—._,—'|

To add a rule, click |1_'| The app adds a default rule to the rule table and shows the rule properties in
the Property Editor. You can then edit the rule properties using the Property Editor.
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zrence System (FIS) Plot Membership Function (MF) Editor

System: tipper MName: rule1
( Add All Possible Rules | | Clear All Rules | weight |1 |
Rule Weight |Name Connection @) And () Or
1 |Ifservice is poor then tip is cheap 1| rule1 If

service [is v | [poor v | and
food [is v | [none v |
Then
tip [is v | [cheap v

You can copy an existing rule by selecting the rule in the Rule Editor and clicking .

You can also add a rule by selecting either the FIS name or Rules in the System Browser. Then, on
the Design tab, in the Add Components gallery, click Rule.
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DESIGM

+ H O = .
1 g}ﬁ [
Mew Save Import Add All Man
- - Rules to Su
FILE ADD COMPOMEMNTS
DESIGN BROWSER Fuzzy Inference Syst
Set Active Design] System: tipper
Active |Design Type
-f fipper Mamdani Type-1
tipper_1 Mamdani Type-1

SYSTEM BROWSER
* | tipper

» Z Inputs

- & Outputs

- tip

service (3 MFs

cheap

average

Oonorsl |S

' = S1= Rules
TuteT

Add All Possible Rules

You can add AND-based rules to your FIS for all possible input combinations using one of the
following methods:

* In the Rule Editor, click Add All Possible Rules.

2-56



Define Fuzzy Rules Using Fuzzy Logic Designer

System: tipper

zrence System (FIS) Plot Membership Function (MF) Editor Rule Editor

[AddAIIPnssible Rules] Clear All Rules

Rule

Weight |Name

* Select the FIS name or Rules in the System Browser. Then, in the Add Components gallery,

click Add All Rules.

e

. (£
wld 8O 8= | ES i
Mew Save Import Rule Add Al " Mamdani
- - Rules to Sugeno
FILE ADDCOMPOMNENTS COMNVER

DESIGN BROWSER

Set Active Design]

zrence System (FIS) Plot

System: tipper

SYSTEM BROWSER

v |2 tipper
v & Inputs
b & Outputs

St= Rules

Edit Rules

Active |Design Type [AddAII Fossible Rules] Clear
o tipper Mamdani Type-1
tipper_1 Mamdani Type-1 il

To configure a rule, first select the rule in the System Browser or the Rule Editor, which displays

the rule in the Property Editor.
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PROPERTY EDITOR: RULE

Mame: rule1

Weight 1
Connection (And (&) Or

If

service |is v | |poor v | or
food |is v | |rancid v |
Then

tip is ¥ | |cheap v

To define the rule antecedent, first specify the connection operator. To do so, set the Connection
parameter to one of the following values.

* And — Connect the input linguistic terms using an AND operation.
* Or — Connect the input linguistic terms using an OR operation.

Then, under If, select a linguistic term for each input variable. To do so, in the right-hand drop-down
list, select a membership function name. To ignore an input variable, select none.

Then, indicate whether to apply a NOT operation to the selected membership function. To apply a
NOT operation, in the left-hand drop-down list, select is not. Otherwise, select is.

Similarly, under Then configure each output variable in the consequent.

Typically, you weight the importance of all the rules in a FIS equally. However, you can decrease the
relative weighting of a rule. To do so, specify a value for the Weight parameter that is less than 1.

Delete Rules

To delete a rule from your FIS, in the Rule Editor, select the rule and click | E'

Alternatively, in the System Browser, under Rules, right-click the rule and select Delete.
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SYSTEM BROWSER

* | tipper_1
¥ 2 Inputs
b & Outputs
= 1= Rules
rulet

rule?

rule3 Select in rule editor

Delete I
L)

To delete all of the rules from your FIS, in the Rule Editor, click Clear All Rules.

zrence System (FIS) Plot Membership Function (MF) Editor Fule Editor
System: tipper
| Add All Possible Rules | | Clear All Rules |
Rule Weight |Name
1 If service is poor or food is rancid then tip is cheap rule
2 If service is good then tip is average rule
3 If service is excellent or food is delicious then tip is generous rule3

Alternatively, in the System Browser, right-click Rules, and select Delete all rules.

SYSTEM BROWSER

- [ tipper
b 2 Inputs
» & Outputs

- ot= Rules
ruled Show rule editor

rule2 Delete all rules

rule3

See Also
Fuzzy Logic Designer
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Related Examples

“Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15

“Get Started Using Fuzzy Logic Designer” on page 2-35

“Define Membership Functions Using Fuzzy Logic Designer” on page 2-44
“Analyze Fuzzy System Using Fuzzy Logic Designer” on page 2-61
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Analyze Fuzzy System Using Fuzzy Logic Designer

Once you define the membership functions and rule base of your fuzzy inference system (FIS),
whether by manual construction or tuning, you can analyze your design using the following
documents.

» Control Surface — Plot the output values for all combinations of two input variables.

* Rule Inference — Specify input values and view the inference diagram and resulting output
value.

+ System Validation — Compare FIS output values to corresponding reference validation data.
* Error Distribution — View the distribution of FIS output errors for different input combinations
based on reference validation data.

To open these documents, on the Design tab, select the corresponding icon in the Simulation
gallery.

Farpl — |oo Myl
LAl Number of Samples  Input Data: x - | OJ = ‘””' L‘—“j |£|>
pe-1 = ] Output Data: y ~ PLOTS Store Current | Export
Type-2 ’ —_— i Design -
5 SIMULY @ o DESIGNS | EXPORT
Membership Function (MF) Editor | Rule Editor Rule Control System "IS
Inference Surface Validation
Mamdani Type-1
Error | tioper_tuneg |
Distribution
S |min |' |
Or method | max I | h ]
Implication method | min | v |
Aggregation method |max |'r |

You can export your analysis results to the MATLAB workspace for further analysis. For more
information, see “Export FIS and Simulation Data from Fuzzy Logic Designer” on page 2-71.

When analyzing your FIS, you can configure the resolution of the output variable universe of

discourse. To do so, set the Number of Samples parameter. This parameter is not supported for
Sugeno systems.

Control Surface

The Control Surface document shows the output values from the active FIS design for all possible
combinations of two input variables.

2-61



2 Fuzzy Inference System Modeling

< Yot Membership Function (MF) Editor Fule Editor Control Surface = L7

System: tipper

Axes: X [sewice ‘v] Y [fuud '] z [tip r]
Mesh Points: X | 15 ¥ | 15~

Feference Inputs:

4

food 0D sarvice

In the Axes section, select the input and output variables using the corresponding drop-down menus.

In the Mesh Points section, you can specify the plot resolution along the X and Y axes. For a
smoother plot, specify larger resolution values.

If your system has more than two inputs, you must specify a reference value for each input variable
not shown in the plot. To do so, specify the Reference Inputs parameter. For example, the following
figure shows a reference input for a three-input system for which the first and second variables are
used in the control surface plot.
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Yot Membership Function (MF) Editor Rule Editor Control Surface

System: fis
Axes: X [inpuﬂ v|vy [inputz v|Z [nutpuﬁ v
Mesh Points: X 151 ¥ | 15

Feference Inputs: | [MaM MaM 0.5] |

//,I\\\

For each variable that is used in the control surface plot, specify a reference value of NaN.

You can also view a control surface for a single input variable. In this case, in the Axes section, in the
X drop-down list, select the input variable and, in the Y drop-down list, selectnone. Then, specify the
reference values for all unused input variables using the Reference Inputs parameter.

For example, the following figure shows a control surface for a two-input system where the output is
plotted against the first input variable.
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Yot Membership Function (MF) Editor Rule Editor Control Surface

System: tipper

Axes: X [senice v | ¥ [none v| z [tip v

Mesh Points: X | 15'%] Y | 15|+]

Feference Inputs: | [MaM 5] |

25 T T T T T T T T

10

service

Rule Inference

In the Rule Inference document, you specify values for your input variables, inspect the inference
process, and view the resulting output value produced by the active FIS design.

For more information on the fuzzy inference process for different FIS types, see:

» For type-1 Mamdani systems, see “Fuzzy Inference Process” on page 1-19.
» For type-1 Sugeno systems, see “Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2.
» For type-2 systems, see “Type-2 Fuzzy Inference Systems” on page 2-8.

To select input values, in the Rule Inference document, you can specify the Input values
parameter. Alternatively, you can drag the input bars



Analyze Fuzzy System Using Fuzzy Logic Designer

Plot Membership Function (MF) Editor Rule Editor Fule Inference

System: tipper

Input values [7.54032 8.2]

service = 7.04 food = 8.2 tip=21.T

OR

()

AND

{min)

v l,..

~

5 OR
)

The preceding figure shows the Rule Inference document for a type-1 Mamdani system.

The fuzzified inputs activate the second and third rules. The firing strengths of these rules are
applied to the output variable. When the resulting output membership functions are aggregated and
defuzzified, the final output value is 21.7.

The following figure shows the same inference process for a type-2 Mamdani system. In this case, the
fuzzified inputs generate firing strengths for both the upper and lower membership functions.
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Plot Membership Function (MF) Editor Rule Editor Fule Inference

System: tipper_1

Input values [7.54032 8.2]

service = 7.04 food = 8.2 tip=22.8
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| /1.
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System Validation

To validate your FIS designs, you can compare output values to corresponding reference validation
data.

The System Validation document shows simulation results for all designs that you select in the
Design Browser. To select a FIS design, select the corresponding entry in the Compare column.
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DESIGN BROWSER

| Set Active Design | |E| | il |

Active |Design Type Kﬁnmpare )
tipper Mamdani Type-1 []

o tipper_tuned Mamdani Type-1 X

To perform system validation for your FIS, you must first specify reference input and output data. For
more information, see “Specify Validation Data” on page 2-69.

Using the System Validation document, you can view plots of:

* Reference input values. Select the inputs to plot in the Reference Inputs table.

* FIS output values and the corresponding reference output values. Select the outputs to plot in the
Outputs table.

* Output prediction errors, which are the differences between the output and reference output
values. To view the prediction errors, select the Prediction errors parameter. You can view the
root mean square error (RMSE) for each output in the legend of the prediction error plot.

To view corresponding numerical values from across all the plots, move your mouse over any of the
plot lines.
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< e System (FI3) Plot Membership Function (MF) Editor Rule Editor System Validation = L7
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Show legends
Prediction errors [ l | I
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Error Distribution

The Error Distribution document is a graphical representation of the output error for the active FIS
design as compared to reference output data.

For a multi-output FIS, in the Calculate drop-down list, select the output for which you want to
analyze the error distribution.

To analyze the error distribution for your FIS, you must first specify reference input and output data.
For more information, see “Specify Validation Data” on page 2-69.

Using the Error Distribution document, you can:

* Find input regions for which your FIS produces a less-accurate model of the data, which results in
larger output errors.
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* Find input regions where you have fewer data points

For example, the following figure shows the error distribution for a tipping system with two inputs,
service quality and food quality. The FIS performs well for most of the input space. However, there
are significant errors in the upper-right region of the plot, which corresponds to situations where
both the service and food have a high quality rating. In this case:

* Ifyou manually created the FIS, you should add or update rules for this input condition.
* Ifyou tuned the FIS from data, you might need more training data that covers this input region.

Membership Function (MF) Editor Rule Editor Error Distripution System Validation

System: tipper_tuned

Calculate |tip error v |
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-8
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‘} 1 1 1 1 i
0 2 4 3] 2 10
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Specify Validation Data

The System Validation and Error Distribution analysis documents require reference validation
data.

To select validation data, on the Design tab:
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* In the Input Data drop-down list, select the reference input data.
* In the Output Data drop-down list, select the reference output data.

o i (raTa
Number of Samplps  Input Data: x - ] E |J:,. \; E:"O |£|>

a Rule Control System
= QOutput Data: v = ¥ Store Current | Export
> tiput Faa: Inference Surface Validation Design -
SIMULATION DESIGMS EXPORT
embership Function (MF) Editor Rule Editor PROPERTY EDITOR: FIS
Type: Mamdani Type-1

For both input and output data, you can select previously imported data, such as training data from
tuning, or data from the MATLAB workspace.

The Input Data and Output Data drop-down lists show only data that is compatible with the input
and output configurations of your FIS.

* The input validation data must be a numerical array where the number of columns is equal to the
number of input variables in your FIS.

* The output validation data must be a numerical array where the number of columns is equal to the
number of output variables in your FIS.

* The input data and output data arrays must have the same number of rows.

See Also
Fuzzy Logic Designer

Related Examples

. “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15

. “Define Fuzzy Rules Using Fuzzy Logic Designer” on page 2-54

. “Define Membership Functions Using Fuzzy Logic Designer” on page 2-44
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Export FIS and Simulation Data from Fuzzy Logic Designer

Once you design or tune your FIS using Fuzzy Logic Designer, you can export the active and stored
designs to:

» The MATLAB workspace
« FISfiles (*.fis)

You can also export simulation results for your FIS designs.

Export FIS to Workspace

To export a FIS design to the MATLAB workspace, in Fuzzy Logic Designer, select Export > Export
Fuzzy Inference System to Workspace.

Mumber of Samples ;'_T, Li_:___ Eﬂj |£|>
1615: ‘ Rule Control Store Current || Export
> Inference Surface Design -
= @ ExportF f System To Work
xport Fuzzy Inference System To Warkspace ..
lembership Function (M| — i ’ Y P h
@ Export Simulation Results To Workspace ... imdani Type-1
Mame | tipper |
And method | min (]
Or method | max [v]

The Export Fuzzy Inference System to Workspace dialog box lists the active FIS design along with
any stored designs.
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4| Export Fuzzy Inference Systems to Workspace — O *
[Select All| [ Unselect All|
Export Fuzzy Inference System Export As
[] tipper tipper
[] tipper_1 tipper_1
[] tipper_2 tipper_2
|; Help | | Export | | Cancel |

In the Export column, select one or more systems that you want to export.

In the Export As column, specify names for the workspace variables.

Click Export.

The app saves the FIS to the MATLAB workspace as one of the following types of objects.

* mamfis — Type-1 Mamdani FIS

* sugfis — Type-1 Sugeno FIS
 mamfistype2 — Type-2 Mamdani FIS
* sugfistype2 — Type-2 Sugeno FIS

Once you export your FIS, you can:

* Perform additional simulations at the command line using the evalfis function.
+ Simulate your system in Simulink using the Fuzzy Logic Controller block.
* Generate code for your system. For more information, see “Deployment”.

Save FIS to File

You can save your FIS between Fuzzy Logic Designer sessions using a FIS file. To do so, in Fuzzy
Logic Designer, under Save, select the fuzzy inference system.

You can select the current active design or any of the stored designs.
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= = | & 8 ==

New | Save | Import Input Cutput Rule &
- - I
— | Select fuzzy inference system Slo . Eo |
D
tipper
[s.;mW Syst
Active |[Design Type

In the Save Fuzzy Inference System dialog box, specify a filename and location, and click Save.

Export Simulation Data

After evaluating your FIS using Fuzzy Logic Designer, you can export the following simulation
results to the MATLAB workspace for the active and stored designs.

* Control surface data points
* Rule inference data

In Fuzzy Logic Designer, select Export > Export Simulation Results to Workspace.

H e & | &
Export

&

) ) | -
Rule Control System Shore Curment
Inference Surface Validation Design

SIMULATION

ol Surt IB Export Fuzzy Inference Systern To Workspace ..
>ontrol Surface

IE Export Simulation Results To Weorkspace .. m ule Editor

Ip v | ‘ Rule

4 I frmmnicn e Aanadt and Fand e rancidl thoan S e ch

The Export Simulation Results to Workspace dialog box lists the simulation results that are available
for export.
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[selectAll| [Unselect All|

4| Export Simulation Results to Workspace — O *

Export Simulation Results Export As
|:| SystemValidationData SystemValidationData
|:| tunedTipper_ConfrolSurfaceData | tunedTipper_ConfrolSurfaceD
|:| tunedTipper_ErrorDistributionData | tunedTipper_ErrorDistribution
|:| tunedTipper_RulelnferenceData tunedTipper_RulelnferenceDs
3

|; Help |

[ Expot || cancel |

The Simulation Results column indicates the FIS designs and the type of simulation data using one
of the following entries, where <design> indicates the FIS design.

* <design> ControlSurfaceData — Control surface data points

* <design> RuleInferenceData — Rule inference data

* <design> ErrorDistributionData — Error distribution data

+ SystemValidationData — System validation data for all selected designs

In the Export column, select one or more simulation results that you want to export.

In the Export As column, specify names for the workspace variables.

Click Export.

The app saves each selected simulation result to the MATLAB workspace as a structure, as defined in

the following table.

Simulation Data

Description

Control surface data points

Data points for the most recent plot displayed in the Control Surface
document for the active design, exported as a structure with the
following fields.

e X — Data values for first selected input

* Y — Data values for second selected input

e Z — Data values for selected output

The dimensions of X, Y, and Z match the Mesh Points selections in the
Control Surface document.

This control surface data matches the data points generated by the
gensurf function.
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Simulation Data

Description

Rule inference data

Rule inference results for the active design, including intermediate
computed values, exported as a structure with the following fields.

The dimensions of the fuzzifiedInputs, ruleQutputs,
aggregatedOutputs, and rulefiringStrengths fields depend on
the type of FIS you exported. For more information, see evalfis.

inputs — Input values

numSamplePoints — Number of sample points in output fuzzy
sets. To specify this value, on the Design tab, set the Number of
Samples parameter.

outputs — Output values
fuzzifiedInputs — Fuzzified input values

ruleOutputs — Rule outputs calculated by applying the rule firing
strengths to the output membership function using the FIS
implication method

aggregatedOutputs — Aggregated output calculated by
combining the rule outputs using the FIS aggregation method

rulefiringStrengths — Rule firing strengths calculated by
applying the rule connection operator to the values of the fuzzified
inputs

Error distribution data

Error distribution data for the active design, exported as a structure
with the following fields, each containing a numeric array.

refInput — Validation input data specified on the Design in the
Input Data drop-down list

refOutput — Validation input data specified on the Design in the
Output Data drop-down list

simQutput — FIS outputs from processing the values in refInput

simError — Simulation error, which is the difference between the
values in refQutput and simQutput
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Simulation Data Description

System validation data System validation data for all selected FIS designs, exported as a

structure with the following fields, each containing a numeric array.

* refInput — Validation input data specified on the Design in the
Input Data drop-down list

¢ refOutput — Validation input data specified on the Design in the
Output Data drop-down list

* simOutput — FIS outputs from processing the values in
refInput, returned as a structure with one field for each selected
FIS design

* simError — Simulation error, which is the difference between the
values in refOutput and simQutput, , returned as a structure
with one field for each selected FIS design

A selected design is a design for which you select the Compare option
in the Design Browser.

For the active FIS design, the exported simulation results correspond to the simulation settings, such
as the input values in the Rule Inference document or the selected axes in the Control Surface
document, currently defined in the app.

For a stored FIS design, the exported simulation results correspond to the simulation settings when
the design was most recently active in the app. In other words, the exported results for a stored
design may not use the simulation settings currently defined in the app.

See Also
Fuzzy Logic Designer

Related Examples

“Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15

“Get Started Using Fuzzy Logic Designer” on page 2-35

“Define Fuzzy Rules Using Fuzzy Logic Designer” on page 2-54

“Define Membership Functions Using Fuzzy Logic Designer” on page 2-44
“Analyze Fuzzy System Using Fuzzy Logic Designer” on page 2-61
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Build Fuzzy Systems at the Command Line

You can construct a fuzzy inference system (FIS) at the MATLAB® command line. This method is an
alternative to interactively designing your FIS using Fuzzy Logic Designer. For an example that
interactively builds a FIS, see “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15.

To demonstrate the command-line functionality for creating and viewing fuzzy inference systems, this
example uses a solution to the tipping problem defined in “Fuzzy vs. Nonfuzzy Logic” on page 1-30.
For this problem, tipping behavior is defined using the following three rules.

1 Ifthe service is poor or the food is rancid, then the tip is cheap.
2 If the service is good, then the tip is average.
3 If the service is excellent or the food is delicious, then the tip is generous.

While this example creates a type-1 Mamdani FIS, the general methods used apply to creating type-2
and Sugeno systems as well. For more information on the different types of fuzzy systems, see
“Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2 and “Type-2 Fuzzy Inference Systems”
on page 2-8.

FIS Objects

You represent fuzzy inference systems using mamfis, sugfis, mamfistype2, and sugfistype2
objects. These objects contain all the fuzzy inference system information, including the variable
names, membership function definitions, and fuzzy inference methods. Each FIS is itself a hierarchy
of objects. The following objects are used within a fuzzy system.

« fisvar objects represent both input and output variables.

+ fismf objects represent membership functions within each input and output variable. Type-2
fuzzy systems use fismftype2 objects to represent membership functions.

+ fisrule objects represent fuzzy rules that map inputs to outputs.
Load the FIS.

fis = readfis("tipper.fis");

View all the information for a FIS by directly listing its properties.
fis

fis =
mamfis with properties:

Name: "tipper"
AndMethod: "min"
OrMethod: "max"
ImplicationMethod: "min"
AggregationMethod: "max"
DefuzzificationMethod: "centroid"
DisableStructuralChecks: 0
Inputs: [1x2 fisvar]
Outputs: [1x1 fisvar]
Rules: [1x3 fisrule]
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See 'getTunableSettings' method for parameter optimization.

You can access the properties of the objects within a FIS object using dot notation. For example, view
the fisvar object for first input variable.

fis.Inputs(1)

ans =
fisvar with properties:

Name: "service"
Range: [0 10]
MembershipFunctions: [1x3 fismf]

Also, view the membership functions for this variable.
fis.Inputs(1l).MembershipFunctions

ans =
1x3 fismf array with properties:

Type
Parameters
Name
Details:

Name Type Parameters
1 "poor" "gaussmf" 1.5 0
2 "good" "gaussmf" 1.5 5
3 "excellent" "gaussmf" 1.5 10

System Display Functions

To get a high-level view of your fuzzy system from the command line, use the plotfis, plotmf, and
gensurf functions. plotfis displays the whole system as a block diagram.

plotfis(fis)
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sarvice (3)

Mamdani
Type 1

faod (2)

The plotmf function plots all the membership functions associated with a given variable. For

tipper (3 )

System tipper: 2 inputs, 1 outputs, 3 nules

tip (3]

example, view the membership functions for the first input variable.

plotmf(fis, "input",1)
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Similarly, view the membership functions for the first output variable.

plotmf(fis, "output",1)
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plotmf does not support viewing the output membership functions for Sugeno systems.

The gensurf function plots the output of the FIS for any one or two input variables.

gensurf(fis)
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4
food 0 o0 service

View the rules of the fuzzy system.
fis.Rules

ans =
1x3 fisrule array with properties:

Description
Antecedent
Consequent
Weight
Connection

Details:
Description

1 "service==poor | food==rancid => tip=cheap (1)"
2 "service==good => tip=average (1)"
3 "service==excellent | food==delicious => tip=generous (1)"

Build Fuzzy Inference System

As an alternative to using the Fuzzy Logic Designer app, you can construct a FIS entirely from the
command line.

First, create a Mamdani FIS, specifying its name.
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fis = mamfis("Name","tipper");
Add input variables for the service and food quality.

fis
fis

addInput(fis, [0 10],"Name","service");
addInput(fis, [0 10], "Name","food");

Add membership functions for each of the service quality levels using Gaussian membership
functions. For more information on Gaussian membership functions, see gaussmf.

fis = addMF(fis,"service","gaussmf",[1.5 O], "Name", "poor");
fis = addMF(fis, "service","gaussmf",[1.5 5], "Name", "good");
fis = addMF(fis, "service","gaussmf",[1.5 10], "Name", "excellent");

Add membership functions for each of the food quality levels using trapezoidal membership functions.
For information on trapezoidal membership functions, see trapmf.

fis
fis

addMF (fis, "food","trapmf",[-2 0 1 3], "Name","rancid");
addMF (fis, "food","trapmf",[7 9 10 12],"Name","delicious");

Add the output variable for the tip, and add three triangular membership functions for the tip levels.
For more information on triangular membership functions, see trimf.

fis = addOutput(fis, [0 30], "Name","tip");

fis = addMF(fis,"tip","trimf",[0@ 5 10],"Name","cheap");

fis = addMF(fis,"tip","trimf",[10 15 20],"Name", "average");
fis = addMF(fis,"tip","trimf",[20 25 30], "Name", "generous");

Specify the following three rules for the FIS as a numeric array.

1 If (service is poor) or (food is rancid), then (tip is cheap).
2 If (service is good), then (tip is average).
3 If (service is excellent) or (food is delicious), then (tip is generous).

Each row of the array contains one rule in the following format.

* Column 1 - Index of membership function for first input

* Column 2 - Index of membership function for second input
* Column 3 - Index of membership function for output

* Column 4 - Rule weight (from 0 to 1)

* Column 5 - Fuzzy operator (1 for AND, 2 for OR)

For the membership function indices, indicate a NOT condition using a negative value. For more
information on fuzzy rule specification, see addRule.

ruleList = [1 1
20
32

W N
[ -
N =N

1;
Add the rules to the FIS.
fis = addRule(fis, rulelList);

Alternatively, you can create the fuzzy inference system using a combination of dot notation and
fisvar, fismf, and fisrule objects. This method is not a good practice for most applications.
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However, you can use this approach when your application requires greater flexibility in constructing

and modifying your FIS.

Create the fuzzy inference system.

fis = mamfis("Name","tipper");

Add and configure the first input variable. In this case, create a default fisvar object and specify its

properties using dot notation.

fis.Inputs(l) = fisvar;
fis.Inputs(1l).Name = "service";
fis.Inputs(1l).Range [0 10];

Define the membership functions for the first input variable. For each MF, create a fismf object, and

set the properties using dot notation.

fis.
fis.
fis.
fis.
fis.
fis.
fis.
fis.
fis.
fis.
fis.
fis.

Inputs(1).
Inputs(1).
Inputs(1).
Inputs(1).
Inputs(1).
Inputs(1).

( MembershipFunctions

(

(

(

(

(
Inputs(1l).

(

(

(

(

(

MembershipFunctions
MembershipFunctions
MembershipFunctions
MembershipFunctions
MembershipFunctions
MembershipFunctions
MembershipFunctions
MembershipFunctions
MembershipFunctions
MembershipFunctions
MembershipFunctions

Inputs(1).
Inputs(1).
Inputs(1).
Inputs(1).

(1)
(1)
(1)
(1)
(2)
(2)
(2)
(2)
(3)
(3)
(3)
Inputs(1). (3)

= fismf;

.Name = "poor";

.Type = "gaussmf";
.Parameters [1.5 0];
= fismf;

.Name = "good";

.Type = "gaussmf";
.Parameters [1.5 5];
= fismf;

.Name = "excellent";
.Type = "gaussmf";
.Parameters [1.5 10];

Add and configure the second input variable. For this variable, specify the name and range when you

create the fisvar object.

fis.Inputs(2) = fisvar([0 10], "Name"

,"food");

Specify the membership functions for the second input. For each MF, specify the name, type, and
parameters when you create the fismf object.

fis.Inputs(2).MembershipFunctions(1)

fis.Inputs(2).MembershipFunctions(2)

= fismf("trapmf",[-2 0 1 3],...
"Name", "rancid");
= fismf("trapmf",[7 9 10 12],...

"Name", "delicious");

Similarly, add and configure the output variable and its membership functions.

fis.Outputs(l) = fisvar([0 30],"Name","tip");

In this case, specify the output membership functions using a vector of fismf objects.

ucheapu ) :

,"generous");

mfl = fismf("trimf",[0 5 10], "Name",
mf2 = fismf("trimf",[10 15 20],"Name", "average");
mf3 = fismf("trimf", [20 25 301, "Name
fis.Outputs(1l).MembershipFunctions =

[mfl mf2 mf3];

Create the rules for the fuzzy system. For each rule create a fisrule object. Then, specify the rules
using a vector of these objects. When creating a fisrule object using numeric values, you must

specify the number of inputs variables.
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rulel = fisrule([1 11 1 21,2);
rule2 = fisrule([2 0 2 1 11,2);
rule3 = fisrule([3 2 3 1 2]1,2);
rules = [rulel rule2 rule3];

Before adding the rules to your fuzzy system, you must update them using the data in the FIS object.
Update the rules using the update function, and add them the fuzzy system.

rules = update(rules, fis);
fis.Rules = rules;

When constructing your fuzzy system, you can also specify custom membership functions and
inference functions. For more information, see “Build Fuzzy Systems Using Custom Functions” on
page 2-86.

Evaluate Fuzzy Inference System

To evaluate the output of a fuzzy system for a given input combination, use the evalfis function. For
example, evaluate fis using input variable values of 1 and 2.

evalfis(fis,[1 21)
ans = 5.5586

You can also evaluate multiple input combinations using an array where each row represents one
input combination.

inputs = [3 5;

2 7;

3 1]1;
evalfis(fis,inputs)
ans = 3x1

12.2184
7.7885
8.9547

See Also
mamfis | sugfis | plotfis | plotmf | gensurf | evalfis

More About
. “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15
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When you build a fuzzy inference system (FIS), you can replace the built-in membership functions or
inference functions with custom functions. You can create a FIS that uses these custom functions in
the Fuzzy Logic Designer app and at the MATLAB command line.

For more information on creating a FIS, see “Build Fuzzy Systems Using Fuzzy Logic Designer” on
page 2-15 and “Build Fuzzy Systems at the Command Line” on page 2-77.

Define Custom Membership Functions

You can create custom membership functions and use them in the fuzzy inference process. The values
of these functions must lie between 0 and 1. For more information on the properties of membership
functions, see “Membership Functions” on page 1-9.

When you create a custom membership function, you must save it in your current working folder or
on the MATLAB path. You can then design a FIS that uses the custom membership function at the
command line or in the Fuzzy Logic Designer app.

The following is an example of a multistep custom membership function custmf1, that depends on
eight parameters between 0 and 10.

% Function to generate a multi-step custom membership function
% using 8 parameters for the input argument x
function out = custmfl(x,params)

for i = 1l:length(x)
if x(i) < params(1)

y(i) = params(1);
elseif x(i) < params(2)
y(i) = params(2);
elseif x(i) < params(3)
y(i) = params(3);
elseif x(i) < params(4)
y(i) = params(4);
elseif x(i) < params(5)
y(i) = params(5);
elseif x(i) < params(6)
y(i) = params(6);
elseif x(i) < params(7)
y(1) = params(7);
elseif x(i) <= params(8)
y(i) = params(8);
else
y(i) = 0;
end

end

% Scale the output to the range [0,1].
out = 0.1*%y"';
end
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Specify Custom Membership Functions Using Fuzzy Logic Designer

To use a custom membership function when designing a FIS using the Fuzzy Logic Designer app,
first select the corresponding variable in the System Browser. Then, in the Add Components

gallery, click MF.

DESIGM
E o 2 =
| AN Ll
Mew Save Import MF " Mamdan
- - to Sugen
FILE ADD COMPOMEMTS COM
DESIGN BROWSER Fuzzy Inference System {
Set Active DEEiﬂﬂ] System: mamdanitypei
Active |Design Type
o mamdanitype1 Mamdani Type-1
SYSTEM BROWSER
= [+ mamdanitypel
- ¥ .
g _Inputs input1 (0 MF)
inputi
input2
b & Outputs
S1= Rules
input2 (0 MF)
System me
|4 Cutput membership function "mi
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The app adds a default triangular membership function to the selected variable.

In the Property Editor:

1 In the Range field, specify an input range that matches the expected range of your membership

function.

In the Name column, specify a name for the membership function.

In the Type column, specify the name of the custom membership function.

In the Parameters column, enter the membership function parameters.

PROPERTY EDITOR: INPUT

Mame

input1

[inputt
Range | |[r:r 10]

Mumber of MFs: 1
MName Type Parameters
customMF1 custmfi [012468910]

To verify the appearance of your membership function, select the membership function in the System
Browser and open the Membership Function Editor.
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DESIGN BROWSER

Set Active Design

Fuzzy Inference System (FIS) Plot

Membership Function (MF) Editor Rul

System: mamdanitype1

Active

Design

Type

-u"

mamdanitype1

Mamdani Type-1

SYSTEM BROWSER

~ || mamdanitype1

-8
8

-

(s}

Inputs
inpuii

customMF1

input2
Qutputs

St= Rules

Membership Function Plot

Degree of Memhbership

i

customMF1

- 5 ] 7
Input Variable “input1”

[
e

(==

w

-

=

The following features are not supported for custom membership functions:

* Interactively adjusting the parameters of a custom membership function in the Membership

Function Editor.

* Automatically distributing custom membership functions across a variable range.

Define Custom Inference Functions

Depending on the type of FIS you design, you can replace the built-in AND, OR, implication,
aggregation, and defuzzification inference methods with custom functions. For each type of inference
function, the following table lists the FIS objects that support using custom functions.

Inference Function Supported FIS Objects
AND All FIS objects

OR

Implication * Type-1 Mamdani FIS
Aggregation * Type-2 Mamdani FIS
Defuzzification Type-1 Mamdani FIS
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Inference Function Supported FIS Objects

Type-reduction * Type-2 Mamdani FIS

* Type-2 Sugeno FIS

When you create a custom inference function, you must save it in your current working folder or on
the MATLAB path. You can then design a FIS that uses the custom inference function at the command
line or in the Fuzzy Logic Designer app.

Create Custom AND and OR Functions

The custom AND and OR inference functions must operate column-wise on a matrix in the same way
as the MATLAB functions max, min, and prod. For example:

* For a row or column vector X, min returns the minimum element.

x =1[1234];
min(x)

ans =
1

» For a matrix x, min returns a row vector containing the minimum element from each column.

x=1[1234;567 8;9 10 11 12];
min(x)

ans =
1 2 3 4
For N-D matrices, min operates along the first non-singleton dimension.

» For two arrays, x and y, min returns an array that is same size as the larger of x or y with the
minimum elements from x or y. Either of the input arguments can be a scalar.

X =[12; 3 4];
y =[22; 22];
min(x,y)
ans =

1 2

2 2

In Fuzzy Logic Toolbox software:

* AND inference functions perform an element by element matrix operation, similar to the command
min(x,y).

* OR inference functions perform an element by element matrix operation, similar to the command
max(x,y).

Create Custom Implication Functions

Custom implication functions must operate in the same way as the MATLAB functions max, min, and
prod. Your custom implication function must be a T-norm fuzzy intersection operation. For more
information, see “Additional Fuzzy Operators” on page 1-14.

An implication function must support either one or two inputs because the software calls the function
in two ways.
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» To calculate the output fuzzy set values using the firing strength of all the rules and the
corresponding output membership functions. In this case, the software calls the implication
function using two inputs as follows.

impvals = customimp(w, outputmf)

* w — Firing strength of multiple rules, specified as an N,-by-N, matrix. Here, N, is the number
of rules and N; is the number of samples of the output membership functions.

w(:,j) = w(:,1) forallj. w(i,1) is the firing strength of the ith rule.
* outputmf — Output membership function values, specified as an N-by-N, matrix.
outputmf (i, :) contains the data of the ith output membership function.

* To calculate the output fuzzy value using the firing strength of a single rule and the corresponding
output membership function, for a given sample. In this case, the software calls the implication
function using one input, similar to the following example:

impval = customimp([w outputmf])

w and outputmf are scalar values representing the firing strength of a rule and the corresponding
output membership function value, for a given sample.

The following is an example of a bounded product custom implication function with binary mapping
T(a,b) = max{0,a+b-1}.[1]

function y = customimp(x1,x2)

if nargin == 1
% X1 assumed to be nonempty column vector or matrix.
minVal = zeros(1l,size(x1,2));
y = ones(1l,size(x1,2));

for i
y

1l:size(x1,1)
max(minVal,sum([y;x1(i,:)])-1);

end
else
% x1 and x2 assumed to be nonempty matrices.
minVal = zeros(1l,size(x1,2));
y = zeros(size(x1l));

for i = 1l:size(x1,1)
y(i,:) = max(minVal,sum([x1(i,:);x2(i,:)])-1);

end

end

Note Custom implication functions are not supported for Sugeno systems.

Create Custom Aggregation Functions

The custom aggregation functions must operate in the same way as the MATLAB functions max, min,
and prod and must be of the form y = customagg(x). Your custom implication function must be a
T-conorm (S-norm) fuzzy intersection operation. For more information, see “Additional Fuzzy
Operators” on page 1-14.
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x is an N,-by-N, matrix, which is the list of truncated output functions returned by the implication
method for each rule. N, is the number of output variables and N, is the number of rules. The output
of the aggregation method is one fuzzy set for each output variable.

The following is an example of a bounded sum custom aggregation function with binary mapping
S(a,b) = min{a + b, 1}. [1]

function y = customagg(x)

maxVal = ones(1,size(x,2));
y = zeros(1l,size(x,2));

for i = 1l:size(x,1)

y = min(maxVal,sum([y;x(i,:)]));
end
end

Note Custom aggregation functions are not supported for Sugeno systems.

Create Custom Defuzzification Functions

Custom defuzzification functions must be of the form y = customdefuzz(x,ymf), where X is the
vector of values in the membership function input range and ymf contains the values of the
membership function for each x value.

The following is an example of a custom defuzzification function.

function defuzzfun = customdefuzz(x,ymf)

total area = sum(ymf);
defuzzfun = sum(ymf.*x)/total area;

end

Note Custom defuzzification functions are not supported for Sugeno systems.

Create Custom Type-Reduction Function

For type-2 fuzzy inference systems, you can specify a custom type-reduction function. This function
must be of the form y = customtr(x,umf,lmf), where x is the vector of values in the membership
function input range. umf and Imf are the respective values of the upper and lower membership
function for each x value. The output y is a two-element row vector of centroids [c;,cg].

For more information on type reduction, see “Type-2 Fuzzy Inference Systems” on page 2-8.

By default, type-2 Sugeno systems support only a weighted average form of type reduction. The
following custom type-reduction function implements a weighted sum form of type reduction for a
Sugeno system.

function y = customtr(x,umf,lmf)

y = zeros(1,2);
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y(1)
y(2)

end

sum(x.*umf);
sum(x.*lmf);

Specify Custom Inference Functions Using Fuzzy Logic Designer

To use custom inference functions when designing a FIS using the Fuzzy Logic Designer app, first
select the FIS in the System Browser. Then, in the Property Editor, enter the name of the custom
function in the corresponding inference function field.

DESIGN
¥ = [ lah < Fd
E":'I:I @ j g g = B= (| Al Number of Samples Lg, |£er £
New Save Import Input Cutput Rule Add All T Mamdani Type-2 101 Rule Central 7| Store Current Export
Rules to Sugeno  to Type-1 Infarence Surface Design -
ADD COMPONENTS COMNVERT FIS SIMULATION DESIGNS EXPORT
DESIGN BROWSER Fuzzy Inference System (FIS) Plot Membership Function (MF) Editor Rul PROPERTY EDITOR: FIS
|‘Set Active Demgn" |‘ =) ’| \ @J System: tipperType2 Type: Mamdani Type-2
Active |Design Type Name tipperType2
- " -
tipper Mamdani Type-1 T IEE'\
4 tipperType2 Mamdani Type-2
Implication method EE|
Aggregation method |
SYSTEM BROWSER
| tipperType2 Defuzzification method | centroid v |
v & Inputs service (3 MFs) \| Type-reduction method | kamikmendel | ¥ |
+ & Outputs Mamdani e J‘
» 5= Rules Type 2 Inputs: 2
Outputs 1
Rules: 3

tip (3 MFs)

food (2 MFs)

System tipperType2: 2 input, 1 output, 3 rules

Design tipperType2' is active

This table shows the Property Editor field for each type of inference function.

Inference Function Property Editor Field
AND And method

OR Or method

Implication Implication method
Aggregation Aggregation method
Defuzzification Defuzzification method
Type-reduction Type-reduction method
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Specify Custom Inference Functions at Command Line

To use custom inference functions when designing a FIS at the MATLAB command line, set the
corresponding FIS object property to the custom inference function name. For example, the following
command sets the aggregation function of FIS myFIS to the customagg function.

myFIS.AggregationMethod = "customagg";

This table shows the FIS object property for each type of inference function.

Inference Function FIS Object Property

AND AndMethod

OR OrMethod

Implication ImplicationMethod
Aggregation AggregationMethod
Defuzzification DefuzzificationMethod
Type-reduction TypeReductionMethod

Use Custom Functions in Code Generation

You can use custom functions in fuzzy inference systems for which you generate code. For more
information on code generation for fuzzy systems, see “Deploy Fuzzy Inference Systems” on page 6-
2.

If you use a nondouble data type for your generated code, you must propagate the data type from the
input arguments of your custom function to the output argument. For example, the following custom
aggregation function maintains the data type of x in y using the ones and zeros functions with the
'like' argument.

function y = customagg(x)
s#codegen

maxVal = ones(1,size(x,2), ' 'like',x);
y = zeros(1l,size(x,2), 'like',x);

for i = 1l:size(x,1)

y = min(maxVal,sum([y;x(i,:)1));
end
end

For more information on writing functions that support C/C++ code generation, see “MATLAB
Programming for Code Generation” (MATLAB Coder).

References
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See Also
Fuzzy Logic Designer

Related Examples

. “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15
. “Build Fuzzy Systems at the Command Line” on page 2-77
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As the number of inputs to a fuzzy system increases, the number of rules increases exponentially. This
large rule base reduces the computational efficiency of the fuzzy system. It also makes the operation
of the fuzzy system harder to understand, and it makes the tuning of rule and membership function
parameters more difficult. Because many applications have a limited amounts of training data, a large
rule base reduces the generalizability of tuned fuzzy systems.

To overcome this issue, you can implement a fuzzy inference system (FIS) as a tree of smaller
interconnected FIS objects rather than as a single monolithic FIS object. These fuzzy trees are also
known as hierarchical fuzzy systems because the fuzzy systems are arranged in hierarchical tree
structures. In a tree structure, the outputs of the low-level fuzzy systems are used as inputs to the
high-level fuzzy systems. A fuzzy tree is more computationally efficient and easier to understand than
a single FIS with the same number of inputs.

Types of Hierarchical Structures

There are several fuzzy tree structures that you can use for your application. The following figure
shows commonly used fuzzy tree structures: an incremental, aggregated, or cascaded structure.

.1.11 LT

FIS, FIS,

) CLoEs | Es! _F“_
1 TR A

z 3 ! .1 ! . ! 1 [ L, 3
X1z X1z 1 iz X2 X2z X1 "z X2 X212 ¥12

{a) Incremental (b} Aggregated () Cascaded (combined)

Incremental Structure

In an incremental structure, input values are incorporated in multiple stages to refine the output
values in several levels. For example, the previous figure shows a three-level incremental fuzzy tree
having fuzzy inference systems FIS]', where i indicates the index of a FIS in the nth level. In an

incremental fuzzy tree, i = 1, meaning that each level has only one fuzzy inference system. In the
previous figure, the jth input of the ith FIS in the nth level is shown as input x;;n, whereas the kth

output of the ith FIS in the nth level is shown as input y;kn. In the figure, n =3,j=1o0r 2, and k = 1.
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If each input has m membership functions (MFs), each FIS has a complete set of m? rules. Hence, the
total number of rules is nm? = 3 x 32 = 27.

The following figure shows a monolithic (n = 1) FIS with four inputs (j=1, 2, 3, 4) and three MFs (m =
3).

o1

1 1 1 1
R0 X1z X3 Xy

In the FIS of this figure, the total number of rules is nm* = 1 x 3* = 81. Hence, the total number of
rules in an incremental fuzzy tree is linear with the number of input pairs.

Input selection at different levels in an incremental fuzzy tree uses input rankings based on their
contributions to the final output values. The input values that contribute the most are generally used
at the lowest level, while the least influential ones are used at the highest level. In other words, low-
rank input values are dependent on high-rank input values.

In an incremental fuzzy tree, each input value usually contributes to the inference process to a
certain extent, without being significantly correlated with the other inputs. For example, a fuzzy
system forecasts the possibility of buying an automobile using four inputs: color, number of doors,
horse power, and autopilot. The inputs are four distinct automobile features, which can independently
influence a buyer’s decision. Hence, the inputs can be ranked using the existing data to construct a
fuzzy tree, as shown in the following figure.

color —=

fisl -
doors — fis 1 /output] |
= .

! hs2inputl] | .

552 s oupun

power ki i i

sdinputl| = 5| -
| R lil153—s- prediction
autopilot |

For an example that illustrates creating an incremental fuzzy tree in MATLAB, see the "Create
Incremental FIS Tree" example on the fistree reference page.

Aggregated Structure

In an aggregated structure, input values are incorporated as groups at the lowest level, where each
input group is fed into a FIS. The outputs of the lower level fuzzy systems are combined (aggregated)
using the higher level fuzzy systems. For example, the following shows a two-level aggregated fuzzy

tree having fuzzy inference systems FIS,-’;I, where i, indicates the index of a FIS in the nth level.
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Aggregated

In this aggregated fuzzy tree, i; = 1,2 and i, = 1. Hence, each level includes a different number of
FIS. The jth input of the i,th FIS is shown in the figure as input x; j, and the kth output of the i,th FIS

is shown as output y; k. In the figure, j = 1,2 and k = 1. In other words, each FIS has two inputs and

one output. If each input has m MFs, then each FIS has a complete set of m? rules. Hence, the total
number of rules for the three fuzzy systems is 3 m? = 3 x 32 = 27, which is the same as an
incremental FIS for a similar configuration.

In an aggregated fuzzy tree, input values are naturally grouped together for specific decision-making.
For example, an autonomous robot navigation task combines obstacle avoidance and target reaching
subtasks for collision-free navigation. To achieve the navigation task, the fuzzy tree can use four
inputs: distance to the closest obstacle, angle of the closest obstacle, distance to the target, and angle
of the target. Distances and angles are measured with respect to the current position and heading
direction of the robot. In this case, at the lowest level, the inputs naturally group as shown in the
following figure: obstacle distance and obstacle angle (group 1) and target distance and target angle
(group 2). Two fuzzy systems separately process individual group inputs and then another fuzzy
system combines their outputs to produce a collision-free heading for the robot.

dist . —-
fisl
Ifis]/output] [
| S———
fis3/inputl

angle,, —=|

heading, ;..
fisd——

k...
[fis2'outputl
fis3/input2

dist,, >
fis2

angle,,, —

For an example that illustrates creating an aggregated fuzzy tree in MATLAB, see the example Create
Aggregated FIS Tree on the fistree reference page.

Variation on Aggregated Structure

In a variation of the aggregated structure known as parallel structure [1], the outputs of the lowest-
level fuzzy systems are directly summed to generate the final output value. The following figure
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shows an example of a parallel fuzzy tree, where outputs of fisl and fis2 are summed to produce
the final output.

fis linput] —

fisl|

fisl/input2 —= fisl/outputl [ ‘
: Z final output

fis2/inputl !ﬁs}'uulpul l ‘

ﬁsEi

fis2/input2 — |
.|

The fistree object does not provide the summing node X. Therefore, you must add a custom
aggregation method to evaluate a parallel fuzzy tree. For an example, see the "Create and Evaluate
Parallel FIS Tree" example on the fistree reference page.

Cascaded or Combined Structure

A cascaded structure, also known as combined structure, combines both incremental and aggregated
structures to construct a fuzzy tree. This structure is suitable for a system that includes both
correlated and uncorrelated inputs. The tree groups the correlated inputs in an aggregated structure,
and adds uncorrelated inputs in an incremental structure. The following figure shows an example of a
cascaded tree structure, where the first four inputs are grouped pairwise in an aggregated structure
and the fifth input is added in an incremental structure.

FIS,! _‘ T

A

! .1
X1 Xz X1 Xz X1z

Cascaded (combined)
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2-100

For example, consider the robot navigation task discussed in “Aggregated Structure” on page 2-97.
Suppose that task includes another input, the previous heading of the robot, taken into account to
prevent large changes in the robot heading. You can add this input using the incremental structure of
the following diagram.

dist,, —

fisl
angles, —=  [isloutputl [

fis3/input 1

™ ez .
din, —|  [Iopu put

Ifig| fis?/imput fisa/inputl
|hs2 heading

| fisd

angle,, —=

For an example that illustrates creating an aggregated fuzzy tree in MATLAB, see the "Create
Cascaded FIS Tree" example on the fistree reference page.

Add or Remove FIS Tree Outputs

When you evaluate a fistree object, it returns results for only the open outputs, which are not
connected to any FIS inputs in the fuzzy tree. You can optionally access other outputs in the tree. For
instance, in the following diagram of an aggregated fuzzy tree, you might want to obtain the output of
fis2 when you evaluate the tree.

fisl/inputl ——=

fisl/input2 —-—- fisl/output] |
fis3/input]

fig3 b——e= fis3/outpui]
| .

- H 23
fis2/input] ——w  (DS2oUtpULL

f Al fis3/input2!
152

—= fis2/output]

fis2/input2 ——

You can add such outputs to a fistree object. You can also remove outputs, provided that the fuzzy
tree always has at least one output. For an example, see the "Update FIS Tree Outputs" example on
the fistree reference page.

Use the Same Value for Multiple inputs of FIS Tree

A fistree object allows using the same value for multiple inputs. For instance, in the following
figure, input2 of fisl and inputl of fis2 use the same value during evaluation.
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fisl/input] —
| fis]
fisl/input2 : fisl/outputl |
' fis3/input]
fis3 — fis3/output]
|
fis2/input] IRAIORIEAR]
| fis3/input2!

i
|
Iiisﬁi
fis2/inpui2 —

For an example showing how to construct a FIS tree in this way, see the "Use Same Value for Multiple
Inputs of a FIS Tree" example on the fistree reference page.

Update Fuzzy Inference Systems in FIS Tree

You can add or remove individual FIS elements from a fistree object. When you do so, the software
automatically updates the Connections, Inputs, and Outputs properties of the fistree object.
For an example, see the "Update Fuzzy Inference Systems in a FIS Tree" example on the fistree
reference page.

Tune a Fuzzy Tree
Once you have configured the internal connections in your fuzzy tree, the next step is to tune the

parameters of the tree. For an example, see “Tune FIS Tree for Gas Mileage Prediction” on page 3-
69.

References

[1] Siddique, Nazmul, and Hojjat Adeli. Computational Intelligence: Synergies of Fuzzy Logic, Neural
Networks and Evolutionary Computing. Oxford, UK: John Wiley & Sons Ltd, 2013. https://
doi.org/10.1002/9781118534823.

See Also
fistree

More About

. “Tuning Fuzzy Inference Systems” on page 3-2
. “Tune FIS Tree for Gas Mileage Prediction” on page 3-69
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Fuzzy PID Control with Type-2 FIS

This example compares a type-2 fuzzy PID controller with both a type-1 fuzzy PID controller and
conventional PID controller. This example is adapted from [1].

Fuzzy PID Control

This example uses the following fuzzy logic controller (FLC) structure as described in [1]. The output
of the controller (u) is found using the error (e) and the derivative of the error (¢). Using scaling
factors C, and Cy, inputs e and e are normalized to E and AE, respectively. The normalized ranges for
both inputs are in the range [-1,1]. The fuzzy logic controller also produces a normalized output in the
range [-1,1]. Additional scaling factors Cy and C; map the fuzzy logic controller output U into u.

Fuzzy PID controller

ro+ e C E
"_( A L | » C,
A Fuzzy U " y
& AE Controller | C|
> didt = Oy Ly

This example uses a delayed first-order system G(s) as the plant model.

Ce—LS

GS) = Ts 71

Here, C, L, and T are the gain, time delay, and time constant, respectively.

The scaling factors Cy4, Cp, and C; are defined as follows, where 7. is the closed-loop time constant.
. L
Cy= mm(T, 7) X C,
1

T CxCfro+ )

Co
L
Cy = max(:r, 7) x Co

The input scaling factorC, is:

1

Ce = TEy—yt)

where r(t;) and y(t) are the reference and system output values at time t = t.. These values
correspond to the nominal operating point of the system.

This example compares the performance of type-1 and type-2 Sugeno fuzzy inference systems (FISs)
using the Fuzzy Logic Controller Simulink® block.

2-102



Fuzzy PID Control with Type-2 FIS

Construct Type-1 FIS

Create a type-1 FIS using sugfis.
fisl = sugfis;

Add input variables to the FIS.

fisl
fisl

addInput(fisl,[-1 17, 'Name','E");
addInput(fisl,[-1 1], 'Name', 'delE"');

Add three uniformly distributed overlapping triangular membership functions (MFs) to each input.
The MF names stand for negative (N), zero (Z), and positive (P).

fisl = addMF(fisl, 'E', "trimf',[-2 -1 O], 'Name','N');
fisl = addMF(fisl,'E', "trimf',[-1 0 1], 'Name','Z');
fisl = addMF(fisl,'E', "trimf',[0 1 2], 'Name','P"');

fisl = addMF(fisl, 'delE', 'trimf',[-2 -1 O], 'Name','N');
fisl = addMF(fisl, 'delE"', 'trimf',[-1 © 1], 'Name','Z");
fisl = addMF(fisl, 'delE', 'trimf',[0 1 2], 'Name','P');

Plot the input membership functions.

figure

subplot(1,2,1)
plotmf(fisl, "input',1)
title('Input 1)
subplot(1,2,2)
plotmf(fisl, "input',2)
title('Input 2')
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Add the output variable to the FIS.
fisl = addOutput(fisl,[-1 1], 'Name','U');

Add uniformly distributed constant functions to the output. The MF names stand for negative big
(NB), negative medium (NM), zero (Z), positive medium (PM), and positive big (PB).

fisl = addMF(fisl,'U', 'constant',-1, 'Name', 'NB');
fisl = addMF(fisl,'U', 'constant',-0.5, 'Name', 'NM"');
fisl = addMF(fisl,'U', 'constant',0, 'Name','Z");
fisl = addMF(fisl,'U', 'constant',0.5, 'Name', 'PM');
fisl = addMF(fisl,'U', 'constant',1, 'Name', 'PB');

Add rules to the FIS. These rules create a proportional control surface.

rules = [...
"E==N & delE==N => U=NB";
"E==Z & delE==N => U=NM";
"E==P & delE==N => U=Z"; ...
"E==N & delE==Z => U=NM";
"E==Z & delE==Z => U=Z"; ...
"E==P & delE==Z => U=PM";
"E==N & delE==P => U=Z"; ...
"E==Z & delE==P => U=PM";
"E==P & delE==P => U=PB"

1;
fisl = addRule(fisl,rules);
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Plot the control surface.

figure
gensurf(fisl)
title('Control surface of type-1 FIS')

Control surface of type-1 FIS

Construct Type-2 FIS
Convert the type-1 FIS, fisl, to a type-2 FIS.
fis2 = convertToType2(fisl);

The type-2 Sugeno system, fis2, uses type-2 membership functions for the input variables and
type-1 membership functions for the output variables.

Define the footprint of uncertainty (FOU) for the input MFs as defined in [1]. To do so, set the lower
MF scaling factor for each MF For this example, set the lower MF lag values to 0.

= [0.2 0.9 0.2;0.3 0.9 0.3];

= 1l:length(fis2.Inputs)

for j = 1l:length(fis2.Inputs(i).MembershipFunctions)
fis2.Inputs(i).MembershipFunctions(j).LowerLag = 0;
fis2.Inputs(i).MembershipFunctions(j).LowerScale = scale(i,j);

Plot the type-2 input membership functions.
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figure

subplot(1,2,1)
plotmf(fis2, 'input',1)
title('Input 1')
subplot(1,2,2)
plotmf(fis2, 'input',2)
title('Input 2')

Input 1 Input 2
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1 1
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The FOU adds additional uncertainty to the FIS and produces a nonlinear control surface.
figure

gensurf(fis2)
title('Control surface of type-2 FIS')
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Control surface of type-2 FIS

Conventional PID Controller

This example compares the fuzzy logic controller performance with that of the following conventional
PID controller.

_ K; Kgs

Here, K}, is proportional gain, K; is integrator gain, K, is derivative gain, and ty is the derivative filter
time constant.
Configure Simulation

Define the nominal plant model.

C =0.5;
L =0.5;
T =20.5;
G = tf(C,[T 1], 'Outputdelay',L);

Generate the conventional PID controller parameters using pidtune.
pidController = pidtune(G, 'pidf');

In this example, the reference (r) is a step signal and t, = 0, which results in C, = 1 as follows.

11
Ce= 1=y ~ T-0- L
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Ce = 1;

To configure the simulation, use the following nominal controller parameters.

tauC = 0.2;

Cd = min(T,L/2)*Ce;

CO = 1/(C*Ce*(tauC+L/2));
Cl = max(T,L/2)*CO;

To simulate the controllers, use the comparepidcontrollers Simulink model.

model = 'comparepidcontrollers';
load_system(model)

= - u > G e 1 :l
Reference >y iae _._

Conventional PID

all u P G
S e N
Type-1 Fuzzy PID
> ]
¥
()
—.
2l u b G
s ()

Type-2 Fuzzy PID

Simulate Nominal Process

Simulate the model at the nominal operating conditions.
outl = sim(model);

Plot the step response of the system for all three controllers.

plotTitle = ['Nominal: C=' num2str(C) ', L=' num2str(L) ', T=' num2str(T)];
plotOutput(outl,plotTitle)

2-108



Fuzzy PID Control with Type-2 FIS

Nominal: C=0.5, L=0.5, T=0.5

1.2 T T T
1 - -
08r .
- 06 i
=
=
=]
© 04F Reference | A
PID
Type-1 FLC
Type-2 FLC
07+ ype |
0F '| -
_D.2 1 1 1 1 1
0 5 10 15 20 25 30

Time (sec)

Obtain the step-response characteristics of the system for each controller. Here, rise time and settling
time are in seconds, overshoot is a percentage of the final value, and the absolute error is integrated
over the step response.

stepResponseTable(outl)

ans=3x4 table

Rise Time Overshoot Settling Time Absolute Error
PID 0.62412 11.234 4.5583 1.04
Type-1 FLC 1.4267 0 4.1023 1.1522
Type-2 FLC 1.8662 0 5.129 1.282

For the nominal process:

* Both the type-1 and type-2 fuzzy logic controllers outperform the conventional PID controller in
terms of overshoot.

» The conventional PID controller, performs better with respect to rise-time and integral of absolute
error (IAE).

* The type-1 FLC performs better than the type-2 FLC in terms of rise-time, settling-time, and IAE.
Simulate Modified Process

Modify the plant model by increasing the gain, time delay, and time constant values as compared to
the nominal process.
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0.85;
0.6
0.6
tf(

aO-Hrro

£(C, [T 1], 'Outputdelay’,L);
Simulate the model using the updated plant parameters.
out2 = sim(model);

Plot the step response of the system for all three controllers.

plotTitle = ['Modified 1: C=' num2str(C) ',L=' num2str(L) ',T="' num2str(T)];
plotOutput(out2,plotTitle)
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Obtain the step-response characteristics of the system for each controller.

stepResponseTable(out?2)

ans=3x4 table
Absolute Error

Rise Time Overshoot Settling Time
PID 0.38464 80.641 29.458 4.7486
Type-1 FLC 0.47262 24.877 4.6788 1.1137
Type-2 FLC 0.47262 22.787 3.4561 1.076

For this modified process:
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* The conventional PID controller exhibits significant overshoot, larger settling-time, and higher IAE
as compared to the fuzzy logic controllers

* For all performance measures, the type-2 FLC produces the same or superior performance
compared to the type-1 FLC.

Conclusion

Overall, the type-1 FLC produces superior performance for the nominal plant as compared to the
conventional PID controller. The type-2 FLC shows more robust performance for the modified plant.

The robustness of the conventional PID controller can be improved using different methods, such as
prediction or multiple PID controller configurations. On the other hand, the performance of a type-2
FLC can be improved by using a different:

* Rule base
¢ Number of rules
« FOU

For example, you can create a type-2 FLC that defines the FOU using both the lower MF scaling
factor and lower MF lag.

For fis2, set the lower MF scale and lag values to 0.7 and 0. 1, respectively for all input
membership functions.

for i = 1l:length(fis2.Inputs)
for j = 1l:length(fis2.Inputs(i).MembershipFunctions)
fis2.Inputs(i).MembershipFunctions(j).LowerScale

0.7;
fis2.Inputs(i).MembershipFunctions(j).LowerLag 1;

0.1;
end
end

Plot the updated membership functions.

figure

subplot(1,2,1)
plotmf(fis2, "input',1)
title('Input 1')
subplot(1,2,2)
plotmf(fis2, "input',2)
title('Input 2')
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Simulate the model using the nominal plant, and plot the step responses for the controllers.

C .

0
0
0
t

5;
L 5;

T 5;

G f(C,[T 1], 'Outputdelay',L);

out4 = sim(model);

close system(model,0)

plotTitle = ['Nominal: C=' num2str(C) ', L=' num2str(L) ', T=' num2str(T)];
plotOutput(out4,plotTitle)
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Nominal: C=0.5, L=0.5, T=0.5
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Obtain the step-response characteristics of the system for each controller.
stepResponseTable(out4)

ans=3x4 table

Rise Time Overshoot Settling Time Absolute Error
PID 0.62412 11.234 4.5583 1.04
Type-1 FLC 1.4267 0 4.1023 1.1522
Type-2 FLC 1.2179 0 3.8746 1.1087

In this case, the updated FOU of type-2 FLC improves the rise-time of the step response.

However, the lower MF lag values also increase the overshoot in the case of the modified plant.

C = 0.85;

L =20.6;

T =20.6;

G = tf(C,[T 11, 'Outputdelay',L);

out5 = sim(model);
plotTitle = ['Nominal: C=' num2str(C) ', L=' num2str(L) ', T=' num2str(T)];
plotOutput(out5,plotTitle)
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Mominal: C=0.85, L=0.6, T=0.6
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t = stepResponseTable(out5)
t=3x4 table
Rise Time Overshoot Settling Time Absolute Error
PID 0.38464 80.641 29.458 4.7486
Type-1 FLC 0.47262 24.877 4.6788 1.1137
Type-2 FLC 0.47262 26.699 4.6812 1.1278

Therefore, to obtain desired step response characteristics, you can vary the lower MF scale and lag
values to find a suitable combination.

You can further improve the fuzzy logic controller outputs using a Mamdani type FIS since it also
provides lower MF scale and lag parameters for output membership functions. However, a Mamdani
type-2 FLC introduces additional computational delay due to the expensive type-reduction process.
References

[1] Mendel, ]J. M., Uncertain Rule-Based Fuzzy Systems: Introduction and New Directions, Second
Edition, Springer, 2017, pp. 229-234, 600-608.

Local Functions

function plotOutput(out,plotTitle)
figure
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plot([0 20],[1 11)

hold on
plot(out.yout{l}.Values)
plot(out.yout{2}.Values)
plot(out.yout{3}.Values)
hold off

grid minor

xlabel('Time (sec)')
ylabel('Output')
title(plotTitle)
legend(["Reference","PID","Type-1 FLC","Type-2 FLC"], 'Location', "best")
end

function t = stepResponseTable(out)

s = stepinfo(out.yout{1l}.Values.Data,out.yout{1l}.Values.Time);
stepResponseInfo(l).RiseTime = s.RiseTime;
stepResponseInfo(l).0vershoot = s.0Overshoot;
stepResponseInfo(l).SettlingTime = s.SettlingTime;
stepResponseInfo(1l).IAE = out.yout{4}.Values.Data(end);

_—~ o~ o~ —~

s = stepinfo(out.yout{2}.Values.Data,out.yout{2}.Values.Time);

stepResponseInfo(2).RiseTime = s.RiseTime;
stepResponseInfo(2).0vershoot = s.0Overshoot;
stepResponseInfo(2).SettlingTime = s.SettlingTime;
stepResponseInfo(2).IAE = out.yout{5}.Values.Data(end);

s = stepinfo(out.yout{3}.Values.Data,out.yout{3}.Values.Time);

stepResponseInfo(3).RiseTime = s.RiseTime;
stepResponseInfo(3).0vershoot = s.0Overshoot;
stepResponseInfo(3).SettlingTime = s.SettlingTime;
stepResponseInfo(3).IAE = out.yout{6}.Values.Data(end);

t = struct2table(stepResponselInfo, "RowNames", ["PID" "Type-1 FLC" "Type-2 FLC"1);
t.Properties.VariableNames{1} 'Rise Time';

t.Properties.VariableNames{2} t.Properties.VariableNames{2};
t.Properties.VariableNames{3} 'Settling Time';

t.Properties.VariableNames{4} '"Absolute Error';

end

See Also
mamfistype2 | sugfistype2

More About
. “Type-2 Fuzzy Inference Systems” on page 2-8
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Fuzzy Logic Image Processing

2-116

This example shows how to use fuzzy logic for image processing. Specifically, this example shows how
to detect edges in an image.

An edge is a boundary between two uniform regions. You can detect an edge by comparing the
intensity of neighboring pixels. However, because uniform regions are not crisply defined, small
intensity differences between two neighboring pixels do not always represent an edge. Instead, the
intensity difference might represent a shading effect.

The fuzzy logic approach for image processing allows you to use membership functions to define the
degree to which a pixel belongs to an edge or a uniform region.

Import RGB Image and Convert to Grayscale
Import the image.
Irgb = imread('peppers.png');

Irgbisa 384 x 512 x 3 uint8 array. The three channels of Irgb (third array dimension) represent
the red, green, and blue intensities of the image.

Convert Irgb to grayscale so that you can work with a 2-D array instead of a 3-D array. To do so, use
the rgb2gray function.

Igray = rgb2gray(Irgb);

figure

image(Igray, 'CDataMapping', 'scaled')
colormap('gray")

title('Input Image in Grayscale')
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Convert Image to Double-Precision Data

The evalfis function for evaluating fuzzy inference systems supports only single-precision and
double-precision data. Therefore, convert Igray to a double array using the im2double function.

I = im2double(Igray);
Obtain Image Gradient

The fuzzy logic edge-detection algorithm for this example relies on the image gradient to locate
breaks in uniform regions. Calculate the image gradient along the x-axis and y-axis.

Gx and Gy are simple gradient filters. To obtain a matrix containing the x-axis gradients of I, you
convolve I with Gx using the conv2 function. The gradient values are in the [-1 1] range. Similarly, to
obtain the y-axis gradients of I, convolve I with Gy.

Gx = [-1 1];

Gy = Gx';

Ix = conv2(I,Gx, 'same');
Iy = conv2(I,Gy, 'same');

Plot the image gradients.

figure

image(Ix, 'CDataMapping', 'scaled")
colormap('gray"')

title('Ix")

2-117



2 Fuzzy Inference System Modeling

50 100 150 2000 250 300 350 400 450 500

figure

image(Ily, 'CDataMapping', 'scaled")
colormap('gray"')

title('Iy")
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You can use other filters to obtain the image gradients, such as the Sobel operator or the Prewitt
operator. For information about how you can filter an image using convolution, see “What Is Image
Filtering in the Spatial Domain?” (Image Processing Toolbox)

Alternatively, if you have the Image Processing Toolbox software, you can use the imfilter (Image
Processing Toolbox), imgradientxy (Image Processing Toolbox), or imgradient (Image Processing
Toolbox) functions to obtain the image gradients.

Define Fuzzy Inference System (FIS) for Edge Detection
Create a fuzzy inference system (FIS) for edge detection, edgeFIS.
edgeFIS = mamfis('Name', 'edgeDetection');

Specify the image gradients, Ix and Iy, as the inputs of edgeFIS.

edgeFIS
edgeFIS

addInput(edgeFIS,[-1 1], 'Name', 'Ix');
addInput(edgeFIS,[-1 1], 'Name','Iy');

Specify a zero-mean Gaussian membership function for each input. If the gradient value for a pixel is
0, then it belongs to the zero membership function with a degree of 1.

sx = 0.1;
sy = 0.1;
edgeFIS = addMF(edgeFIS, 'Ix', 'gaussmf',[sx 0], 'Name', 'zero');
edgeFIS = addMF(edgeFIS, 'Iy', 'gaussmf',[sy 0], 'Name', 'zero');
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sx and sy specify the standard deviation for the zero membership function for the Ix and Iy inputs.
To adjust the edge detector performance, you can change the values of sx and sy. Increasing the
values makes the algorithm less sensitive to the edges in the image and decreases the intensity of the
detected edges.

Specify the intensity of the edge-detected image as an output of edgeFIS.
edgeFIS = addOutput(edgeFIS,[0 1], 'Name', 'Iout');

Specify the triangular membership functions, white and black, for Iout.

wa = 0.1;

wb = 1;

wc = 1;

ba = 0;

bb = 0;

bc = 0.7;

edgeFIS = addMF(edgeFIS, 'Tout', 'trimf',[wa wb wc], 'Name', 'white');
edgeFIS = addMF(edgeFIS, 'Tout', 'trimf',[ba bb bcl, 'Name', 'black');

As you can with sx and sy, you can change the values of wa, wb, wc, ba, bb, and bc to adjust the
edge detector performance. The triplets specify the start, peak, and end of the triangles of the
membership functions. These parameters influence the intensity of the detected edges.

Plot the membership functions of the inputs and outputs of edgeFIS.

figure

subplot(2,2,1)
plotmf(edgeFIS, "input',1)
title('Ix")

subplot(2,2,2)

plotmf (edgeFIS, "input"',2)
title('Iy")

subplot(2,2,[3 4])

plotmf (edgeFIS, 'output',1)
title('Iout"')
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Specify FIS Rules
Add rules to make a pixel white if it belongs to a uniform region and black otherwise. A pixel is in a
uniform region when the image gradient is zero in both directions. If either direction has a nonzero

gradient, then the pixel is on an edge.

ri "If Ix is zero and Iy is zero then Iout is white";
r2 "If Ix is not zero or Iy is not zero then Iout is black";
edgeFIS = addRule(edgeFIS,[rl r2]);

edgeFIS.Rules

ans =
1x2 fisrule array with properties:

Description
Antecedent
Consequent
Weight
Connection

Details:
Description

"Ix==zero & Iy==zero => Iout=white (1)"
"Ix~=zero | Iy~=zero => Iout=black (1)"
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Evaluate FIS

Evaluate the output of the edge detector for each row of pixels in I using corresponding rows of Ix
and Iy as inputs.

Ieval = zeros(size(I));
for ii = 1:size(I,1)

Ieval(ii,:) = evalfis(edgeFIS, [(Ix(ii,:));(Iy(ii,:))1");
end

Plot Results

Plot the original grayscale image.

figure

image(I, 'CDataMapping', 'scaled')
colormap('gray"')

title('Original Grayscale Image')

Original Grayscale Image
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Plot the detected edges.

figure

image(Ieval, 'CDataMapping', 'scaled')
colormap('gray"')

title('Edge Detection Using Fuzzy Logic')

2-122



Fuzzy Logic Image Processing

Edge Detection Using Fuzzy Logic

50 | .
,---\Jr?
- Py .-"r S K\ T
100 o ———— L N g
A & - .{" s l'\..".l I y
ey i Rt oo Lok SN
15[} B ] _,.—-&-c’,:-" £ /-.. ___f' ke | "
o jf/ﬂ A\\, - '
200 ,f"fT‘\'s R A‘?:‘h r:"f . l 4
fON T EEN 4|
."lf . r J’f (’ -~ 'I - __\1;\"“? ?.-L - I1
250 1/ ——w s .
/ = P ==
300 Y Nl s
350 | o .
1 1 1 -H-\‘-\-I\--“H‘-‘-"!-.I 1 1 1 1
50 100 150 200 250 300 350 400 500
See Also
evalfis
More About

. “Build Fuzzy Systems at the Command Line” on page 2-77
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Tuning Fuzzy Inference Systems

Designing a complex fuzzy inference system (FIS) with a large number of inputs and membership
functions (MFs) is a challenging problem due to the large number of MF parameters and rules. To
design such a FIS, you can use a data-driven approach to learn rules and tune FIS parameters. To
tune a fuzzy system, you can use:

* Fuzzy Logic Designer — Interactively tune FIS rules and parameters
* tunefis — Programmatically tune FIS rules and parameters

Using Fuzzy Logic Toolbox software, you can tune both type-1 and type-2 FISs as well as FIS trees.
For examples, see “Predict Chaotic Time Series Using Type-2 FIS” on page 3-89 and “Tune FIS Tree
for Gas Mileage Prediction” on page 3-69. Tuning FIS trees is not supported in Fuzzy Logic
Designer.

During training, the optimization algorithm generates candidate FIS parameter sets. The fuzzy
system is updated with each parameter set and then evaluated using the input training data.

If you have input/output training data, the cost for each solution is computed based on the difference
between the output of the fuzzy system and the expected output values from the training data. For
examples that uses this approach, see “Tune Fuzzy Inference System Using Fuzzy Logic Designer” on
page 3-6 and Tune Mamdani Fuzzy Inference System on page 3-21.

optimization | optimized

> Optimization Algorithm 5 -
problem : | parameters
L 5
E E = | =
AE < \2
= | 3
g2 8o
5- E ] o
=
Y Cost
Knowledge Base Measurement
Membership functions AoA
Rule base
input training Fuzzy System evaluated
data output
output training

data

If you do not have input/output training data, you can specify a custom model and cost function for
evaluating candidate FIS parameter sets. The cost measurement function sends an input to the fuzzy
system and receives the evaluated output. The cost is based on the difference between the evaluated
output and the output expected by the model. For more information and an example that uses this
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approach, see “Tune Fuzzy Robot Obstacle Avoidance System Using Custom Cost Function” on page
3-102.

optimization | - optimized

> Optimization Algorithm | parameters

problem h
[
4|2 _
g8 5|8
= % |2
Sk IE
Li Cost
Knowledge Base Measurement |
Membership functions _ r
Rule base {Lm‘"’ !
Fuzzy System output
custom _ :
mode] Bl . i A l i E A i i i i —.—..-:: i i S B A b i

For more information on tuning fuzzy systems see:

» “Select FIS Rules and Parameters to Tune at the Command Line” on page 3-36
* “Tune Fuzzy Trees” on page 3-47
* “Customize FIS Tuning Process” on page 3-57

Tuning Methods

The following table shows the tuning methods supported by the Fuzzy Logic Designer and tunefis
function.

Method Description More Information

Genetic algorithm Population-based global “What Is the Genetic Algorithm?”
optimization method that (Global Optimization Toolbox)
searches randomly by
mutation and crossover
among population members

Particle swarm optimization |Population-based global “What Is Particle Swarm
optimization method in which |Optimization?” (Global Optimization
population members step Toolbox)

throughout a search region
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3-4

Method Description More Information
Pattern search Direct-search local “What Is Direct Search?” (Global
optimization method that Optimization Toolbox)

searches a set of points near
the current point to find a
new optimum

Simulated annealing A local optimization method |“What Is Simulated Annealing?”
that simulates a heating and |(Global Optimization Toolbox)
cooling process to that finds
a new optimal point near the
current point

Adaptive neuro-fuzzy Back-propagation algorithm |“Neuro-Adaptive Learning and ANFIS”
inference that tunes membership on page 3-203

function parameters.
Alternatively, you can use the
anfis function.

The first four tuning methods require Global Optimization Toolbox software.

Global optimization methods, such as genetic algorithms and particle swarm optimization, perform
better for large parameter tuning ranges. These algorithms are useful for both the rule-learning and
parameter-tuning stages of FIS optimization.

On the other hand, local search methods, such as pattern search and simulated annealing, perform
better for small parameter ranges. If you generate a FIS from training data or a rule base is already
added to a FIS, then these algorithms can produce faster convergence compared to global
optimization methods.

Prevent Overfitting of Tuned System

Data overfitting is a common problem in FIS parameter optimization. When overfitting occurs, the
tuned FIS produces optimized results for the training data set but performs poorly for a test data set.
To overcome the data overfitting problem, a tuning process can stop early based on an unbiased
evaluation of the model using a separate validation dataset.

You can prevent overfitting using k-fold cross validation. For more information and a command-line
example, see “Optimize FIS Parameters with K-Fold Cross-Validation” on page 3-82. You can also
configure k-fold cross validation when setting the tuning options in Fuzzy Logic Designer. For more
information, see “Configure Tuning Options in Fuzzy Logic Designer” on page 3-52.

The ANFIS tuning method does not support k-fold cross validation. Instead, you must specify separate
validation data. For more information, see “Neuro-Adaptive Learning and ANFIS” on page 3-203.
Improve Tuning Results

To improve the performance of your tuned fuzzy systems, consider the following guidelines.

* Use multiple phases in your tuning process. For example, first learn the rules of a fuzzy system,
and then tune input/output MF parameters using the learned rule base.

* Increase the number of iterations in both the rule-learning and parameter-tuning phases. Doing so
increases the duration of the optimization process and can also increase validation error due to
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overtuned system parameters with the training data. To avoid overfitting, train your system using
k-fold cross validation.

Change the clustering technique when you create a FIS from data. Depending on the clustering
technique, the generated rules can differ in their representation of the training data. Hence, the
use of different clustering techniques can affect the tuning performance.

Change FIS properties. Try changing properties such as the type of FIS, number of inputs, number
of input/output MFs, MF types, and number of rules. A Sugeno system has fewer output MF
parameters (assuming constant MFs) and faster defuzzification. Therefore, for fuzzy systems with
a large number of inputs, a Sugeno FIS generally converges faster than a Mamdani FIS. Small
numbers of MFs and rules reduce the number of parameters to tune, producing a faster tuning
process. Furthermore, a large number of rules might overfit the training data.

Modify tunable parameter settings for MFs and rules. For example, you can tune the support of a
triangular MF without changing its peak location. Doing so reduces the number of tunable
parameters and can produce a faster tuning process for specific applications. For rules, you can
exclude zero MF indices, which reduces the overall number of rules during the learning phase.

To improve the tuning results for fuzzy trees, consider the following guidelines.

If you have the corresponding training data, you can separately tune the parameters of each FIS
in a FIS tree. You can then tune all the fuzzy systems together to generalize the parameter values.

Change FIS tree properties, such as the number of fuzzy systems and the connections between the
fuzzy systems.

Use different rankings and groupings of the inputs to a FIS tree. For more information about
creating FIS trees, see Fuzzy Trees on page 2-96.

See Also

Apps
Fuzzy Logic Designer

Functions
tunefis | getTunableSettings | genfis

More About

“Tune Fuzzy Inference System Using Fuzzy Logic Designer” on page 3-6
“Tune Fuzzy Inference System at the Command Line” on page 3-21
“Tune FIS Tree for Gas Mileage Prediction” on page 3-69

“Predict Chaotic Time Series Using Type-2 FIS” on page 3-89
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Tune Fuzzy Inference System Using Fuzzy Logic Designer

This example shows how to tune membership function (MF) and rule parameters of a Mamdani fuzzy
inference system (FIS) at the MATLAB command line. This example uses particle swarm and pattern
search optimization, which require Global Optimization Toolbox software.

For this example, you tune a FIS using a two-step process.

1 Learn the rule base while keeping the input and output MF parameters constant.
2 Tune the parameters of the input and output MFs and rules.

The first step is less computationally expensive due to the small number of rule parameters, and it
quickly converges to a fuzzy rule base during training. In the second step, using the rule base from
the first step as an initial condition provides fast convergence of the parameter tuning process.

For an example that tunes a FIS at the command line, see “Tune Fuzzy Inference System at the
Command Line” on page 3-21.

Load Example Data

This example trains a FIS using automobile fuel consumption data. The goal is for the FIS to predict
fuel consumption in miles per gallon (MPG) using several automobile profile attributes. The training
data is available in the University of California at Irvine Machine Learning Repository and contains
data collected from automobiles of various makes and models.

This example uses the following six input data attributes to predict the output data attribute MPG
with a FIS:

Number of cylinders

Displacement

Horsepower

Weight

Acceleration

o U1 A W N M

Model year

Load the data. Each row of the dataset obtained from the repository represents a different automobile
profile.

[data,name] = loadGasData;

data contains 7 columns, where the first six columns contain the input attribute values. The final
column contains the predicted MPG output. Split data into input and output data sets, X and Y,

respectively.
X = data(:,1:6);
Y = data(:,7);

Partition the input and output data sets into training data (odd-indexed samples) and validation data
(even-indexed samples).
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trnX = X(1:2:end,:); % Training input data set
trnY = Y(1:2:end,:); % Training output data set
vldX = X(2:2:end,:); % Validation input data set
vldY = Y(2:2:end,:); % Validation output data set

Initial FIS Structure

To train a FIS, you must first create an initial FIS structure. For this example, load the initial FIS
structure.

load mpgInitialFIS

This FIS has six inputs, one for each automobile profile attribute, and one output, the predicted fuel
consumption.

Each input has two membership functions (MFs), which results in 28 =64 input MF combinations.
Therefore, the FIS uses a maximum of 64 rules corresponding to the input MF combinations.

* To improve data generalization beyond the training data, the FIS has 64 MFs for the output
variable. Doing so allows the FIS to use a different output MF for each rule.

* The input and output variables use default triangular MFs, which are uniformly distributed over
the variable ranges.

For more information on creating this FIS structure, see “Tune Fuzzy Inference System at the
Command Line” on page 3-21.

Define Initial FIS Structure

The first step of the tuning process is to define the initial structure of your FIS. When define this
structure, specify:

* Input and output variables with defined ranges.

* Initial membership functions for each variable.

* (optional) Initial rule base

To create your FIS in the app, you can:

* Create a FIS based on your training data. For more information, see “Get Started Using Fuzzy
Logic Designer” on page 2-35.

* Manually build a FIS. For an example, see “Build Fuzzy Systems Using Fuzzy Logic Designer” on
page 2-15.

* Create a FIS at the command line and import It into the app.

For this example, open Fuzzy Logic Designer and import the mpgInitialFIS system from the
MATLAB workspace.

fuzzylLogicDesigner(mpgInitialFIS)
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Import Training Data

To select input and output data for tuning, on the Tuning tab:

* In the Input Data drop-down list, under Workspace Data Sets, select trnX.
* In the Output Data drop-down list, under Workspace Data Sets, select trnY.

| Data Source @ L)

| = Input Data: tmX -
| (®) Data Set

TUNING

|~ Output Data: tmY ~ Tuning | Tune
[ L) Custom Cost Functi Options
SOURCE OPTIONS | TUNE
DESIGN EROWSER Fuzzy Inference Syste
Set Active Design]
Active |Design Type Compare
v fis IMamdani Type-1 Disp (2 MF
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Learn Rules

To learn the rules for your FIS, first specify the tuning options. Click Tuning Options.

In the Tuning Options dialog box, configure the following tuning options:

In the Optimization Type section, select Learning.

In the Method drop-down list, select Particle swarm. Particle swarm optimization is a global
optimization method. Such methods perform better in large parameter tuning ranges as compared
to local optimization methods.

Set the maximum number of optimization iterations to 20.

* C(Clear the Use default method options parameter

* Under Method Options: Particle swarm, in the leftmost drop-down list, select Run time
limits. By default, the next drop-down list shows Max Iterations.

* In the text box, enter 20.

Set the maximum number of rules to generate during learning. Clear the auto parameter and set
the Max number of rules option to 64.

For reproducible results, set the Random number seed parameter to Initialize Mersenne
Twister generator option.

Keep the remaining training options at their default values.
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-+ Tuning Options

Tuning Validation

Optimization Type

O Tuming (tune existing rules)

@ Learning (create mew rules)

Optimization Options

Method [F’article SWarm A4 | |:| Uze default method options

= Method Options: Particle swarm

© (Runtimelimits v | [Maxiterations ¥ | |20 - +

Max number of rules | Eul'%] [ ]auto

Fandom number seed | Initialize Mersenne Twister generator with seed 0 for reproducible sequences | b |

Distance metric [Ftuut mean square emor ¥ |

Digtance metric will not be used if custom cost funclion is selected
lgnore invalid parameters

|:| Use parallel computing

o ) (o)

Click OK.

To only learn rules without modifying the MF parameters, you must disable the input and output
tunable parameter settings.

* In the System Browser, select fis.
* In the Tunable Parameters section, click Tune None for both the input and output tables.
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TUNABLE PARAMETERS: FIS

Selected parameters: 0 of 228 available in system

[Tune ﬂll] [Tune Nnne]

Input Selected Parameters Tune

1 |Cylinder 0of6 []

2 |Disp 0of6 []

3 |Power 0of6 ]

4 [Weight Oofa ]

5 |Acceler 0ofé []

B |Year 0off []
[Tune AII] [Tune Nnne]

Output Selected Parameters | Tune

1 |MPG 0of192 ]
[Rule parameters L | [Tune ﬂll] [Tune Nnne]

Rule Selected Parameters Tune

To train the FIS, on the Tuning tab, click Tune. For this example, learning rules takes several
minutes.

The Tune tab shows the training progress.

* The Convergence Plot document, plots the optimization cost (training error) after each epoch for
both the training and validation data.

* The Convergence Results document shows the ANFIS system properties, the training error and
minimum root mean-squared error results for the training and validation data sets.

The following figure shows the completed training process. The training error decreases throughout
the tuning process. The tuning stops after the maximum number of iterations is reached.
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P ¥ &

Restart | Accept Cancel
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The final root mean-squared error (RMSE) cost value for the tuned FIS is 4.452 MPG.
To accept the training results, click Accept.

The app adds the tuned FIS fis tuned to the Design Browser and sets this FIS as the active
design.

Select the fis tuned row in the Design Browser. Click the FIS name and rename the FIS
fis learned

DESIGN BROWSER
[Set Active Design]
Active |Design Type Compare
fis Mamdani Type-1
o fis_learned Mamdani Type-1

To validate the performance of the tuned FIS, compare its performance to the validation data.
To select validation data, on the Design tab:

* In the Input Data drop-down list, under Workspace Data Sets, select vldX.
* In the Output Data drop-down list, under Workspace Data Sets, select vidY.

3-12



Tune Fuzzy Inference System Using Fuzzy Logic Designer

DESIGN TUNING

% Sha [ Al s
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To ensure that the first untuned FIS is not included in any system validation, in the Design Browser,
clear the corresponding entry in the Compare column.

[Set Active Design]

Active |Design Type Compare
fis Mamdani Type-1 []
o fis_learned Mamdani Type-1

Click System Validation.

The System Validation document shows the input values, reference output values, and FIS output
values.

» To view just the reference and FIS output values, click Unselect All for the Reference Inputs
table.

* To view the error between the reference and FIS output values, select Prediction errors.
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The FIS output tracks the reference output well.

The bottom plot shows the output error. The legend for this plot displays an RMSE of 4.315 MPG for
the validation data, which is comparable to the RMSE for the training data.

Tune MF and Rule Parameters

To further improve the FIS performance, you can tune the MF and rule parameters of fis learned.
To do so, first specify the tuning options.

In Fuzzy Logic Designer, on the Tune tab, click Tuning Options.
In the Tuning Options dialog box, configure the following tuning options:

* Inthe Optimization Type section, select Tuning.
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In the Method drop-down list, select Pattern search. Particle swarm optimization is a local
optimization method which provides that converges quickly for the parameter tuning.

Set the maximum number of optimization iterations to 60.

* Under Method Options: Pattern search, in the leftmost drop-down list, select Run time
limits. By default, the next drop-down list shows Max Iterations.

* In the text box, enter 60.

To improve the pattern search results, use a complete poll.

* Under Method Options: Pattern search, click +. The app adds a new option row.
* In this row, in the leftmost drop-down list, select Poll settings

* In the next drop-down list, select Do a complete poll.

* Select the checkbox.

Keep the remaining training options at their previous values.
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Click OK.

To tune the MF and rule parameters, you must enable the corresponding tunable parameter settings.

» Inthe System Browser, select fis learned.
¢ In the Tunable Parameters section, click Tune All for both the input and output tables.
* In the rule table, all the rule parameters are already selected.
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TUNABLE PARAMETERS: FIS

Selected parameters: 655 of 655 available in system -
Tune All | [Tune Nnne]

Input Selected Parameters | Tune
1 |Cylinder G of6
2 |Disp §off
3 |Power Goff
4 [Weight Gofg
5 |Acceler Goff
f |Year Gof6

[Tune P.II] [Tune Nnne]

Output Selected Parameters | Tune
1 |MPG 192 of 182
[Rule parameters A ] [Tune AII] [Tune None
Rule Selected Parameters Tune
1 |rule1 7of7
2 |rule2 7of7
3 |rule3 Tof7 v

To train the FIS, on the Tuning tab, click Tune. For this example, tuning parameters takes
approximately 5 minutes.

The following figure shows the completed training process. The training error decreases throughout
the tuning process. The tuning stops after the maximum number of iterations is reached.

3-17



3 Fuzzy Inference System Tuning

TUNE

P

Restart | Accept Cancel

TUNE CLOSE
Convergence Plot Convergence Resulis
System: fis System: fis
as Training Convergence 7 5 THE Refne Wesn
28 2670 3.652 4 Successful Poll
29 273 36562 2 Refine Mesh
30 2869 3.644 4 Successful Poll
at 31 2930 3644 2 Refine Mesh
32 3069 3642 4 Successful Poll
3 3130 3642 2 Refine Mesh
34 3288 3.642 4 Successful Poll
19 35 3329 3642 2 Refine Mesh
36 3468 3641 4 Successful Poll
'ﬂj? 37 3529 364 8 Successful Poll
] 38 3535 364 4 Refine Mesh
= 39 3596 3.64 2 Refine Mesh
£38 40 3735 364 4 Successful Foll
= el 3798 3.64 2 Refine Mesh
= 42 3938 3.64 4 Successful Poll
= 43 3097 364 2 Refine Mesh
53 a4 4138 364 1 Refine Mesh
S 45 4732 3475 2 Successiul Poll
= 46 4873 3.402 4 Successful Poll
= 47 4934 3397 8 Suceessful Poll
H38 43 4940 3397 4 Refine Mesh
E 49 5001 3.397 2 Refine Mesh
B 50 5142 3378 4 Successful Poll
© 51 5203 3381 8 Successful Poll
245 52 5209 3.361 4 Refine Mesh
53 5270 3.355 8 Successful Poll
54 5276 3365 4 Refine Mesh
55 5337 3353 g Successful Poll
34 56 5343 3.353 4 Refine Mesh
57 5404 3353 2 Refine Mesh
58 5546 3345 4 Successful Poll
59 5607 3.343 5 Successful Poll
a3 ! 80 5613 3.343 4 Refine Mesh
0 10 20 30 40 50 60 70 61 5674 3337 8 Successful Poll
lteration patternsearch stopped because it exceeded options. Mazxlterations.

TUNING SUMMARY

Optimization type: Tuning
Optimization method: Pattern search
Tunable parameters: 655

Convergence criteria:  Distance metric (rmse) of
data sets

L4

The final root mean-squared error (RMSE) cost value for the tuned FIS is 3.337 MPG.

To accept the training results, click Accept.

The app adds the tuned FIS fis learned tuned to the Design Browser and sets this FIS as the

active design.

Rename this FIS to fis tuned.

DESIGN BROWSER

[ Set Active Design ]

Active |Design Type
fis Mamdani Type-1
fis_learned Mamdani Type-1
o fis_tuned Mamdani Type-1

Open the System Validation document. The plots update to show the validation results for

fis tuned.
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The results are similar to the results for fis learned. In the Prediction Errors plot, the RMSE for
fis tuned is 3.556 MPG. Tuning the MF and rule parameters has improved the performance of the

tuned FIS.

Export Tuned FIS

To save your FIS for further analysis and development, you can either export it to the MATLAB
workspace or save it to a FIS file. For this example, save the FIS to a file.

On the Design tab, under Save, select fis tuned.
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3 Fuzzy Inference System Tuning

DESIGM TUNING

arll 3§ 8

Mew [Save | Import Input Cutput
— | Select fuzzy inference system Sl .
DH
fis
Set A
fis_|lzarned
SELE fis_tuned [\; -
s wrEmdani Type-1
fis_learned Mamdani Type-1
o fis funed Mamdani Tvne-1

In the Save Fuzzy Inference System window, specify a file name and click Save.

See Also

Apps
Fuzzy Logic Designer

Related Examples
. “Configure Tuning Options in Fuzzy Logic Designer” on page 3-52
. “Tune Fuzzy Inference System at the Command Line” on page 3-21
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Tune Fuzzy Inference System at the Command Line

Tune Fuzzy Inference System at the Command Line

This example shows how to tune membership function (MF) and rule parameters of a Mamdani fuzzy
inference system (FIS) at the MATLAB® command line. This example uses particle swarm and
pattern search optimization, which require Global Optimization Toolbox™ software.

For an example that tunes a FIS using the Fuzzy Logic Designer app, see “Tune Fuzzy Inference
System Using Fuzzy Logic Designer” on page 3-6.

Automobile fuel consumption prediction in miles per gallon (MPG) is a typical nonlinear regression
problem. It uses several automobile profile attributes to predict fuel consumption. The training data
is available in the University of California at Irvine Machine Learning Repository and contains data
collected from automobiles of various makes and models.

This example uses the following six input data attributes to predict the output data attribute MPG
with a FIS:

Number of cylinders

Displacement

Horsepower

Weight

Acceleration

o U A W N =

Model year
Prepare Data

Load the data. Each row of the dataset obtained from the repository represents a different automobile
profile.

[data,name] = loadGasData;

Remove leading and trailing whitespace from the attribute names.

name = strtrim(string(name));

data contains 7 columns, where the first six columns contain the following input attributes.

* Number of cylinders
* Displacement

* Horsepower

*  Weight

* Acceleration

* Model year

The seventh column contains the output attribute, MPG.

Create separate input and output data sets, X and Y, respectively.

X
Y

data(:,1:6);
data(:,7);
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Partition the input and output data sets into training data (odd-indexed samples) and validation data
(even-indexed samples).

trnX = X(1:2:end,:); % Training input data set
trnY = Y(1:2:end,:); % Training output data set
vldX = X(2:2:end,:); % Validation input data set
vldY = Y(2:2:end,:); % Validation output data set

Extract the range of each data attribute, which you will use for input/output range definition during
FIS construction.

dataRange = [min(data)' max(data)'l;
Construct FIS using Data Attribute Ranges

Create a Mamdani FIS for tuning.
fisin = mamfis;

Add input and output variables to the FIS, where each variable represents one of the data attributes.
For each variable, use the corresponding attribute name and range.

To reduce the number of rules, use two MFs for each input variable, which results in 26 =64 input
MF combinations. Therefore, the FIS uses a maximum of 64 rules corresponding to the input MF
combinations.

To improve data generalization beyond the training data, use 64 MFs for the output variable. Doing
so allows the FIS to use a different output MF for each rule.

Both input and output variables use default triangular MFs, which are uniformly distributed over the
variable ranges.

for i = 1:6

fisin = addInput(fisin,dataRange(i,:), 'Name',name(i), 'NumMFs',62);
end
fisin = addOutput(fisin,dataRange(7,:), 'Name',name(7), 'NumMFs',b64);

View the FIS structure. Initially, the FIS has zero rules. The rules of the system are found during the
tuning process.

figure
plotfis(fisin)
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Tune FIS with Training Data
Tuning is performed in two steps.

1 Learn the rule base while keeping the input and output MF parameters constant.
2  Tune the parameters of the input/output MFs and rules.

The first step is less computationally expensive due to the small number of rule parameters, and it
quickly converges to a fuzzy rule base during training. In the second step, using the rule base from
the first step as an initial condition provides fast convergence of the parameter tuning process.

Learn Rules

To learn a rule base, first specify tuning options using a tunefisOptions object. Since the FIS
allows a large number of output MFs (used in rule consequents), use a global optimization method
(genetic algorithm or particle swarm). Such methods perform better in large parameter tuning
ranges as compared to local optimization methods (pattern search and simulation annealing). For this
example, tune the FIS using the particle swarm optimization method ('particleswarm').

To learn new rules, set the OptimizationType to 'learning'. Restrict the maximum number of
rules to 64. The number of tuned rules can be less than this limit, since the tuning process removes
duplicate rules.

options = tunefisOptions('Method', 'particleswarm’,...

'OptimizationType', 'learning’,
"NumMaxRules',64);
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If you have Parallel Computing Toolbox™ software, you can improve the speed of the tuning process
by setting options.UseParallel to true. If you do not have Parallel Computing Toolbox software,
set options.UseParallel to false.

Set the maximum number of iterations to 20. To reduce training error in the rule learning process,
you can increase the number of iterations. However, using too many iterations can overtune the FIS
to the training data, increasing the validation errors.

options.MethodOptions.MaxIterations = 20;

Since particle swarm optimization uses random search, to obtain reproducible results, initialize the
random number generator to its default configuration.

rng('default')
Tune the FIS using the specified tuning data and options.

Learning rules using the tunefis function takes approximately 5 minutes. For this example, enable
tuning by setting runtunefis to true. To load pretrained results without running tunefis, you can
set runtunefis to false.

runtunefis = false;

Parameter settings can be empty when learning new rules. For more information, see tunefis.

if runtunefis

fisoutl = tunefis(fisin,[],trnX,trnY,options); %#ok<UNRCH>
else

tunedfis = load('tunedfismpgprediction.mat');

fisoutl = tunedfis.fisoutl;

fprintf('Training RMSE = %.3f MPG\n',calculateRMSE(fisoutl,trnX,trnY));
end

Training RMSE = 4.452 MPG
The Best f(x) column shows the training root-mean-squared-error (RMSE).

View the structure of the tuned FIS, fisoutl.

plotfis(fisoutl)



Tune Fuzzy Inference System at the Command Line

(

Cylinder (2)

A

Disp (2)

J

Power (2) Mamdsani
Type 1

y

Weight (2]

MPG (B4)

A

Acceler (2)

fis (61)

i

Year (2)

System fis: § inputs, 1 outputs, §1 nules

The learning process produces a set of new rules for the FIS. For example, view the descriptions of
the first three rules.

[fisoutl.Rules(1l:3).Description]’
ans = 3x1 string
"Cylinder==mf2 & Disp==mf2 & Power==mf2 & Weight==mf2 & Year==mf2 => MPG=mf5 (1)"

"Cylinder==mfl & Power==mf2 & Weight==mf2 & Acceler==mf2 & Year==mfl => MPG=mf63 (1)"
"Cylinder==mf2 & Disp==mfl & Acceler==mf2 => MPG=mf28 (1)"

The learned system should have similar RMSE performance for both the training and validation data
sets. To calculate the RMSE for the validation data set, evaluate fisoutl using validation input data
set v1dX. To hide run-time warnings during evaluation, set all the warning options to none.

Calculate the RMSE between the generated output data and the validation output data set v1dY.

plotActualAndExpectedResultsWithRMSE(fisoutl,vldX,vldY)
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60 RMSE = 4.315 MPG
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Since the training and validation errors are similar, the learned system does not overfit the training
data.

Tune All Parameters

After learning the new rules, tune the input/output MF parameters along with the parameters of the
learned rules. To obtain the tunable parameters of the FIS, use the getTunableSettings function.

[in,out,rule] = getTunableSettings(fisoutl);

To tune the existing FIS parameter settings without learning new rules, set the OptimizationType
to 'tuning’'.

options.OptimizationType = 'tuning';

Since the FIS already learned rules using the training data, use a local optimization method for fast

convergence of the parameter values. For this example, use the pattern search optimization method
('patternsearch').

options.Method = 'patternsearch';

Tuning the FIS parameters takes more iterations than the previous rule-learning step. Therefore,
increase the maximum number of iterations of the tuning process to 60. As in the first tuning stage,
you can reduce training errors by increasing the number of iterations. However, using too many
iterations can overtune the parameters to the training data, increasing the validation errors.
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options.MethodOptions.MaxIterations = 60;

To improve pattern search results, set method option UseCompletePoll to true.
options.MethodOptions.UseCompletePoll = true;

Tune the FIS parameters using the specified tunable settings, training data, and tuning options.

Tuning parameter values with tunefis function takes approximately 5 minutes. To load pretrained
results without running tunefis, you can set runtunefis to false.

if runtunefis

rng('default') S#ok<UNRCH>

fisout = tunefis(fisoutl,[in;out;rule],trnX,trnY,options);
else

fisout = tunedfis.fisout;

fprintf('Training RMSE = %.3f MPG\n',calculateRMSE(fisout,trnX,trnY));
end

Training RMSE = 2.903 MPG
At the end of the tuning process, some of the tuned MF shapes are different than the original ones.

figure
plotfis(fisout)
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Check Performance

Validate the performance of the tuned FIS, fisout, using the validation input data set vldX.
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Compare the expected MPG obtained from the validation output data set v1dY and actual MPG
generated using fisout. Compute the RMSE between these results.

plotActualAndExpectedResultsWithRMSE (fisout,vldX,vldY);

RMSE = 3.0116 MPG
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Tuning the FIS parameters improves the RMSE compared to the results from the initial learned rule
base. Since the training and validation errors are similar, the parameters values are not overtuned.

Conclusion

You can further improve the training error of the tuned FIS by:

* Increasing number of iterations in both the rule-learning and parameter-tuning phases. Doing so
increases the duration of the optimization process and can also increase validation error due to
overtuned system parameters with the training data.

* Using global optimization methods, such as ga and particleswarm, in both rule-learning and
parameter-tuning phases. ga and particleswarm perform better for large parameter tuning
ranges since they are global optimizers. On the other hand, patternsearch and
simulannealbnd perform better for small parameter ranges since they are local optimizers. If a
FIS is generated from training data with genfis or a rule base is already added to a FIS using
training data, then patternsearch and simulannealbnd may produce faster convergence as
compared to ga and particleswarm. For more information on these optimization methods and
their options, see ga (Global Optimization Toolbox), particleswarm (Global Optimization
Toolbox), patternsearch (Global Optimization Toolbox), and simulannealbnd (Global
Optimization Toolbox).
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* Changing the FIS properties, such as the type of FIS, number of inputs, number of input/output
MFs, MF types, and number of rules. For fuzzy systems with a large number of inputs, a Sugeno
FIS generally converges faster than a Mamdani FIS since a Sugeno system has fewer output MF
parameters (if constant MFs are used) and faster defuzzification. Small numbers of MFs and
rules reduce the number of parameters to tune, producing a faster tuning process. Furthermore, a
large number of rules may overfit the training data. In general, for larger fuzzy systems, a FIS tree
can produce similar performance with a smaller number of rules as compared to a single FIS. For
an example, see “Tune FIS Tree for Gas Mileage Prediction” on page 3-69.

* Modifying tunable parameter settings for MFs and rules. For example, you can tune the support of
a triangular MF without changing its peak location. Doing so reduces the number of tunable
parameters and can produce a faster tuning process for specific applications. For rules, you can
exclude zero MF indices by setting the ALllowEmpty tunable setting to false, which reduces the
overall number of rules during the learning phase.

Local Functions
function plotActualAndExpectedResultsWithRMSE(fis,x,y)

% Calculate RMSE bewteen actual and expected results
[rmse,actY] = calculateRMSE(fis,x,y);

% Plot results

figure

subplot(2,1,1)

hold on

bar(actY)

bar(y)

bar(min(actY,y), 'FaceColor',[0.5 0.5 0.5])

hold off

axis([0 200 0 601])

xlabel("Validation input dataset index"),ylabel("MPG")

legend(["Actual MPG" "Expected MPG" "Minimum of actual and expected values"], ...
'Location', 'NorthWest')

title("RMSE = " + num2str(rmse) + " MPG")

subplot(2,1,2)

bar(actY-y)

xlabel("Validation input dataset index"),ylabel("Error (MPG)")
title("Difference Between Actual and Expected Values")

end
function [rmse,actY] = calculateRMSE(fis,x,y)

% Specify options for FIS evaluation
persistent evalOptions
if isempty(evalOptions)
evalOptions = evalfisOptions("EmptyOutputFuzzySetMessage", "none",

"NoRuleFiredMessage", "none", "OutOfRangeInputValueMessage", "none");
end

% Evaluate FIS
actY = evalfis(fis,x,evalOptions);

% Calculate RMSE
del = actY - y;
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rmse = sqrt(mean(del.”2));

end

