
Fuzzy Logic Toolbox™
User's Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Fuzzy Logic Toolbox™ User's Guide
© COPYRIGHT 1995–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
January 1995 First printing
April 1997 Second printing
January 1998 Third printing
September 2000 Fourth printing Revised for Version 2 (Release 12)
April 2003 Fifth printing
June 2004 Online only Updated for Version 2.1.3 (Release 14)
March 2005 Online only Updated for Version 2.2.1 (Release 14SP2)
September 2005 Online only Updated for Version 2.2.2 (Release 14SP3)
March 2006 Online only Updated for Version 2.2.3 (Release 2006a)
September 2006 Online only Updated for Version 2.2.4 (Release 2006b)
March 2007 Online only Updated for Version 2.2.5 (Release 2007a)
September 2007 Online only Revised for Version 2.2.6 (Release 2007b)
March 2008 Online only Revised for Version 2.2.7 (Release 2008a)
October 2008 Online only Revised for Version 2.2.8 (Release 2008b)
March 2009 Online only Revised for Version 2.2.9 (Release 2009a)
September 2009 Online only Revised for Version 2.2.10 (Release 2009b)
March 2010 Online only Revised for Version 2.2.11 (Release 2010a)
September 2010 Online only Revised for Version 2.2.12 (Release 2010b)
April 2011 Online only Revised for Version 2.2.13 (Release 2011a)
September 2011 Online only Revised for Version 2.2.14 (Release 2011b)
March 2012 Online only Revised for Version 2.2.15 (Release 2012a)
September 2012 Online only Revised for Version 2.2.16 (Release 2012b)
March 2013 Online only Revised for Version 2.2.17 (Release 2013a)
September 2013 Online only Revised for Version 2.2.18 (Release 2013b)
March 2014 Online only Revised for Version 2.2.19 (Release 2014a)
October 2014 Online only Revised for Version 2.2.20 (Release 2014b)
March 2015 Online only Revised for Version 2.2.21 (Release 2015a)
September 2015 Online only Revised for Version 2.2.22 (Release 2015b)
March 2016 Online only Revised for Version 2.2.23 (Release 2016a)
September 2016 Online only Revised for Version 2.2.24 (Release 2016b)
March 2017 Online only Revised for Version 2.2.25 (Release 2017a)
September 2017 Online only Revised for Version 2.3 (Release 2017b)
March 2018 Online only Revised for Version 2.3.1 (Release 2018a)
September 2018 Online only Revised for Version 2.4 (Release 2018b)
March 2019 Online only Revised for Version 2.5 (Release 2019a)
September 2019 Online only Revised for Version 2.6 (Release 2019b)
March 2020 Online only Revised for Version 2.7 (Release 2020a)
September 2020 Online only Revised for Version 2.8 (Release 2020b)
March 2021 Online only Revised for Version 2.8.1 (Release 2021a)
September 2021 Online only Revised for Version 2.8.2 (Release 2021b)
March 2022 Online only Revised for Version 2.9 (Release 2022a)
September 2022 Online only Revised for Version 3.0 (Release 2022b)
March 2023 Online only Revised for Version 3.1 (Release 2023a)

Getting Started
1

Fuzzy Logic Toolbox Product Description . 1-2

What Is Fuzzy Logic? . 1-3
Description of Fuzzy Logic . 1-3
Why Use Fuzzy Logic? . 1-5
When Not to Use Fuzzy Logic . 1-6
What Can Fuzzy Logic Toolbox Software Do? . 1-6

Foundations of Fuzzy Logic . 1-7
Overview . 1-7
Fuzzy Sets . 1-7
Membership Functions . 1-9
Logical Operations . 1-13
If-Then Rules . 1-15
References . 1-17

Fuzzy Inference Process . 1-19
Fuzzify Inputs . 1-19
Apply Fuzzy Operator . 1-20
Apply Implication Method . 1-21
Aggregate All Outputs . 1-22
Defuzzify . 1-22
Fuzzy Inference Diagram . 1-23

Defuzzification Methods . 1-25

Fuzzy vs. Nonfuzzy Logic . 1-30

Fuzzy Inference System Modeling
2

Mamdani and Sugeno Fuzzy Inference Systems . 2-2
Mamdani Fuzzy Inference Systems . 2-2
Sugeno Fuzzy Inference Systems . 2-3
Convert Between FIS Types . 2-5

Type-2 Fuzzy Inference Systems . 2-8
Interval Type-2 Membership Functions . 2-8
Type-2 Fuzzy Inference Systems . 2-8
Fuzzy Inference Process for Type-2 Fuzzy Systems 2-9
Type-Reduction Methods . 2-13

v

Contents

Build Fuzzy Systems Using Fuzzy Logic Designer 2-15
Create FIS Structure . 2-15
Define Input Variables . 2-18
Define Output Variables . 2-19
Define Membership Functions . 2-20
Define Rule Base . 2-24
Analyze Design . 2-27
Store and Modify Designs . 2-29
Export FIS . 2-32

Get Started Using Fuzzy Logic Designer . 2-35
Open Existing FIS . 2-36
Create Template FIS Structure . 2-36
Create FIS from Data . 2-37
Automatically Generate Rules . 2-41

Define Membership Functions Using Fuzzy Logic Designer 2-44
Add MFs . 2-44
View MFs . 2-47
Configure MFs . 2-48
Delete MFs . 2-52

Define Fuzzy Rules Using Fuzzy Logic Designer . 2-54
Add Rules . 2-54
Edit Rules . 2-57
Delete Rules . 2-58

Analyze Fuzzy System Using Fuzzy Logic Designer 2-61
Control Surface . 2-61
Rule Inference . 2-64
System Validation . 2-66
Error Distribution . 2-68
Specify Validation Data . 2-69

Export FIS and Simulation Data from Fuzzy Logic Designer 2-71
Export FIS to Workspace . 2-71
Save FIS to File . 2-72
Export Simulation Data . 2-73

Build Fuzzy Systems at the Command Line . 2-77

Build Fuzzy Systems Using Custom Functions . 2-86
Define Custom Membership Functions . 2-86
Define Custom Inference Functions . 2-89
Use Custom Functions in Code Generation . 2-94

Fuzzy Trees . 2-96
Types of Hierarchical Structures . 2-96
Add or Remove FIS Tree Outputs . 2-100
Use the Same Value for Multiple inputs of FIS Tree 2-100
Update Fuzzy Inference Systems in FIS Tree . 2-101
Tune a Fuzzy Tree . 2-101

Fuzzy PID Control with Type-2 FIS . 2-102

vi Contents

Fuzzy Logic Image Processing . 2-116

Fuzzy Inference System Tuning
3

Tuning Fuzzy Inference Systems . 3-2
Tuning Methods . 3-3
Prevent Overfitting of Tuned System . 3-4
Improve Tuning Results . 3-4

Tune Fuzzy Inference System Using Fuzzy Logic Designer 3-6
Load Example Data . 3-6
Define Initial FIS Structure . 3-7
Import Training Data . 3-8
Learn Rules . 3-9
Tune MF and Rule Parameters . 3-14
Export Tuned FIS . 3-19

Tune Fuzzy Inference System at the Command Line 3-21

Select Rules and Parameters to Tune in Fuzzy Logic Designer 3-31
Tune MF Parameters . 3-31
Tune Rule Parameters . 3-32
Learn Rules . 3-34

Select FIS Rules and Parameters to Tune at the Command Line 3-36

Tune Fuzzy Trees . 3-47

Configure Tuning Options in Fuzzy Logic Designer 3-52
Optimization Type and Method . 3-52
Global Optimization Toolbox Method Options . 3-53
ANFIS Tuning Options . 3-54
K-Fold Cross Validation . 3-55

Customize FIS Tuning Process . 3-57
Specify Custom Cost Function in Fuzzy Logic Designer 3-57
Tune FIS Using Custom Cost Function . 3-60
Tune FIS Using Custom Optimization Method . 3-63

Tune FIS Tree for Gas Mileage Prediction . 3-69

Optimize FIS Parameters with K-Fold Cross-Validation 3-82

Predict Chaotic Time Series Using Type-2 FIS . 3-89

Tune Fuzzy Robot Obstacle Avoidance System Using Custom Cost
Function . 3-102

Classify Pixels Using Fuzzy Systems . 3-113

Autonomous Parking Using Fuzzy Inference System 3-128

vii

Design Controller for Artificial Pancreas Using Fuzzy Logic 3-145

Explain Black-Box Model Using Fuzzy Support System 3-163

Explainable Fuzzy Support System for Black-Box Model of Robot Obstacle
Avoidance . 3-186

Neuro-Adaptive Learning and ANFIS . 3-203
FIS Structure . 3-203
Training Data . 3-203
Training Options . 3-204
Training Validation . 3-205

Train Adaptive Neuro-Fuzzy Inference Systems 3-207
Import Example Data . 3-207
Generate Initial FIS . 3-207
Select Data for Training . 3-209
Train FIS . 3-209
Validate Trained FIS . 3-213
Importance of Checking Data . 3-215

Predict Chaotic Time-Series Using ANFIS . 3-219

Modeling Inverse Kinematics in a Robotic Arm 3-227

Adaptive Noise Cancellation Using ANFIS . 3-235

Nonlinear System Identification . 3-243

Gas Mileage Prediction . 3-253

Data Clustering
4

Fuzzy Clustering . 4-2
Fuzzy C-Means Clustering . 4-2
Subtractive Clustering . 4-4
References . 4-5

Cluster Quasi-Random Data Using Fuzzy C-Means Clustering 4-6

Adjust Fuzzy Overlap in Fuzzy C-Means Clustering 4-9

Fuzzy C-Means Clustering . 4-12

Fuzzy C-Means Clustering for Iris Data . 4-16

Brain Tumor Segmentation Using Fuzzy C-Means Clustering 4-20

Model Suburban Commuting Using Subtractive Clustering and ANFIS
. 4-30

viii Contents

Cluster Data Using Clustering Tool . 4-41
Load and Plot Data . 4-41
Cluster Data . 4-42
Save Cluster Centers . 4-43

Fuzzy Logic in Simulink
5

Simulate Fuzzy Inference Systems in Simulink . 5-2
Simulate Fuzzy Inference System . 5-2
Access Intermediate Fuzzy Inference Results . 5-8
Simulation Modes . 5-9
Map Command-Line Functionality to Fuzzy Logic Controller Block 5-9

Water Level Control in a Tank . 5-11

Temperature Control in a Shower . 5-17

Implement Fuzzy PID Controller in Simulink Using Lookup Table 5-24

Deployment
6

Deploy Fuzzy Inference Systems . 6-2
Generate Code in MATLAB . 6-2
Generate Code in Simulink . 6-2
Deploy Fuzzy Systems . 6-2

Generate Code for Fuzzy System Using Simulink Coder 6-4

Generate Structured Text for Fuzzy System Using Simulink PLC Coder
. 6-9

Generate Code for Fuzzy System Using MATLAB Coder 6-12

ix

Apps
7

Functions
8

Objects
9

Blocks
10

x Contents

Getting Started

• “Fuzzy Logic Toolbox Product Description” on page 1-2
• “What Is Fuzzy Logic?” on page 1-3
• “Foundations of Fuzzy Logic” on page 1-7
• “Fuzzy Inference Process” on page 1-19
• “Defuzzification Methods” on page 1-25
• “Fuzzy vs. Nonfuzzy Logic” on page 1-30

1

Fuzzy Logic Toolbox Product Description
Design and simulate fuzzy logic systems

Fuzzy Logic Toolbox provides MATLAB® functions, apps, and a Simulink® block for analyzing,
designing, and simulating fuzzy logic systems. The product lets you specify and configure inputs,
outputs, membership functions, and rules of type-1 and type-2 fuzzy inference systems.

The toolbox lets you automatically tune membership functions and rules of a fuzzy inference system
from data. You can evaluate the designed fuzzy logic systems in MATLAB and Simulink. Additionally,
you can use the fuzzy inference system as a support system to explain artificial intelligence (AI)-based
black-box models. You can generate standalone executables or C/C++ code and IEC 61131-3
Structured Text to evaluate and implement fuzzy logic systems.

1 Getting Started

1-2

What Is Fuzzy Logic?

Description of Fuzzy Logic
In recent years, the number and variety of applications of fuzzy logic have increased significantly. The
applications range from consumer products such as cameras, camcorders, washing machines, and
microwave ovens to industrial process control, medical instrumentation, decision-support systems,
and portfolio selection.

To understand why use of fuzzy logic has grown, you must first understand what is meant by fuzzy
logic.

Fuzzy logic has two different meanings. In a narrow sense, fuzzy logic is a logical system, which is an
extension of multivalued logic. However, in a wider sense fuzzy logic (FL) is almost synonymous with
the theory of fuzzy sets, a theory which relates to classes of objects without crisp, clearly defined
boundaries. In such cases, membership in a set is a matter of degree. In this perspective, fuzzy logic
in its narrow sense is a branch of FL. Even in its more narrow definition, fuzzy logic differs both in
concept and substance from traditional multivalued logical systems.

In Fuzzy Logic Toolbox software, fuzzy logic should be interpreted as FL, that is, fuzzy logic in its
wide sense. The basic ideas underlying FL are explained in “Foundations of Fuzzy Logic” on page 1-
7. What might be added is that the basic concept underlying FL is that of a linguistic variable, that
is, a variable whose values are words rather than numbers. In effect, much of FL may be viewed as a
methodology for computing with words rather than numbers. Although words are inherently less
precise than numbers, their use is closer to human intuition. Furthermore, computing with words
exploits the tolerance for imprecision and thereby lowers the cost of solution.

Another basic concept in FL, which plays a central role in most of its applications, is that of a fuzzy if-
then rule or, simply, fuzzy rule. Although rule-based systems have a long history of use in Artificial
Intelligence (AI), what is missing in such systems is a mechanism for dealing with fuzzy consequents
and fuzzy antecedents. In fuzzy logic, this mechanism is provided by the calculus of fuzzy rules. The
calculus of fuzzy rules serves as a basis for what might be called the Fuzzy Dependency and
Command Language (FDCL). Although FDCL is not used explicitly in the toolbox, it is effectively one
of its principal constituents. In most of the applications of fuzzy logic, a fuzzy logic solution is, in
reality, a translation of a human solution into FDCL.

A trend that is growing in visibility relates to the use of fuzzy logic in combination with
neurocomputing and genetic algorithms. More generally, fuzzy logic, neurocomputing, and genetic
algorithms may be viewed as the principal constituents of what might be called soft computing.
Unlike the traditional, hard computing, soft computing accommodates the imprecision of the real
world. The guiding principle of soft computing is: Exploit the tolerance for imprecision, uncertainty,
and partial truth to achieve tractability, robustness, and low solution cost. In the future, soft
computing could play an increasingly important role in the conception and design of systems whose
MIQ (Machine IQ) is much higher than that of systems designed by conventional methods.

Among various combinations of methodologies in soft computing, the one that has highest visibility at
this juncture is that of fuzzy logic and neurocomputing, leading to neuro-fuzzy systems. Within fuzzy
logic, such systems play a particularly important role in the induction of rules from observations. An
effective method developed by Dr. Roger Jang for this purpose is called ANFIS (Adaptive Neuro-Fuzzy
Inference System). This method is an important component of the toolbox.

 What Is Fuzzy Logic?

1-3

Fuzzy logic approximates human reasoning and does a good job of balancing the tradeoff between
precision and significance. For instance, when warning someone of an object falling toward them,
being precise about the exact mass and speed is not necessary.

Fuzzy logic is a convenient way to map an input space to an output space. Consider the following
examples.

• With information about how good your service was at a restaurant, a fuzzy logic system can tell
you what the tip should be.

• With your specification of how hot you want the water, a fuzzy logic system can adjust the faucet
valve to the right setting.

• With information about how far away the subject of your photograph is, a fuzzy logic system can
focus the lens for you.

• With information about how fast the car is going and how hard the motor is working, a fuzzy logic
system can shift gears for you.

A fuzzy system behaves like a black box that maps an input space to an output space. For example,
you can map the input space of all possible restaurant service ratings to all possible tip values.

1 Getting Started

1-4

Determining the appropriate amount of tip requires mapping inputs to the appropriate outputs.
Between the input and the output, the preceding figure shows a black box that can contain any
number of things: fuzzy systems, linear systems, expert systems, neural networks, differential
equations, interpolated multidimensional lookup tables, or even a spiritual advisor, just to name a few
of the possible options. Clearly the list could go on and on.

Of the dozens of ways to make the black box work, it turns out that fuzzy is often the very best way.
Why should that be? As Lotfi Zadeh, who is considered to be the father of fuzzy logic, once remarked:
"In almost every case you can build the same product without fuzzy logic, but fuzzy is faster and
cheaper."

Why Use Fuzzy Logic?
Here is a list of general observations about fuzzy logic:

• Fuzzy logic is conceptually easy to understand.

The mathematical concepts behind fuzzy reasoning are very simple. Fuzzy logic is a more intuitive
approach without the far-reaching complexity.

• Fuzzy logic is flexible.

With any given system, it is easy to layer on more functionality without starting again from
scratch.

• Fuzzy logic is tolerant of imprecise data.

Everything is imprecise if you look closely enough, but more than that, most things are imprecise
even on careful inspection. Fuzzy reasoning builds this understanding into the process rather than
tacking it onto the end.

• Fuzzy logic can model nonlinear functions of arbitrary complexity.

You can create a fuzzy system to match any set of input-output data. This process is made
particularly easy by adaptive techniques like Adaptive Neuro-Fuzzy Inference Systems (ANFIS),
which are available in Fuzzy Logic Toolbox software.

• Fuzzy logic can be built on top of the experience of experts.

In direct contrast to neural networks, which take training data and generate opaque, impenetrable
models, fuzzy logic lets you rely on the experience of people who already understand your system.

• Fuzzy logic can be blended with conventional control techniques.

Fuzzy systems don't necessarily replace conventional control methods. In many cases fuzzy
systems augment them and simplify their implementation.

• Fuzzy logic is based on natural language.

The basis for fuzzy logic is the basis for human communication. This observation underpins many
of the other statements about fuzzy logic. Because fuzzy logic is built on the structures of
qualitative description used in everyday language, fuzzy logic is easy to use.

The last statement is perhaps the most important one and deserves more discussion. Natural
language, which is used by ordinary people on a daily basis, has been shaped by thousands of years of
human history to be convenient and efficient. Sentences written in ordinary language represent a
triumph of efficient communication.

 What Is Fuzzy Logic?

1-5

When Not to Use Fuzzy Logic
Fuzzy logic is not a cure-all. When should you not use fuzzy logic? The safest statement is the first
one made in this introduction: fuzzy logic is a convenient way to map an input space to an output
space. If you find it's not convenient, try something else. If a simpler solution already exists, use it.
Fuzzy logic is the codification of common sense — use common sense when you implement it and you
will probably make the right decision. Many controllers, for example, do a fine job without using fuzzy
logic. However, if you take the time to become familiar with fuzzy logic, you'll see it can be a very
powerful tool for dealing quickly and efficiently with imprecision and nonlinearity.

What Can Fuzzy Logic Toolbox Software Do?
Using Fuzzy Logic Toolbox software, you can:

• Create and edit fuzzy inference systems using command-line functions or the Fuzzy Logic
Designer app.

• Automatically generate fuzzy systems using clustering or adaptive neuro-fuzzy techniques.
• Automatically tune the parameters of a fuzzy logic system using optimization methods such as

genetic algorithms and particle swarm optimization. For more information, see “Tuning Fuzzy
Inference Systems” on page 3-2.

• Simulate your fuzzy system within a Simulink model using the Fuzzy Logic Controller block.
• Automatically generate code for evaluating fuzzy inference systems. For more information, see

“Deploy Fuzzy Inference Systems” on page 6-2.

See Also

More About
• “Foundations of Fuzzy Logic” on page 1-7
• “Fuzzy vs. Nonfuzzy Logic” on page 1-30

1 Getting Started

1-6

Foundations of Fuzzy Logic
Overview
The point of fuzzy logic is to map an input space to an output space, and the primary mechanism for
doing this is a list of if-then statements called rules. All rules are evaluated in parallel, and the order
of the rules is unimportant. The rules themselves are useful because they refer to variables and the
adjectives that describe those variables. Before you can build a system that interprets rules, you must
define all the terms you plan on using and the adjectives that describe them. To say that the water is
hot, you need to define the range within which the water temperature can be expected to vary as well
as what you mean by the word hot.

In general, fuzzy inference is a method that interprets the values in the input vector and, based on
some set of rules, assigns values to the output vector.

This topic guides you through the fuzzy logic process step-by-step by providing an introduction to the
theory and practice of fuzzy logic.

Fuzzy Sets
Fuzzy logic starts with the concept of a fuzzy set. A fuzzy set is a set without a crisp, clearly defined
boundary. It can contain elements with only a partial degree of membership.

To understand what a fuzzy set is, first consider the definition of a classical set. A classical set is a
container that wholly includes or wholly excludes any given element. For example, the set of days of
the week unquestionably includes Monday, Thursday, and Saturday. It just as unquestionably excludes
butter, liberty, and dorsal fins, and so on.

This type of set is called a classical set because it has been around for a long time. It was Aristotle
who first formulated the Law of the Excluded Middle, which says X must either be in set A or in set
not-A. Another version of this law is:

Of any subject, one thing must be either asserted or denied.

To restate this law with annotations: "Of any subject (say Monday), one thing (a day of the week)
must be either asserted or denied (I assert that Monday is a day of the week)." This law demands that
opposites, the two categories A and not-A, should between them contain the entire universe.
Everything falls into either one group or the other. There is no thing that is both a day of the week
and not a day of the week.

Now, consider the set of days comprising a weekend. The following diagram attempts to classify the
weekend days.

Most would agree that Saturday and Sunday belong in the weekend set, but what about Friday? It
feels like a part of the weekend, but somehow it seems like it should be technically excluded.

 Foundations of Fuzzy Logic

1-7

Therefore, Friday "straddles the fence." Classical sets do not tolerate this kind of classification. Either
something is in a set or it is out of a set. Human experience suggests something different, however,
straddling the fence is part of life.

Of course, individual perceptions and cultural background must be taken into account when you
define what constitutes the weekend. Even the dictionary is imprecise, defining the weekend as the
period from Friday night or Saturday to Monday morning. You are entering the realm where sharp-
edged, yes-no logic stops being helpful. Fuzzy reasoning becomes valuable exactly when you work
with how people really perceive the concept weekend as opposed to a simple-minded classification
useful for accounting purposes only. More than anything else, the following statement lays the
foundations for fuzzy logic.

In fuzzy logic, the truth of any statement becomes a matter of degree.

Any statement can be fuzzy. The major advantage that fuzzy reasoning offers is the ability to reply to
a yes-no question with a not-quite-yes-or-no answer. Humans do this kind of thing all the time (think
how rarely you get a straight answer to a seemingly simple question), but it is a rather new trick for
computers.

How does it work? Reasoning in fuzzy logic is just a matter of generalizing the familiar yes-no
(Boolean) logic. If you give true the numerical value of 1 and false the numerical value of 0, this value
indicates that fuzzy logic also permits in-between values like 0.2 and 0.7453. For instance:

Q: Is Saturday a weekend day?
A: 1 (yes, or true)
Q: Is Tuesday a weekend day?
A: 0 (no, or false)
Q: Is Friday a weekend day?
A: 0.8 (for the most part yes, but not completely)
Q: Is Sunday a weekend day?
A: 0.95 (yes, but not quite as much as Saturday).

The plot on the left shows the truth values for weekend-ness if you are forced to respond with an
absolute yes or no response. On the right is a plot that shows the truth value for weekend-ness if you
are allowed to respond with fuzzy in-between values.

1 Getting Started

1-8

Technically, the representation on the right is from the domain of multivalued logic (or multivalent
logic). If you ask the question "Is X a member of set A?" the answer might be yes, no, or any one of a
thousand intermediate values in between. Thus, X might have partial membership in A. Multivalued
logic stands in direct contrast to the more familiar concept of two-valued (or bivalent yes-no) logic.

To return to the example, now consider a continuous scale time plot of weekend-ness shown in the
following plots.

By making the plot continuous, you are defining the degree to which any given instant belongs in the
weekend rather than an entire day. In the plot on the left, notice that at midnight on Friday, just as
the second hand sweeps past 12, the weekend-ness truth value jumps discontinuously from 0 to 1.
This is one way to define the weekend, and while it may be useful to an accountant, it may not really
connect with your own real-world experience of weekend-ness.

The plot on the right shows a smoothly varying curve that accounts for the fact that all of Friday, and,
to a small degree, parts of Thursday, partake of the quality of weekend-ness and thus deserve partial
membership in the fuzzy set of weekend moments. The curve that defines the weekend-ness of any
instant in time is a function that maps the input space (time of the week) to the output space
(weekend-ness). Specifically, it is known as a membership function. See “Membership Functions” on
page 1-9 for a more detailed discussion.

As another example of fuzzy sets, consider the question of seasons. What season is it right now? In
the northern hemisphere, summer officially begins at the exact moment in the earth's orbit when the
North Pole is pointed most directly toward the sun. It occurs exactly once a year, in late June. Using
the astronomical definitions for the season, you get sharp boundaries as shown on the left in the
figure that follows. But what you experience as the seasons vary more or less continuously as shown
on the right in the following figure (in temperate northern hemisphere climates).

Membership Functions
A membership function (MF) is a curve that defines how each point in the input space is mapped to a
membership value (or degree of membership) between 0 and 1. The input space is often referred to
as the universe of discourse.

 Foundations of Fuzzy Logic

1-9

One of the most commonly used examples of a fuzzy set is the set of tall people. In this case, the
universe of discourse is all potential heights, say from three feet to nine feet. The word tall
corresponds to a curve that defines the degree to which any person is tall. If the set of tall people is
given the well-defined (crisp) boundary of a classical set, you might say all people taller than six feet
are officially considered tall. However, it is unreasonable to call one person short and another one tall
when they differ in height by an inch.

If the kind of distinction shown previously is unworkable, then what is the right way to define the set
of tall people? Much as with the plot of weekend days, the following figure shows a smoothly varying
curve that passes from not-tall to tall. The output axis is a number known as the membership value
between 0 and 1. The curve is known as a membership function and is often given the designation of
µ. For example, the following figure shows both crisp and smooth tall membership functions. In the
top plot, the two people are classified as either entirely tall or entirely not-tall. In the bottom plot, the
smooth transition allows for different degrees of tallness. Both people are tall to some degree, but
one is significantly less tall than the other. The taller person, with a tallness membership of 0.95 is
definitely a tall person, but the person with a tallness membership of 0.3 is not very tall.

Subjective interpretations and appropriate units are built into fuzzy sets. If you say "She's tall," then
the tall membership function should already take into account whether you are referring to a six-year-
old or a grown woman. Similarly, the units are included in the curve since it makes no sense to say "Is
she tall in inches or in meters?"

1 Getting Started

1-10

Membership Functions in Fuzzy Logic Toolbox Software

The only condition a membership function must satisfy is that its membership values must vary
between 0 and 1. The function itself can be an arbitrary optimized for your desired combination of
simplicity, convenience, speed, and efficiency.

A classical set might be expressed as:

A = x x > 6

A fuzzy set is an extension of a classical set. If X is the universe of discourse and its elements are
denoted by x, then a fuzzy set A in X is defined as a set of ordered pairs.

A x, μA x x ∈ X

µA(x) is called the membership function (or MF) of x in A. The membership function maps each
element of X to a membership value between 0 and 1.

Fuzzy Logic Toolbox software includes 13 built-in membership function types. These functions are, in
turn, built from several basic functions.

• Piecewise linear functions
• Gaussian distribution function
• Sigmoid curve
• Quadratic and cubic polynomial curves

The simplest membership functions are formed using straight lines. These straight-line membership
functions have the advantage of simplicity.

• trimf — Triangular membership function
• trapmf — Trapezoidal membership function
• linzmf — Linear z-shaped membership function open to the left
• linsmf — Linear s-shaped membership function open to the right

Two membership functions are derived from Gaussian distributions: a simple Gaussian curve
(gaussmf) and a two-sided composite of different Gaussian curves (gauss2mf).

The generalized bell-shaped membership function (gbellmf) has a similar smooth transition between
0 and 1. It has a third parameter that you can use to adjust the steepness of the transition from 0 to
1.

 Foundations of Fuzzy Logic

1-11

Because of their smoothness and concise notation, Gaussian and bell-shaped membership functions
are popular methods for specifying fuzzy sets. Both of these curves have the advantage of being
smooth and nonzero at all points.

Although the Gaussian and bell-shaped curves achieve smoothness, they are unable to specify
asymmetric membership functions, which are important in certain applications. To do so, you can use
the sigmoidal membership function (sigmf), which is a smooth membership function that is open to
either the left or right. You can create asymmetric and closed membership functions based on either
the difference (dsigmf) or product (psigmf) of two sigmoidal functions.

You can also create smooth membership functions using polynomial-based curves that are named for
their shapes.

• zmf — Z-shaped membership function open to the left
• smf — S-shaped membership function open to the right
• pimf — Pi-shaped membership function, which is the product of an s-shaped and z-shaped

membership function

You can also create your own custom membership functions. For more information, see “Build Fuzzy
Systems Using Custom Functions” on page 2-86.

1 Getting Started

1-12

Logical Operations
Now that you understand the fuzzy inference, you need to see how fuzzy inference connects with
logical operations.

The most important thing to realize about fuzzy logical reasoning is the fact that it is a superset of
standard Boolean logic. In other words, if you keep the fuzzy values at their extremes of 1 (completely
true), and 0 (completely false), standard logical operations hold. As an example, consider the
following standard truth tables.

Considering that, in fuzzy logic, the truth of any statement is a matter of degree, can these truth
tables be altered? The input values can be real numbers between 0 and 1. What function preserves
the results of the AND truth table (for example) and also extend to all real numbers between 0 and 1?

One answer is the min operation. That is, resolve the statement A AND B, where A and B are limited
to the range (0,1), by using the function min(A,B). Using the same reasoning, you can replace the OR
operation with the max function, so that A OR B becomes equivalent to max(A,B). Finally, the
operation NOT A becomes equivalent to the operation 1 − A. The previous truth table is completely
unchanged by this substitution.

Moreover, because there is a function behind the truth table rather than just the truth table itself, you
can now consider values other than 1 and 0.

The next figure uses a graph to show the same information. In this figure, the truth table is converted
to a plot of two fuzzy sets applied together to create one fuzzy set. The upper part of the figure
displays plots corresponding to the preceding two-valued truth tables, while the lower part of the
figure displays how the operations work over a continuously varying range of truth values A and B
according to the fuzzy operations you have defined.

 Foundations of Fuzzy Logic

1-13

Given these three functions, you can resolve any construction using fuzzy sets and the fuzzy logical
operation AND, OR, and NOT.

Additional Fuzzy Operators

In this case, you defined only one particular correspondence between two-valued and multivalued
logical operations for AND, OR, and NOT. This correspondence is by no means unique.

In more general terms, you are defining what are known as the fuzzy intersection or conjunction
(AND), fuzzy union or disjunction (OR), and fuzzy complement (NOT). The classical operators for
these functions are: AND = min, OR = max, and NOT = additive complement. Typically, most fuzzy
logic applications make use of these operations and leave it at that. In general, however, these
functions are arbitrary. Fuzzy Logic Toolbox software uses the classical operator for the fuzzy
complement as shown in the previous figure, but also enables you to customize the AND and OR
operators.

The intersection of two fuzzy sets A and B is specified in general by a binary mapping T, which
aggregates two membership functions as follows:

μA∩ B x = T μA x , μB x

For example, the binary operator T may represent the multiplication of µA(x) and µB(x). These fuzzy
intersection operators, which are usually referred to as T-norm (triangular norm) operators, meet the
following basic requirements:

A T-norm operator is a binary mapping T(.,.) with the following properties:

• Boundary — T 0, 0 = 0, T a, 1 = T 1, a = a
• Monotonicity — T a, b ≤ T c, d if a ≤ c and b ≤ d
• Commutativity — T a, b = T b, a
• Associativity — T a, T b, c = T T a, b , c

The first requirement imposes the correct generalization to crisp sets. The second requirement
implies that a decrease in the membership values in A or B cannot produce an increase in the

1 Getting Started

1-14

membership value in A intersection B. The third requirement indicates that the operator is indifferent
to the order of the fuzzy sets to be combined. Finally, the fourth requirement allows us to take the
intersection of any number of sets in any order of pair-wise groupings.

Like fuzzy intersection, the fuzzy union operator is specified in general by a binary mapping S:

μA∪ B x = S μA x , μB x

For example, the binary operator S can represent the addition of µA(x) and µB(x). These fuzzy union
operators, which are often referred to as T-conorm (or S-norm) operators, must satisfy the following
basic requirements:

A T-conorm (or S-norm) operator is a binary mapping S(.,.) with the following properties:

• Boundary — S 1, 1 = 1, S a, 0 = S 0, a = a
• Monotonicity — S a, b ≤ S c, d if a ≤ c and b ≤ d
• Commutativity — S a, b = S b, a
• Associativity — S a, S b, c = S S a, b , c

Several parameterized T-norms and dual T-conorms have been proposed in the past, such as those of
Yager [11], Dubois and Prade [1], Schweizer and Sklar [8], and Sugeno [9]. Each of these provides a
way to vary the gain on the function so that it can be very restrictive or very permissive.

If-Then Rules
Fuzzy sets and fuzzy operators are the subjects and verbs of fuzzy logic. These if-then rule statements
are used to formulate the conditional statements that comprise fuzzy logic.

A single fuzzy if-then rule assumes the form

If x is A, then y is B

where A and B are linguistic values defined by fuzzy sets on the ranges (universes of discourse) X and
Y, respectively. The if-part of the rule "x is A" is called the antecedent or premise, while the then-part
of the rule "y is B" is called the consequent or conclusion. An example of such a rule might be
If service is good then tip is average

The concept good is represented as a number between 0 and 1, and so the antecedent is an
interpretation that returns a single number between 0 and 1. Conversely, average is represented as a
fuzzy set, and so the consequent is an assignment that assigns the entire fuzzy set B to the output
variable y. In the if-then rule, the word is gets used in two entirely different ways depending on
whether it appears in the antecedent or the consequent. In MATLAB terms, this usage is the
distinction between a relational test using "==" and a variable assignment using the "=" symbol. A
less confusing way of writing the rule would be

If service == good, then tip = average

In general, the input to an if-then rule is the current value for the input variable (in this case, service)
and the output is an entire fuzzy set (in this case, average). This set will later be defuzzified,
assigning one value to the output. The concept of defuzzification is described in the next section.

Interpreting an if-then rule involves two steps:

 Foundations of Fuzzy Logic

1-15

• Evaluation of the antecedent — Fuzzifying the inputs and applying any necessary fuzzy operators.
• Application of the result to the consequent.

The second step is known as implication. For an if-then rule, the antecedent, p, implies the
consequent, q. In binary logic, if p is true, then q is also true (p → q). In fuzzy logic, if p is true to
some degree of membership, then q is also true to the same degree (0.5p → 0.5q). In both cases, if p
is false, then the value of q is undetermined.

The antecedent of a rule can have multiple parts.

If sky is gray and wind is strong and barometer is falling, then ...

In this case, all parts of the antecedent are calculated simultaneously and resolved to a single number
using the logical operators described in the preceding section. The consequent of a rule can also have
multiple parts.

If temperature is cold, then hot water valve is open and cold water valve is shut

In this case, all consequents are affected equally by the result of the antecedent. How is the
consequent affected by the antecedent? The consequent specifies a fuzzy set be assigned to the
output. The implication function then modifies that fuzzy set to the degree specified by the
antecedent. The most common ways to modify the output fuzzy set are truncation using the min
function (where the fuzzy set is truncated as shown in the following figure) or scaling using the prod
function (where the output fuzzy set is squashed). Both are supported by the toolbox, but you use
truncation for the examples in this section.

1 Getting Started

1-16

Summary of If-Then Rules

Interpreting if-then rules is a three-part process. This process is explained in detail in the next
section:

1 Fuzzify inputs: Resolve all fuzzy statements in the antecedent to a degree of membership
between 0 and 1. If there is only one part to the antecedent, then this is the degree of support for
the rule.

2 Apply fuzzy operator to multiple part antecedents: If there are multiple parts to the
antecedent, apply fuzzy logic operators and resolve the antecedent to a single number between 0
and 1. This is the degree of support for the rule.

3 Apply implication method: Use the degree of support for the entire rule to shape the output
fuzzy set. The consequent of a fuzzy rule assigns an entire fuzzy set to the output. This fuzzy set
is represented by a membership function that is chosen to indicate the qualities of the
consequent. If the antecedent is only partially true, (i.e., is assigned a value less than 1), then the
output fuzzy set is truncated according to the implication method.

In general, one rule alone is not effective. Two or more rules that can play off one another are
needed. The output of each rule is a fuzzy set. The output fuzzy sets for each rule are then
aggregated into a single output fuzzy set. Finally the resulting set is defuzzified, or resolved to a
single number. “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15 shows how the
whole process works from beginning to end for a particular type of fuzzy inference system called a
Mamdani type.

References

[1] Dubois, Didier, and Henri M. Prade. Fuzzy Sets and Systems: Theory and Applications.
Mathematics in Science and Engineering, v. 144. New York: Academic Press, 1980.

[2] Kaufmann, A., and Madan M. Gupta. Introduction to Fuzzy Arithmetic: Theory and Applications.
Van Nostrand Reinhold Electrical/Computer Science and Engineering Series. New York, N.Y:
Van Nostrand Reinhold Co, 1985.

[3] Lee, C.C. "Fuzzy Logic in Control Systems: Fuzzy Logic Controller. I." IEEE Transactions on
Systems, Man, and Cybernetics 20, no. 2 (April 1990): 404–18. https://doi.org/
10.1109/21.52551.

[4] Lee, C.C. "Fuzzy Logic in Control Systems: Fuzzy Logic Controller. II." IEEE Transactions on
Systems, Man, and Cybernetics 20, no. 2 (April 1990): 419–35. https://doi.org/
10.1109/21.52552.

[5] Mamdani, E.H., and S. Assilian. "An Experiment in Linguistic Synthesis with a Fuzzy Logic
Controller." International Journal of Man-Machine Studies 7, no. 1 (January 1975): 1–13.
https://doi.org/10.1016/S0020-7373(75)80002-2.

[6] Mamdani, E.H. "Advances in the Linguistic Synthesis of Fuzzy Controllers." International Journal
of Man-Machine Studies 8, no. 6 (November 1976): 669–78. https://doi.org/10.1016/
S0020-7373(76)80028-4.

[7] Mamdani, E.H. ‘Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis’.
IEEE Transactions on Computers C–26, no. 12 (December 1977): 1182–91. https://doi.org/
10.1109/TC.1977.1674779.

 Foundations of Fuzzy Logic

1-17

https://doi.org/10.1109/21.52551
https://doi.org/10.1109/21.52551
https://doi.org/10.1109/21.52552
https://doi.org/10.1109/21.52552
https://doi.org/10.1109/TC.1977.1674779
https://doi.org/10.1109/TC.1977.1674779

[8] Schweizer, B. and A. Sklar, "Associative functions and abstract semi-groups." Publ. Math.
Debrecen 10 (1963): 69–81.

[9] Sugeno, M., "Fuzzy measures and fuzzy integrals: a survey." (M.M. Gupta, G. N. Saridis, and B.R.
Gaines, editors) Fuzzy Automata and Decision Processes. North-Holland, NY: 1977. 89–102.

[10] Sugeno, Michio, ed. Industrial Applications of Fuzzy Control. Amsterdam ; New York : New York,
N.Y., U.S.A: North-Holland ; Sole distributors for the U.S.A. and Canada, Elsevier Science Pub.
Co, 1985.

[11] Yager, Ronald R. "On a General Class of Fuzzy Connectives." Fuzzy Sets and Systems 4, no. 3
(November 1980): 235–42. https://doi.org/10.1016/0165-0114(80)90013-5.

[12] Yager, Ronald R., and Dimitar P. Filev. "Generation of Fuzzy Rules by Mountain Clustering."
Journal of Intelligent and Fuzzy Systems 2, no. 3 (1994): 209–19. https://doi.org/10.3233/
IFS-1994-2301.

[13] Zadeh, L.A. "Fuzzy Sets." Information and Control 8, no. 3 (June 1965): 338–53. https://doi.org/
10.1016/S0019-9958(65)90241-X.

[14] Zadeh, Lotfi A. "Outline of a New Approach to the Analysis of Complex Systems and Decision
Processes." IEEE Transactions on Systems, Man, and Cybernetics SMC-3, no. 1 (1973): 28–
44. https://doi.org/10.1109/TSMC.1973.5408575.

[15] Zadeh, L.A. "The concept of a linguistic variable and its application to approximate reasoning.
I."Information Sciences 8, no. 3 (1975): 199–249. https://doi.org/
10.1016/0020-0255(75)90036-5

[16] Zadeh, L.A. "The concept of a linguistic variable and its application to approximate reasoning.
II." Information Sciences 8, no. 4 (1975): 301–357. https://doi.org/
10.1016/0020-0255(75)90046-8

[17] Zadeh, L.A. "The concept of a linguistic variable and its application to approximate reasoning.
III." Information Sciences 9, no. 1 (1975):43–80. https://doi.org/
10.1016/0020-0255(75)90017-1

[18] Zadeh, L.A. "Fuzzy Logic." Computer 21, no. 4 (April 1988): 83–93. https://doi.org/10.1109/2.53.

[19] Zadeh, L.A. "Knowledge Representation in Fuzzy Logic." IEEE Transactions on Knowledge and
Data Engineering 1, no. 1 (March 1989): 89–100. https://doi.org/10.1109/69.43406.

See Also

More About
• “What Is Fuzzy Logic?” on page 1-3
• “Fuzzy Inference Process” on page 1-19
• “Fuzzy vs. Nonfuzzy Logic” on page 1-30

1 Getting Started

1-18

https://doi.org/10.3233/IFS-1994-2301
https://doi.org/10.3233/IFS-1994-2301
https://doi.org/10.1109/TSMC.1973.5408575
https://doi.org/10.1109/2.53
https://doi.org/10.1109/69.43406

Fuzzy Inference Process
Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy
logic. The mapping then provides a basis from which decisions can be made, or patterns discerned.
The process of fuzzy inference involves all the pieces that are described in “Membership Functions”
on page 1-9, “Logical Operations” on page 1-13, and “If-Then Rules” on page 1-15.

This section describes the fuzzy inference process and uses the example of the two-input, one-output,
three-rule tipping problem from “Fuzzy vs. Nonfuzzy Logic” on page 1-30. The fuzzy inference
system for this problem takes service and food quality as inputs and computes a tip percentage using
the following rules.

1 If the service is poor or the food is rancid, then tip is cheap.
2 If the service is good, then tip is average.
3 If the service is excellent or the food is delicious, then tip is generous.

The parallel nature of the rules is an important aspect of fuzzy logic systems. Instead of sharp
switching between modes based on breakpoints, logic flows smoothly from regions where one rule or
another dominates.

The fuzzy inference process has the following steps.

• Fuzzification of the input variables on page 1-19
• Application of the fuzzy operator (AND or OR) in the antecedent on page 1-20
• Implication from the antecedent to the consequent on page 1-21
• Aggregation of the consequents across the rules on page 1-22
• Defuzzification on page 1-22

Fuzzify Inputs
The first step is to take the inputs and determine the degree to which they belong to each of the
appropriate fuzzy sets via membership functions (fuzzification). In Fuzzy Logic Toolbox software, the
input is always a crisp numerical value limited to the universe of discourse of the input variable (in

 Fuzzy Inference Process

1-19

this case, the interval from 0 through 10) . The output is a fuzzy degree of membership in the
qualifying linguistic set (always the interval from 0 through 1). Fuzzification of the input amounts to
either a table lookup or a function evaluation.

This example is built on three rules, and each of the rules depends on resolving the inputs into
several different fuzzy linguistic sets: service is poor, service is good, food is rancid, food is delicious,
and so on. Before the rules can be evaluated, the inputs must be fuzzified according to each of these
linguistic sets. For example, to what extent is the food delicious? The following figure shows how well
the food at the hypothetical restaurant (rated on a scale from 0 through 10) qualifies as the linguistic
variable delicious using a membership function. In this case, we rate the food as an 8, which, given
the graphical definition of delicious, corresponds to µ = 0.7 for the delicious membership function.

In this manner, each input is fuzzified over all the qualifying membership functions required by the
rules.

Apply Fuzzy Operator
After the inputs are fuzzified, you know the degree to which each part of the antecedent is satisfied
for each rule. If the antecedent of a rule has more than one part, the fuzzy operator is applied to
obtain one number that represents the result of the rule antecedent. This number is then applied to
the output function. The input to the fuzzy operator is two or more membership values from fuzzified
input variables. The output is a single truth value.

As described in “Logical Operations” on page 1-13, any number of well-defined methods can fill in for
the AND operation or the OR operation. In the toolbox, two built-in AND methods are supported: min
(minimum) and prod (product). Two built-in OR methods are also supported: max (maximum) and
probor (probabilistic OR). The probabilistic OR method (also known as the algebraic sum) is
calculated according to the equation:

probor(a,b) = a + b - ab

In addition to these built-in methods, you can create your own methods for AND and OR by writing
any function and setting that to be your method of choice. For more information, see “Build Fuzzy
Systems Using Custom Functions” on page 2-86.

The following figure demonstrates the OR operator max by evaluating the antecedent of the third rule
of the tipping calculation. For the given service and food ratings, the two elements of the antecedent
(service is excellent and food is delicious) produce the fuzzy membership values 0.0 and 0.7,
respectively. The fuzzy OR operator selects the maximum of the two values, 0.7. The probabilistic OR
method would still result in 0.7.

1 Getting Started

1-20

Apply Implication Method
Before applying the implication method, you must determine the rule weight. Every rule has a weight
(a number from 0 through 1), which is applied to the number given by the antecedent. Generally, this
weight is 1 (as it is for this example) and thus has no effect on the implication process. However, you
can decrease the effect of one rule relative to the others by changing its weight value to something
other than 1.

After proper weighting has been assigned to each rule, the implication method is implemented. A
consequent is a fuzzy set represented by a membership function, which weights appropriately the
linguistic characteristics that are attributed to it. The consequent is reshaped using a function
associated with the antecedent (a single number). The input for the implication process is a single
number given by the antecedent, and the output is a fuzzy set. Implication is implemented for each
rule. Two built-in methods are supported, and they are the same functions that are used by the AND
method: min (minimum), which truncates the output fuzzy set, and prod (product), which scales the
output fuzzy set.

Note Sugeno systems always use the product implication method.

 Fuzzy Inference Process

1-21

Aggregate All Outputs
Since decisions are based on testing all the rules in a FIS, the rule outputs must be combined in some
manner. Aggregation is the process by which the fuzzy sets that represent the outputs of each rule
are combined into a single fuzzy set. Aggregation only occurs once for each output variable, which is
before the final defuzzification step. The input of the aggregation process is the list of truncated
output functions returned by the implication process for each rule. The output of the aggregation
process is one fuzzy set for each output variable.

As long as the aggregation method is commutative, then the order in which the rules are executed is
unimportant. Three built-in methods are supported.

• max (maximum)
• probor (probabilistic OR)
• sum (sum of the rule output sets)

In the following diagram, all three rules are displayed to show how the rule outputs are aggregated
into a single fuzzy set whose membership function assigns a weighting for every output (tip) value.

Note Sugeno systems always use the sum aggregation method.

Defuzzify
The input for the defuzzification process is the aggregate output fuzzy set and the output is a single
number. As much as fuzziness helps the rule evaluation during the intermediate steps, the final

1 Getting Started

1-22

desired output for each variable is generally a single number. However, the aggregate of a fuzzy set
encompasses a range of output values, and so must be defuzzified to obtain a single output value
from the set.

There are five built-in defuzzification methods supported: centroid, bisector, middle of maximum (the
average of the maximum value of the output set), largest of maximum, and smallest of maximum.
Perhaps the most popular defuzzification method is the centroid calculation, which returns the center
of the area under the aggregate fuzzy set, as shown in the following figure.

While the aggregate output fuzzy set covers a range from 0% though 30%, the defuzzified value is
between 5% and 25%. These limits correspond to the centroids of the cheap and generous
membership functions, respectively.

Fuzzy Inference Diagram
The fuzzy inference diagram is the composite of all the smaller diagrams presented so far in this
section. It simultaneously displays all parts of the fuzzy inference process you have examined.
Information flows through the fuzzy inference diagram as shown in the following figure.

 Fuzzy Inference Process

1-23

In this figure, the flow proceeds up from the inputs in the lower left, across each row, and then down
the rule outputs to the lower right. This compact flow shows everything at once, from linguistic
variable fuzzification all the way through defuzzification of the aggregate output.

The following figure shows the actual full-size fuzzy inference diagram for the basic tipping problem.
Using a fuzzy inference diagram, you can learn a lot about how the system operates. For instance, for
the particular inputs in this diagram, you can see that the implication method is truncation with the
min function. The max function is used for the fuzzy OR operation. Rule 3 (the bottom-most row in the
diagram shown previously) has the strongest influence on the output. To for more information on
viewing the rule inference diagram for a fuzzy system, see “Analyze Fuzzy System Using Fuzzy Logic
Designer” on page 2-61.

See Also

More About
• “Foundations of Fuzzy Logic” on page 1-7

1 Getting Started

1-24

Defuzzification Methods

This example describes the built-in methods for defuzzifying the output fuzzy set of a type-1 Mamdani
fuzzy inference system.

Consider the following output fuzzy set, which is an aggregation of three scaled trapezoidal
membership functions.

x = 0:0.1:20;

mf1 = trapmf(x,[0 2 8 12]);
mf2 = trapmf(x,[5 7 12 14]);
mf3 = trapmf(x,[12 13 18 19]);
mf = max(0.5*mf2,max(0.9*mf1,0.1*mf3));

figure('Tag','defuzz')
plot(x,mf,'LineWidth',3)
h_gca = gca;
h_gca.YTick = [0 .5 1] ;
ylim([-1 1])

Fuzzy Logic Toolbox™ software supports five built-in methods for computing a single crisp output
value for such a fuzzy set.

• Centroid

 Defuzzification Methods

1-25

• Bisector
• Middle of maximum
• Smallest of maximum
• Largest of maximum

You can also define your own custom defuzzification method. For more information, see “Build Fuzzy
Systems Using Custom Functions” on page 2-86.

Centroid

Centroid defuzzification returns the center of gravity of the fuzzy set along the x-axis. If you think of
the area as a plate with uniform thickness and density, the centroid is the point along the x-axis about
which the fuzzy set would balance. The centroid is computed using the following formula, where μ xi
is the membership value for point xi in the universe of discourse.

xCentroid =
∑iμ xi xi
∑iμ xi

Compute the centroid of the fuzzy set.

xCentroid = defuzz(x,mf,'centroid');

Indicate the centroid defuzzification result on the original plot.

hCentroid = line([xCentroid xCentroid],[-0.2 1.2],'Color','k');
tCentroid = text(xCentroid,-0.2,' centroid','FontWeight','bold');

1 Getting Started

1-26

Bisector

The bisector method finds the vertical line that divides the fuzzy set into two sub-regions of equal
area. It is sometimes, but not always, coincident with the centroid line.

xBisector = defuzz(x,mf,'bisector');

Indicate the bisector result on the original plot, and gray out the centroid result.

hBisector = line([xBisector xBisector],[-0.4 1.2],'Color','k');
tBisector = text(xBisector,-0.4,' bisector','FontWeight','bold');
gray = 0.7*[1 1 1];
hCentroid.Color = gray;
tCentroid.Color = gray;

Middle, Smallest, and Largest of Maximum

MOM, SOM, and LOM stand for middle, smallest, and largest of maximum, respectively. In this
example, since the aggregate fuzzy set has a plateau at its maximum value, the MOM, SOM, and LOM
defuzzification results have distinct values. If the aggregate fuzzy set has a unique maximum, then
MOM, SOM, and LOM all produce the same value.

xMOM = defuzz(x,mf,'mom');
xSOM = defuzz(x,mf,'som');
xLOM = defuzz(x,mf,'lom');

Indicate the MOM, SOM, and LOM results on the original plot, and gray out the bisector result.

 Defuzzification Methods

1-27

hMOM = line([xMOM xMOM],[-0.7 1.2],'Color','k');
tMOM = text(xMOM,-0.7,' MOM','FontWeight','bold');
hSOM = line([xSOM xSOM],[-0.7 1.2],'Color','k');
tSOM = text(xSOM,-0.7,' SOM','FontWeight','bold');
hLOM = line([xLOM xLOM],[-0.7 1.2],'Color','k');
tLOM = text(xLOM,-0.7,' LOM','FontWeight','bold');
hBisector.Color = gray;
tBisector.Color = gray;

Choosing Defuzzification Method

In general, using the default centroid method is good enough for most applications. Once you have
created your initial fuzzy inference system, you can try other defuzzification methods to see if any
improve your inference results.

Highlight the centroid result, and gray out the MOM, SOM, and LOM results.

hCentroid.Color = 'red';
tCentroid.Color = 'red';
hMOM.Color = gray;
tMOM.Color = gray;
hSOM.Color = gray;
tSOM.Color = gray;
hLOM.Color = gray;
tLOM.Color = gray;

1 Getting Started

1-28

See Also

More About
• “Foundations of Fuzzy Logic” on page 1-7
• “Fuzzy Inference Process” on page 1-19

 Defuzzification Methods

1-29

Fuzzy vs. Nonfuzzy Logic

In this example, to illustrate the value of fuzzy logic, you examine both linear and fuzzy approaches to
determining the correct amount to tip a waitperson at a restaurant. First, you use a conventional
nonfuzzy approach that defines piecewise-linear relations between the inputs (service and food
quality) and the output (tip percentage). Then, you implement a fuzzy approach using linguistic
variables and if-then rules.

Basic Tipping Problem

The basic tipping problem in this examples is as follows — Given a number from 0 through 10 that
represents the quality of service at a restaurant, where 10 is excellent, and another number from 0
through 10 that represents the quality of the food, where 10 is delicious, what should the tip be?

Tipping behavior varies depending on local traditions and personal preferences. In this example, the
problem is based on tipping as it is typically practiced in the United States. An average tip for a meal
in the US is 15%. A generous tip could be as high as 25% and a cheap tip could be 5%.

The actual amount of the tip can vary depending on the quality of the service and food.

Nonfuzzy Approach

As a starting point, consider the simplest possible relationship, that is, the tip always equals 15% of
the total bill.

S = 0:.5:10;
tip = 0.15*ones(size(S));
plot(S,tip)
xlabel('Service')
ylabel('Tip')
ylim([0.05 0.25])

1 Getting Started

1-30

This does not account for the quality of the service, so you must add service term S to the equation
for tip T. Since service is rated on a scale from 0 through 10, increase the tip linearly from 5% if the
service is bad to 25% if the service is excellent.

T = 0 . 05 + 0 . 2 ⋅ S
10

Plot the resulting relation.

tip = (.20/10)*S + 0.05;
plot(S,tip)
xlabel('Service')
ylabel('Tip')
ylim([0.05 0.25])

 Fuzzy vs. Nonfuzzy Logic

1-31

To account for the food quality, add food-quality term F to the tip formula. Here, the service and food
are rated as equally important in the tip calculation.

T = 0 . 05 + 0 . 2 ⋅ S + F
20

Plot the resulting relation.

food = 0:.5:10;
[F,S] = meshgrid(food,S);
tip = (0.20/20).*(S+F) + 0.05;
surf(S,F,tip)
xlabel('Service')
ylabel('Food')
zlabel('Tip')

1 Getting Started

1-32

In this case, the results look satisfactory. However, suppose that you want the service to be a more
important factor than the food quality. To do so, you can add a service ratio R to the formula.

T = 0 . 05 + 0 . 2 ⋅ R ⋅ S + 1 − R ⋅ F
10

Specify that service accounts for 80% of the overall tipping grade and the food makes up the other
20%.

R = 0.8;
tip = (0.2/10)*(R*S + (1-R)*F) + 0.05;
surf(S,F,tip)
xlabel('Service')
ylabel('Food')
zlabel('Tip')

 Fuzzy vs. Nonfuzzy Logic

1-33

Suppose further that you want a more flat response in the middle, that is, you want to give a 15% tip
in general, but you also want to specify a variation when the service is exceptionally good or bad. In
this case, the previous linear mappings are not sufficient. Instead, you can create a piecewise-linear
construction. Returning to the service-only calculation, create a conditional tip assignment using
logical indexing.

tip = zeros(size(S));
tip(S<3) = (0.10/3)*S(S<3) + 0.05;
tip(S>=3 & S<7) = 0.15;
tip(S>=7 & S<=10) = ...
 (0.10/3)*(S(S>=7 & S<=10)-7) + 0.15;
plot(S,tip)
xlabel('Service')
ylabel('Tip')
ylim([0.05 0.25])

1 Getting Started

1-34

Then, add a linear dependence on food service to the piecewise-linear service formula.

R = 0.8;
tip = zeros(size(S));
tip(S<3) = ((0.10/3)*S(S<3)+0.05)*R + ...
 (1-R)*(0.20/10*F(S<3)+0.05);
tip(S>=3 & S<7) = (0.15)*R + ...
 (1-R)*(0.20/10*F(S>=3 & S<7)+0.05);
tip(S>=7 & S<=10) = ((0.10/3)*(S(S>=7 & S<=10)-7)+0.15)*R + ...
 (1-R)*(0.20/10*F(S>=7 & S<=10)+0.05);
surf(S,F,tip)
xlabel('Service')
ylabel('Food')
zlabel('Tip')

 Fuzzy vs. Nonfuzzy Logic

1-35

The plot looks good, but the calculation is complicated. It is not apparent how the algorithm works to
someone who did not see the original design process.

Fuzzy-Logic Approach

To solve this problem using fuzzy logic, first capture the essentials of the desired tipping behavior,
leaving aside all the factors that could be arbitrary. If you make a list of what really matters in this
problem, you could create the following rule descriptions for tipping based on service quality.

• If service is poor, then tip is cheap
• If service is good, then tip is average
• If service is excellent, then tip is generous

Similarly, for tipping based on food quality, you could create the following rules.

• If food is rancid, then tip is cheap
• If food is delicious, then tip is generous

Then, combine these rules into three compound if-then rules.

• If service is poor or the food is rancid, then tip is cheap
• If service is good, then tip is average
• If service is excellent or food is delicious, then tip is generous

1 Getting Started

1-36

The rules use linguistic terms, such as cheap and delicious, to define the levels of service, food
quality, and tip.

To implement the fuzzy logic-based solution, you create a fuzzy inference system (FIS) that contains
the if-then rule base and defines the linguistic terms used in the rules.

Load a fuzzy inference system (FIS) that implements the rule-based solution.

fis = readfis('tipper');

View the rules for the FIS, which match the rules defined previously.

fis.Rules

ans =
 1x3 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 Details:
 Description
 __

 1 "service==poor | food==rancid => tip=cheap (1)"
 2 "service==good => tip=average (1)"
 3 "service==excellent | food==delicious => tip=generous (1)"

This FIS has two inputs (service and food quality) and one output (tip percentage). Each input and
output variable contains membership functions that define the linguistic terms used in the if-then
rules.

For example, the following membership functions represent the tip percentage.

plotmf(fis,"output",1)

 Fuzzy vs. Nonfuzzy Logic

1-37

View the input-output relation defined by this FIS.

gensurf(fis)

1 Getting Started

1-38

This fuzzy system is based on a set of common sense rules that are easily understandable by someone
who did not create the system.

To change the behavior of this system for different regions or personal preferences, you can add or
modify rules, variable ranges, and linguistic term definitions. For example, to adjust the average,
minimum, and maximum tip values, you can change the range of the output variable and modify the
membership functions accordingly.

As an example, shift the tip range up by five percent.

fis.Outputs(1).Range = fis.Outputs(1).Range + 5;
fis.Outputs(1).MembershipFunctions(1).Parameters = ...
 fis.Outputs(1).MembershipFunctions(1).Parameters + 5;
fis.Outputs(1).MembershipFunctions(2).Parameters = ...
 fis.Outputs(1).MembershipFunctions(2).Parameters + 5;
fis.Outputs(1).MembershipFunctions(3).Parameters = ...
 fis.Outputs(1).MembershipFunctions(3).Parameters + 5;
plotmf(fis,"output",1)

 Fuzzy vs. Nonfuzzy Logic

1-39

The tipping logic of the FIS, as defined by the if-then rule base, remains the same. However the
definition of what the different tip levels mean has changed.

For more complicated changes, you can modify the rule base by modifying existing rules or adding
and removing rules.

See Also

Related Examples
• “Build Fuzzy Systems at the Command Line” on page 2-77
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15

1 Getting Started

1-40

Fuzzy Inference System Modeling

• “Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2
• “Type-2 Fuzzy Inference Systems” on page 2-8
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15
• “Get Started Using Fuzzy Logic Designer” on page 2-35
• “Define Membership Functions Using Fuzzy Logic Designer” on page 2-44
• “Define Fuzzy Rules Using Fuzzy Logic Designer” on page 2-54
• “Analyze Fuzzy System Using Fuzzy Logic Designer” on page 2-61
• “Export FIS and Simulation Data from Fuzzy Logic Designer” on page 2-71
• “Build Fuzzy Systems at the Command Line” on page 2-77
• “Build Fuzzy Systems Using Custom Functions” on page 2-86
• “Fuzzy Trees” on page 2-96
• “Fuzzy PID Control with Type-2 FIS” on page 2-102
• “Fuzzy Logic Image Processing” on page 2-116

2

Mamdani and Sugeno Fuzzy Inference Systems
Fuzzy Logic Toolbox software supports two types of fuzzy inference systems:

• Mamdani systems
• Sugeno systems

Fuzzy Inference System Advantages
Mamdani • Intuitive

• Well-suited to human input
• More interpretable rule base
• Have widespread acceptance

Sugeno • Computationally efficient
• Work well with linear techniques, such as PID control
• Work well with optimization and adaptive techniques
• Guarantee output surface continuity
• Well-suited to mathematical analysis

For both Mamdani and Sugeno systems, you can create both type-1 and type-2 fuzzy systems. This
topic discusses the inference processes for type-1 systems. For more information on inference for
type-2 systems, see “Type-2 Fuzzy Inference Systems” on page 2-8.

Mamdani Fuzzy Inference Systems
Mamdani fuzzy inference was first introduced as a method to create a control system by synthesizing
a set of linguistic control rules obtained from experienced human operators [1]. In a Mamdani
system, the output of each rule is a fuzzy set.

Since Mamdani systems have more intuitive and easier to understand rule bases, they are well-suited
to expert system applications where the rules are created from human expert knowledge, such as
medical diagnostics.

The inference process of a Mamdani system is described in “Fuzzy Inference Process” on page 1-19
and summarized in the following figure.

2 Fuzzy Inference System Modeling

2-2

The output of each rule is a fuzzy set derived from the output membership function and the
implication method of the FIS. These output fuzzy sets are combined into a single fuzzy set using the
aggregation method of the FIS. Then, to compute a final crisp output value, the combined output
fuzzy set is defuzzified using one of the methods described in “Defuzzification Methods” on page 1-
25.

Sugeno Fuzzy Inference Systems
Sugeno fuzzy inference, also referred to as Takagi-Sugeno-Kang fuzzy inference, uses singleton
output membership functions that are either constant or a linear function of the input values. The
defuzzification process for a Sugeno system is more computationally efficient compared to that of a
Mamdani system, since it uses a weighted average or weighted sum of a few data points rather than
compute a centroid of a two-dimensional area. [2]

Each rule in a Sugeno system operates as shown in the following diagram, which shows a two-input
system with input values x and y.

 Mamdani and Sugeno Fuzzy Inference Systems

2-3

Each rule generates two values:

• zi — Rule output level, which is either a constant value or a linear function of the input values:

zi = aix + biy + ci

Here, x and y are the values of input 1 and input 2, respectively, and ai, bi, and ci are constant
coefficients. For a zero-order Sugeno system, zi is a constant (a = b = 0).

• wi — Rule firing strength derived from the rule antecedent

wi = AndMethod(F1(x), F2(y))

Here, F1(...) and F2(...) are the membership functions for inputs 1 and 2, respectively.

The output of each rule is the weighted output level, which is the product of wi and zi.

The easiest way to visualize first-order Sugeno systems (a and b are nonzero) is to think of each rule
as defining the location of a moving singleton. That is, the singleton output spikes can move around in
a linear fashion within the output space, depending on the input values. The rule firing strength then
defines the size of the singleton spike.

The final output of the system is the weighted average over all rule outputs:

Final Output =
∑
i=1

N
wizi

∑
i = 1

N
wi

where N is the number of rules.

The following figure shows the fuzzy inference process for a Sugeno system.

2 Fuzzy Inference System Modeling

2-4

Note Sugeno systems always use product implication and sum aggregation.

Because of the linear dependence of each rule on the input variables, the Sugeno method is ideal for
acting as an interpolating supervisor of multiple linear controllers that are to be applied, respectively,
to different operating conditions of a dynamic nonlinear system. For example, the performance of an
aircraft may change dramatically with altitude and Mach number. Linear controllers, though easy to
compute and suited to any given flight condition, must be updated regularly and smoothly to keep up
with the changing state of the flight vehicle. A Sugeno fuzzy inference system is suited to the task of
smoothly interpolating the linear gains that would be applied across the input space; it is a natural
and efficient gain scheduler. Similarly, a Sugeno system is suited for modeling nonlinear systems by
interpolating between multiple linear models.

Convert Between FIS Types
You can convert between Mamdani and Sugeno fuzzy systems.

Mamdani to Sugeno

When you convert a Mamdani system to a Sugeno system, the resulting Sugeno system has constant
output membership functions that correspond to the centroids of the Mamdani output membership
functions. As a result, you lose the information contained in the output membership function fuzzy
sets of the Mamdani system.

To convert a Mamdani system in the Fuzzy Logic Designer app, on the Design tab, click Mamdani
to Sugeno. The app creates a Sugeno version of the active Mamdani system and adds it to the
Design Browser.

 Mamdani and Sugeno Fuzzy Inference Systems

2-5

You can also convert a Mamdani system into a Sugeno system at the MATLAB command line using the
convertToSugeno function. The resulting Sugeno system has constant output membership functions
that correspond to the centroids of the Mamdani output membership functions.

Sugeno to Mamdani

When you convert a Sugeno system to a Mamdani system, the resulting Mamdani system has
triangular output membership functions centered at output values that match the constant term of
the Sugeno output membership functions. The width of the triangular membership functions depends
on the linear terms of the Sugeno membership functions.

To convert a Sugeno system in the Fuzzy Logic Designer app, on the Design tab, click Sugeno to
Mamdani. The app creates a Mamdani version of the active Sugeno system and adds it to the
Design Browser.

2 Fuzzy Inference System Modeling

2-6

Converting a Sugeno system to a Mamdani system is not supported at the MATLAB command line.

References
[1] Mamdani, E.H., and S. Assilian. "An Experiment in Linguistic Synthesis with a Fuzzy Logic

Controller". International Journal of Man-Machine Studies 7, no. 1 (January 1975): 1–13.
https://doi.org/10.1016/S0020-7373(75)80002-2.

[2] Sugeno, Michio, ed. Industrial Applications of Fuzzy Control. Amsterdam ; New York : New York,
N.Y., U.S.A: North-Holland ; Sole distributors for the U.S.A. and Canada, Elsevier Science Pub.
Co, 1985.

See Also

More About
• “Foundations of Fuzzy Logic” on page 1-7
• “Fuzzy Inference Process” on page 1-19
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15
• “Build Fuzzy Systems at the Command Line” on page 2-77
• “Build Fuzzy Systems Using Custom Functions” on page 2-86

 Mamdani and Sugeno Fuzzy Inference Systems

2-7

Type-2 Fuzzy Inference Systems
For any value in the universe of discourse, a traditional type-1 membership function has a single
membership value. Therefore, while a type-1 membership function models the degree of membership
in a given linguistic set, it does not model uncertainty in the degree of membership. To model such
uncertainty, you can use interval type-2 membership functions. In such type-2 membership functions,
the degree of membership can have a range of values.

For examples that use type-2 fuzzy inference systems, see “Fuzzy PID Control with Type-2 FIS” on
page 2-102 and “Predict Chaotic Time Series Using Type-2 FIS” on page 3-89.

Interval Type-2 Membership Functions
An interval type-2 membership function is defined by an upper and lower membership function. The
upper membership function (UMF) is equivalent to a traditional type-1 membership function. The
lower membership function (LMF) is less than or equal to the upper membership function for all
possible input values. The region between the UMF and LMF is the footprint of uncertainty (FOU).
The following diagram shows the UMF (red), the LMF (blue), and the FOU (shaded) for a type-2
triangular membership function.

For each input value in the universe of discourse, the degree of membership is the range of values
between the LMF and UMF values.

Type-2 Fuzzy Inference Systems
Using Fuzzy Logic Toolbox software, you can create both type-2 Mamdani and Sugeno fuzzy inference
systems.

• In type-2 Mamdani systems, both the input and output membership functions are type-2 fuzzy
sets.

• In type-2 Sugeno systems, only the input membership functions are type-2 fuzzy sets. The output
membership functions are the same as for a type-1 Sugeno system — constant or a linear function
of the input values.

To create type-2 Mamdani and Sugeno systems at the command line, use mamfistype2 and
sugfistype2 objects, respectively. These objects have the same parameters as the type-1 mamfis
and sugfis objects along with an additional TypeReductionMethod parameter.

2 Fuzzy Inference System Modeling

2-8

You can create a type-2 fuzzy inference system by converting an existing type-1 system, such as one
created using the genfis function. To do so, use the convertToType2 function.

Once you create a type-2 fuzzy inference system, you can:

• Evaluate the fuzzy system using the evalfis functions
• Simulate the fuzzy system using the Fuzzy Logic Controller block
• Tune the parameters of the fuzzy system using the tunefis function
• Deploy the fuzzy system as described in “Deploy Fuzzy Inference Systems” on page 6-2

You can also create type-2 fuzzy inference system using the Fuzzy Logic Designer app.

Fuzzy Inference Process for Type-2 Fuzzy Systems
Antecedent Processing

For type-2 fuzzy inference systems, input values are fuzzified by finding the corresponding degree of
membership in both the UMFs and LMFs from the rule antecedent. Doing so generates two fuzzy
values for each type-2 membership function. For example, the fuzzification in the following figure
shows the membership value in the upper membership function (fU) and the lower membership
function (fL).

Next, a range of rule firing strengths is found by applying the fuzzy operator to the fuzzified values of
the type-2 membership functions, as shown in the following figure. The maximum value of this range
(wU) is the result of applying the fuzzy operator to the fuzzy values from the UMFs. The minimum
value (wL) is the result of applying the fuzzy operator to the fuzzy values from the LMFs

 Type-2 Fuzzy Inference Systems

2-9

Antecedent processing is the same for both Mamdani and Sugeno systems.

Consequent Processing

For a Mamdani system, the implication method clips (min implication) or scales (prod implication)
the UMF and LMF of the output type-2 membership function using the rule firing range limits. This
process produces an output fuzzy set for each rule. The following figure shows the output fuzzy set
(dark gray region) produced by applying min implication to the UMF (red) and LMF (blue).

For a type-2 Sugeno system, the output level zi for the ith rule is computed in the same manner as for
a type-1 Sugeno system.

zi = c0
i + ∑

j = 1

M
c j

ix j

Here, j is the input index, xj is the value of the jth input variable, and the c terms are the upper
membership function parameters

2 Fuzzy Inference System Modeling

2-10

Unlike a type-1 Sugeno system, the rule firing strengths are not used to process the consequent of
each rule. Instead, the output level and rule firing strengths are used during the aggregation process.

Aggregation

The goal of the aggregation stage is to derive a single type-2 fuzzy set from the rule output fuzzy sets.

For a type-2 Mamdani system, the software finds an aggregate type-2 fuzzy set by applying the
aggregation method to the UMFs and LMFs of the output fuzzy sets of all the rules. The following
figure shows the aggregation of two type-2 fuzzy sets (the outputs for a two-rule system) using max
aggregation.

For a type-2 Sugeno system, the aggregate fuzzy set is derived using the following steps:

1 Sort the rule output levels (zi) from all the rules into ascending order. These output level values
define the universe of discourse for the aggregate type-2 fuzzy set.

2 For each output level, define the UMF value using the maximum firing range value from the
corresponding rule.

3 For each output level, define the LMF value using the minimum firing range value from the
corresponding rule.

For example, suppose you have a type-2 Sugeno system with seven rules. Further, assume these rules
have the following output levels and firing range limits.

Rule Output Level (z) Minimum Firing Value Maximum Firing
Value

1 6.3 0.1 0.5
2 4.9 0.4 0.5
3 1.6 0.3 0.5
4 5.8 0.5 0.7
5 5.4 0.2 0.6
6 0.7 0.5 0.8
7 3.2 0.2 0.7

The following figure shows the aggregated type-2 fuzzy set for this Sugeno system with its associated
UMF (red) and LMF (blue).

 Type-2 Fuzzy Inference Systems

2-11

Type Reduction and Defuzzification

To find the final crisp output value for the inference process, the aggregate type-2 fuzzy set is first
reduced to an interval type-1 fuzzy set, which is a range with lower limit cL and upper limit cR. This
interval type-1 fuzzy set is commonly referred to as the centroid of the type-2 fuzzy set. In theory, this
centroid is the average of the centroids of all the type-1 fuzzy sets embedded in the type-2 fuzzy set.
In practice, it is not possible to compute the exact values of cL and cR. Instead, iterative type-
reduction methods are used to estimate these values.

For a given aggregate type-2 fuzzy set, the approximate values of cL and cR are the centroids of the
following type-1 fuzzy sets (green).

Mathematically, these centroids are found using the following equations. [1]

cL ≈
∑i = 1

L xiμumf xi + ∑i = L + 1
N xiμlmf xi

∑i = 1
L μumf xi + ∑i = L + 1

N μlmf xi

cR ≈
∑i = 1

R xiμlmf xi + ∑i = R + 1
N xiμumf xi

∑i = 1
R μlmf xi + ∑i = R + 1

N μumf xi

Here:

2 Fuzzy Inference System Modeling

2-12

• N is the number of samples taken across the output variable range, specified using
evalfisOptions.

• xi is the ith output value sample.
• μumf is the upper membership function.
• μlmf is the lower membership function.
• L and R are switch points that are estimated by the various type-reduction methods. For a list of

supported methods, see “Type-Reduction Methods” on page 2-13.

For both Mamdani and Sugeno systems, the final defuzzified output value (y) is the average of the two
centroid values from the type reduction process.

y =
cL + cR

2

Type-Reduction Methods
Fuzzy Logic Toolbox software supports four built-in type-reduction methods. These algorithms differ
in their initialization methods, assumptions, computational efficiency, and terminating conditions.

To set the type-reduction method for a type-2 fuzzy system, set the TypeReduction property of the
mamfistype2 or sugfistype2 object.

Method TypeReduction
property Value

Description

Karnik-Mendel (KM)
[2]

"karnikmendel" First type-reduction method developed

Enhanced Karnik-
Mendel (EKM) [3]

"ekm" Modification of the Karnik-Mendel algorithm with an
improved initialization, modified termination condition,
and improved computational efficiency

Iterative algorithm
with stop condition
(IASC) [4]

"iasc" Iterative improvement to brute force methods

Enhanced iterative
algorithm with stop
condition (EIASC) [5]

"eiasc" Improved version of the IASC algorithm

In general, the computational efficiency of these methods improve as you move down the table.

You can also use your own custom type-reduction method. For more information, see “Build Fuzzy
Systems Using Custom Functions” on page 2-86.

References
[1] Mendel, Jerry M., Hani Hagras, Woei-Wan Tan, William W. Melek, and Hao Ying. Introduction to

Type-2 Fuzzy Logic Control: Theory and Applications. Hoboken, New Jersey: IEEE Press, John
Wiley & Sons, 2014.

[2] Karnik, Nilesh N., and Jerry M. Mendel. "Centroid of a Type-2 Fuzzy Set." Information Sciences
132, no. 1–4 (February 2001): 195–220. https://doi.org/10.1016/S0020-0255(01)00069-X.

 Type-2 Fuzzy Inference Systems

2-13

[3] Wu, D. and J.M. Mendel. "Enhanced Karnik-Mendel algorithms." IEEE Transactions on Fuzzy
Systems 17 (2009): 923–934.

[4] Duran, K., H. Bernal, and M. Melgarejo. "Improved iterative algorithm for computing the
generalized centroid of an interval type-2 fuzzy set," Annual Meeting of the North American
Fuzzy Information Processing Society (2008): 190–194

[5] Wu, D. and M. Nie. "Comparison and practical implementations of type-reduction algorithms for
type-2 fuzzy sets and systems." Proceedings of FUZZ-IEEE (2011): 2131–2138

See Also
mamfistype2 | sugfistype2

More About
• “Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2
• “Fuzzy PID Control with Type-2 FIS” on page 2-102
• “Predict Chaotic Time Series Using Type-2 FIS” on page 3-89

2 Fuzzy Inference System Modeling

2-14

Build Fuzzy Systems Using Fuzzy Logic Designer
This example shows how to interactively create a type-1 Mamdani fuzzy inference system (FIS) to
solve the tipping problem defined in “Fuzzy vs. Nonfuzzy Logic” on page 1-30. For this problem,
tipping behavior is defined using the following three rules.

1 If the service is poor or the food is rancid, then the tip is cheap.
2 If the service is good, then the tip is average.
3 If the service is excellent or the food is delicious, then the tip is generous.

While this example creates a type-1 Mamdani FIS, the general methods used apply to creating type-2
and Sugeno systems as well. For more information on the different types of fuzzy systems, see
“Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2 and “Type-2 Fuzzy Inference Systems”
on page 2-8.

For more information on building a FIS at the command line, see “Build Fuzzy Systems at the
Command Line” on page 2-77.

For this example, you build a tipper FIS from scratch. Alternatively, you can load the system from the
tipper.fis file. To do so, use the following command.

fuzzyLogicDesigner('tipper.fis')

Create FIS Structure
To build the FIS yourself, first open the app. On the Apps tab, under Control System Design and
Analysis, click the app icon.

The apps opens a Getting Started dialog box. For more information the options for creating your
initial FIS structure, see “Get Started Using Fuzzy Logic Designer” on page 2-35.

For this example, since you are creating a type-1 Mamdani system with the two inputs and one
output, you can use a built in template as a starting point. To do so:

1 Since you will define the rules for your FIS manually, clear the Generate rules automatically
check box.

2 Under Template Fuzzy Inference Systems, select Mamdani Type-1.

 Build Fuzzy Systems Using Fuzzy Logic Designer

2-15

The app creates the template FIS and loads it in the app.

2 Fuzzy Inference System Modeling

2-16

In the Property Editor section, you can specify the name of your FIS along with its inference
methods. For this example, use the default inference methods. For more information on the available
inference methods, see “Fuzzy Inference Process” on page 1-19 and “Foundations of Fuzzy Logic” on
page 1-7.

In the Name field, enter the name tipper.

 Build Fuzzy Systems Using Fuzzy Logic Designer

2-17

Define Input Variables
For this example, the template FIS already has two input variables. In the System Browser section,
click Inputs. The app displays the properties of the input variables in the Property Editor.

2 Fuzzy Inference System Modeling

2-18

In the Property Editor, define the following properties for each input variable.

• Name — Input variable name. For this example, name the first input service and the second
input food.

• Range — Input variable range. For this example, both inputs are rated on a scale from 0 through
10. Therefore, specify each variable range as [0 10]

You can add more input variables if they are required for your application. To do so, on the Design
tab, in the Add Components gallery, click Input.

Define Output Variables
For this example, the template FIS already has one input variable. In the System Browser section,
click Outputs. The app displays the properties of the output variable in the Property Editor.

In the Property Editor, define the following properties for the output variable.

• Name — Output variable name. For this example, name the output variable tip.
• Range — Output variable range. For this example, specify the output variable range as [0 30]

 Build Fuzzy Systems Using Fuzzy Logic Designer

2-19

You can add output variables if they are required for your application. To do so, in the Add
Components gallery, click Output.

Define Membership Functions
To add or remove membership functions for a given variable, select the variable in the System
Browser or click the variable in the Fuzzy Inference System document. For example, select the
food input variable. In the Property Editor, the app shows the input variable and membership
function properties.

By default, the template adds three membership functions for each variable. For this example, the
service input variable and the tip output variable both require three membership functions.

2 Fuzzy Inference System Modeling

2-20

However, the food variable requires two membership functions. To remove one of the default
membership functions, in the System Browser, under food, right-click the membership function and
select Delete.

You can add membership functions to a given variable if they are required for your application. To do
so, in the Add Components gallery, click MF.

To edit membership function properties, in the System Browser, select the membership function or
the corresponding variable. Then, in the Property Editor, specify the following membership function
properties.

• Name — Membership function name
• Type — Membership function type
• Parameters — Membership function parameters

To view a plot of the membership functions for a given variable, select the variable in the System
Browser and open the Membership Function Editor document. The following figure shows the
membership functions for the service input variable.

Configure the membership functions for the service input using the properties shown in the following
figure.

 Build Fuzzy Systems Using Fuzzy Logic Designer

2-21

Similarly, configure the properties for the food input variable.

2 Fuzzy Inference System Modeling

2-22

Finally, define the membership functions for the tip output.

 Build Fuzzy Systems Using Fuzzy Logic Designer

2-23

For more information on defining membership functions, see “Define Membership Functions Using
Fuzzy Logic Designer” on page 2-44.

Define Rule Base
Once you define the variables and membership functions for your FIS, you can define the if-then rule
base for the system.

For this example, use the following rules.

1 If the service is poor or the food is rancid, then the tip is cheap.
2 If the service is good, then the tip is average.
3 If the service is excellent or the food is delicious, then the tip is generous.

Open the Rule Editor document.

2 Fuzzy Inference System Modeling

2-24

To add a rule, click . The app adds a rule to the rule table and shows the rule properties in the
Property Editor.

Modify the rule properties for the first rule — If the service is poor or the food is rancid, then the tip
is cheap.

1 Set the Connection parameter to Or.
2 For the service input, select poor as the linguistic term.
3 For the food input, select rancid as the linguistic term.
4 For the tip output, select cheap as the linguistic term.

 Build Fuzzy Systems Using Fuzzy Logic Designer

2-25

Similarly, add the next rule — If the service is good, then the tip is average. For this rule:

1 For the service input, select good as the linguistic term.
2 For the tip output, select average as the linguistic term.
3 Since this rule has only the service input in the antecedent, ignore the food input by setting its

linguistic term to None.

Finally, add the rule — If the service is excellent or the food is delicious, then the tip is generous. For
this rule:

1 Set the Connection parameter to Or.
2 For the service input, select excellent as the linguistic term.
3 For the food input, select delicious as the linguistic term.
4 For the tip output, select generous as the linguistic term.

View the final rule base in the Rule Editor.

2 Fuzzy Inference System Modeling

2-26

For more information on specifying rules for your FIS, see “Define Fuzzy Rules Using Fuzzy Logic
Designer” on page 2-54

Analyze Design
Once you define your rule base, you can analyze your design using the following documents.

• Rule Inference — Specify input values and view the inference diagram and resulting output
value.

• Control Surface — Plot the output values for all combinations of two input variables.
• System Validation — Compare the outputs from each FIS design with the corresponding output

value from the testing data.
• Error Distribution — For a given FIS design and testing data, view the output error for different

combinations of inputs.

For more information on FIS analysis methods, see “Analyze Fuzzy System Using Fuzzy Logic
Designer” on page 2-61.

For this example, analyze the FIS using the Rule Inference and Control Surface documents. To
open either document, on the Design tab, click the corresponding icon in the Simulation gallery.

Rule Inference

In the Rule Inference document, you specify values for your input variables, inspect the inference
process, and view the resulting output value.

For example, consider the case where the service was quite poor (1/10) but the food was very good
(9/10). Specify these input values using the Input values parameter. Alternatively, you can drag the
input bars in the inference diagram.

 Build Fuzzy Systems Using Fuzzy Logic Designer

2-27

The low service rating causes the first rule to fire with a high firing strength and the high food rating
causes the third rule to fire with a high firing strength. When the resulting output membership
functions are aggregated and defuzzified, the final tip value 15.2%.

For more information on fuzzy inference, see “Fuzzy Inference Process” on page 1-19.

Control Surface

The Control Surface document shows the FIS output value for all possible combinations of two input
variables. For this example, the plot shows the tip value for all service and food rating combinations.

2 Fuzzy Inference System Modeling

2-28

Store and Modify Designs
You can store multiple FIS designs in the app, which allows you to explore possible design options. All
stored designs must have the same number of inputs and the same number of outputs.

A common design option to explore is converting a Mamdani system into a Sugeno system. In
general, Sugeno systems are more computationally efficient, which is an important consideration
when deploying a FIS.

To convert the FIS to a Sugeno system, on the Design tab, select Mamdani to Sugeno.

 Build Fuzzy Systems Using Fuzzy Logic Designer

2-29

In the Design Browser section, the app creates a Sugeno version of the FIS called tipper_1.

To make this design active, select the design in the table and click Set Active Design.

You can also manually store a copy of your current FIS in the Design Browser. To do so, on the
Design tab, select Store Current Design.

You can then analyze the alternative design in the same manner as the first design.

The plot for the Sugeno system in the Control Surface document looks similar to the plot for the
Mamdani system.

2 Fuzzy Inference System Modeling

2-30

Using the Rule Inference document, you can see that, for the same service and food ratings, the
Sugeno system generates a 16.1% tip, which is similar to the 15.2% tip for the Mamdani system.

 Build Fuzzy Systems Using Fuzzy Logic Designer

2-31

Export FIS
Once you design your FIS using Fuzzy Logic Designer, you can export the active and stored designs
to the MATLAB workspace for further simulations and deployment.

To export a FIS design to the MATLAB workspace, in Fuzzy Logic Designer, select Export > Export
Fuzzy Inference System to Workspace.

2 Fuzzy Inference System Modeling

2-32

The Export Fuzzy Inference System to Workspace dialog box lists the active FIS design along with
any stored designs.

In the Export column, select one or more systems that you want to export.

In the Export As column, specify names for the workspace variables.

Click Export.

The app saves the FIS to the MATLAB workspace.

For more information on exporting and saving your FIS, see “Export FIS and Simulation Data from
Fuzzy Logic Designer” on page 2-71.

See Also
Fuzzy Logic Designer

 Build Fuzzy Systems Using Fuzzy Logic Designer

2-33

More About
• “Build Fuzzy Systems at the Command Line” on page 2-77
• “Simulate Fuzzy Inference Systems in Simulink” on page 5-2
• “Define Fuzzy Rules Using Fuzzy Logic Designer” on page 2-54
• “Define Membership Functions Using Fuzzy Logic Designer” on page 2-44

2 Fuzzy Inference System Modeling

2-34

Get Started Using Fuzzy Logic Designer
After you open the Fuzzy Logic Designer app, you can:

• Open an existing fuzzy inference system (FIS) from the MATLAB workspace or a FIS file (*.fis).
• Create a template FIS structure based on the number of input and output variables for your

application.
• Create a FIS based on input and output data.

After you open a FIS or create a new FIS structure, you must configure your system by defining:

• Membership functions for the input and output variables. For more information, see “Define
Membership Functions Using Fuzzy Logic Designer” on page 2-44.

• Fuzzy rules. For more information, see “Define Fuzzy Rules Using Fuzzy Logic Designer” on page
2-54.

After configuring your FIS, you can analyze its behavior within the app. For more information, see
“Analyze Fuzzy System Using Fuzzy Logic Designer” on page 2-61.

For an example that shows how to create, configure, and analyze a fuzzy inference system, see “Build
Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15.

 Get Started Using Fuzzy Logic Designer

2-35

Open Existing FIS
You can open an existing FIS from MATLAB workspace or a FIS file.

To open a FIS from the MATLAB workspace, in the Open from Workspace drop-down list, select the
FIS.

To open a FIS from a FIS file (*.fis), click Browse. Then, in the Open Fuzzy Inference System
dialog box, browse to the folder that contains the file, select the file, and click Open.

Create Template FIS Structure
You can create a template FIS structure for any of the supported FIS types.

• Type-1 Mamdani system
• Type-2 Mamdani system
• Type-1 Sugeno system
• Type-2 Sugeno system

If your application has two input variables and one output variable, in the Getting Started dialog box,
under Template Fuzzy Inference Systems, click the corresponding type of FIS that you want to
create.

2 Fuzzy Inference System Modeling

2-36

If your application has more than two inputs or more than one output, in the Getting Started dialog
box, under General Fuzzy Inference Systems, click Custom FIS.

In the Custom System dialog box, select the type of FIS that you want to create and specify the FIS
name and the number of input and output variables.

When you create a template FIS structure, each input variable has three triangular membership
functions. For Mamdani systems, each output variable also has three triangular membership
functions. For Sugeno systems, each output variable has three constant membership functions.

Each input and output variable has a default range of 0 through 1.

Create FIS from Data

If you have input/output data that spans the operating ranges for your system variables, you can
create a FIS based on clusters derived from this data. To create a FIS from data, in the Getting
Started dialog box, under General Fuzzy Inference Systems, click FIS from Data.

 Get Started Using Fuzzy Logic Designer

2-37

In the Create System from Data dialog box, select the input and output data using the Input data
and Output data drop-down lists, respectively. Each list displays any valid numerical arrays available
in the MATLAB workspace.

When you select data consider the following:

• Input data must be an N-column numerical array, where N is the number of FIS inputs.
• Output data must be an M-column array, where M is the number of FIS outputs.
• When using the grid partition clustering method, the output data must have one column. If you

specify data with more than one column for grid partitioning, the app uses only the first column as
the output data.

• The input and output data arrays must have the same number of rows.

2 Fuzzy Inference System Modeling

2-38

Then, select the type of clustering using the Clustering method drop-down list.

FCM Clustering

You can generate a Mamdani or Sugeno fuzzy system using membership functions derived from data
clusters found using FCM clustering of input and output data.

• Each input and output variable contains one membership function for each cluster.
• Input variables use Gaussian membership functions.
• For Mamdani systems, the output variables use Gaussian membership functions.
• For Sugeno systems, the output variables use linear membership functions.

To configure the FCM clustering, use the options shown in the following table.

Parameter Description
System type Fuzzy inference system type, specified as one of the

following values.

• Sugeno Type-1
• Mamdani Type-1

Number of clusters Number of clusters to create, specified as auto or an
integer greater than 1. When you specify auto, the app
estimates the number of clusters using subtractive
clustering.

Exponent Exponent for the fuzzy partition matrix, specified as a
scalar greater than 1. This option controls the amount of
fuzzy overlap between clusters, with larger values
indicating a greater degree of overlap.

Maximum iterations Maximum number of FCM iterations, specified as a
positive integer.

Minimum improvement Minimum improvement in the objective function between
two consecutive iterations, specified as a positive scalar.

Distance Metric Method for computing distance between data points and
cluster centers, specified as one of the following values.

• Euclidean — Compute distance using a Euclidean
distance metric, which corresponds to the classical
FCM algorithm.

• Mahalanobis — Compute distance using a
Mahalanobis distance metric, which corresponds to the
Gustafson-Kessel FCM algorithm.

For more information on the FCM clustering algorithm, see “Fuzzy Clustering” on page 4-2.

Grid Partition

You can generate input membership functions by uniformly partitioning the input variable ranges,
and create a single-output Sugeno fuzzy system with one membership function for each possible input
variable combination. You can specify the membership function type for the input and output
variables.

 Get Started Using Fuzzy Logic Designer

2-39

To configure the FCM clustering, use the options shown in the following table.

Parameter Description
Input membership function type Input membership function type. For more

information on the types of membership
functions, see “Foundations of Fuzzy Logic” on
page 1-7.

Number Number of membership functions to use for input
variables, specified as an integer greater than 1.

Output membership function type Output membership function type, specified as
either Linear or Constant.

By default, the app uses the same membership function settings for all input variables. However, you
can use a different membership function number and type for each input variable. To do so, clear the
Use same membership function settings for each input parameter.

Subtractive Clustering

You can generate a Sugeno fuzzy system using membership functions derived from data clusters
found using subtractive clustering of input and output data.

• Each input and output variable contains one membership function for each cluster.
• Input variables use Gaussian membership functions.
• Output variables use linear membership functions.

Each input and output variable contains one membership function for each cluster. For more
information on the subtractive clustering algorithm, see subclust.

To configure the clustering, use the options shown in the following table.

2 Fuzzy Inference System Modeling

2-40

Parameter Description
Cluster influence range Range of influence of the cluster center for each input

and output assuming the data falls within a unit
hyperbox, specified as one of the following values.

• Scalar value in the range [0 1] — Use the same
influence range for all inputs and outputs.

• Vector — Use different influence ranges for each
input and output.

Specifying a smaller range of influence usually creates
more and smaller data clusters.

Data scale Data scale factors for normalizing input and output data
into a unit hyperbox, specified as a 2-by-N array, where
N is the total number of inputs and outputs. Each
column specifies the minimum value in the first row and
the maximum value in the second row for the
corresponding input or output data set.

When the data scale is auto, the app uses the actual
minimum and maximum values in the data to be
clustered.

Squash factor Squash factor for scaling the range of influence of
cluster centers, specified as a positive scalar. A smaller
squash factor reduces the potential for outlying points to
be considered as part of a cluster, which usually creates
more and smaller data clusters.

Accept ratio Acceptance ratio, defined as a fraction of the potential of
the first cluster center, above which another data point
is accepted as a cluster center, specified as a scalar
value in the range [0 1]. The acceptance ratio must be
greater than the rejection ratio.

Reject ratio Rejection ratio, defined as a fraction of the potential of
the first cluster center, below which another data point
is rejected as a cluster center, specified as a scalar value
in the range [0 1]. The rejection ratio must be less than
acceptance ratio.

Custom cluster centers Custom cluster centers, specified as a C-by-N array,
where C is the number of clusters and N is the total
number of inputs and outputs.

To automatically compute cluster centers, set the custom
centers to [].

Automatically Generate Rules
When you create a FIS, you can automatically populate the rule base. To do so, before creating the
FIS, select Generate rules automatically. By default, this option is selected.

 Get Started Using Fuzzy Logic Designer

2-41

What rules are generated depend on how you create the FIS.

Rules for FIS Template Structure

When you generate rules for a FIS template structure, the app adds an AND-based rule for each
possible combination of input membership functions. For example, the following figure shows the
nine generated rules for a two-input system where each input variable has three membership
functions.

For all of the generated rules, the default consequent is the first membership function of the first
output variable.

FIS from Data

When you create a FIS from data, the generated rules depend on the type of clustering you select for
creating your FIS.

• Grid partitioning — One AND-based rule for each input membership function combination. The
consequent of each rule corresponds to a different output membership function. For example, the
following figure shows the four generated rules for a two-input system where each input variable
has two membership functions.

2 Fuzzy Inference System Modeling

2-42

• FCM or subtractive clustering — One AND-based rule for each fuzzy cluster. Each rule uses the
cluster-specific membership function from each input and output variable. For example, the
following figure shows the rules for a FIS with four clusters generated using FCM clustering.

See Also
Fuzzy Logic Designer

Related Examples
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15
• “Define Fuzzy Rules Using Fuzzy Logic Designer” on page 2-54
• “Define Membership Functions Using Fuzzy Logic Designer” on page 2-44

 Get Started Using Fuzzy Logic Designer

2-43

Define Membership Functions Using Fuzzy Logic Designer
Once you add a variable to your fuzzy inference system (FIS) using Fuzzy Logic Designer, you can
define the membership functions for that variable.

Add MFs
To add membership functions to a given variable, select the variable in the System Browser or click
the variable in the Fuzzy Inference System document. In the Property Editor, the app shows the
input variable and membership function properties.

To add an MF, on the Design tab, in the Add Components gallery, click MF.

In the System Browser, the app adds an MF with a default configuration to the selected variable.
You can view the properties of the MF in the table of the Property Editor

2 Fuzzy Inference System Modeling

2-44

You can also create a copy of an existing MF. To do so, in the System Browser, under the variable,
right-click the membership function and select Add a copy.

The app creates a new MF with the same properties as the original MF and a modified name.

Distribute MFs Across Variable Range

New MFs added to a variable have default properties. You can configure the values of these MFs
manually. For more information, see “Configure MFs” on page 2-48.

You can also automatically distribute the existing MFs across the variable range. For example, the
following figure shows three triangular membership function with the same default parameters.

 Define Membership Functions Using Fuzzy Logic Designer

2-45

To distribute these MFs across the variable range, click Evenly Distribute MFs.

2 Fuzzy Inference System Modeling

2-46

View MFs
To view a plot of the membership functions for a given variable, first select the variable in the
System Browser. Then, open the Membership Function Editor document.

 Define Membership Functions Using Fuzzy Logic Designer

2-47

You can view the properties of the MFs in the Property Editor.

Configure MFs
You can edit the properties of an MF in the Property Editor. The types of MFs available for a
variable and the MF properties depend on the type of FIS that you are designing.

Type-1 MFs

The following variables use type-1 MFs.

• Input and output variables of a type-1 Mamdani FIS
• Input variables of a type-1 Sugeno FIS

To configure a type-1 MF, specify the following properties.

• Name — Membership function name
• Type — Membership function type
• Parameters — Membership function parameters

You can specify the built-in type-1 MFs in the following table.

Type Description More Information
Generalized bell Generalized bell-shaped membership

function
gbellmf

Gaussian Gaussian membership function gaussmf
Two-sided
Gaussian

Gaussian combination membership
function

gauss2mf

Triangular Triangular membership function trimf
Trapezoidal Trapezoidal membership function trapmf

2 Fuzzy Inference System Modeling

2-48

Type Description More Information
Linear S-shaped Linear s-shaped saturation

membership function
linsmf

Linear Z-shaped Linear z-shaped saturation
membership function

linzmf

Sigmoidal Sigmoidal membership function sigmf
Difference of
sigmoids

Difference between two sigmoidal
membership functions

dsigmf

Product of
sigmoids

Product of two sigmoidal membership
functions

psigmf

Z-shaped Z-shaped membership function zmf
Pi-shaped Pi-shaped membership function pimf
S-shaped S-shaped membership function smf

You can also specify custom MFs. For more information, see “Build Fuzzy Systems Using Custom
Functions” on page 2-86.

Type-2 MFs

The following variables use type-2 MFs.

• Input and output variables of a type-2 Mamdani FIS
• Input variables of a type-2 Sugeno FIS

To configure a type-2 MF, specify the following properties.

• Name — Membership function name
• Type — Membership function type
• Upper Parameters — Upper membership function parameters
• Lower Scale — Lower membership function scale factor
• Lower Lag — Lower membership function delay factor, which defines the point at which the lower

membership function value starts increasing from zero based on the value of the upper
membership function. For example, a lag value of 0.1 indicates that the lower membership
function becomes positive when the upper membership function has a membership value of 0.1

 Define Membership Functions Using Fuzzy Logic Designer

2-49

A type-2 MF consists of a type-1 upper MF and a scaled lower MF. The Type and Upper Parameters
properties define the upper MF and correspond to the Type and Parameters properties of a type-1
MF.

For more information on type-2 MFs, see “Type-2 Fuzzy Inference Systems” on page 2-8.

Sugeno Output MFs

For the output variables of type-1 and type-2 Sugeno systems, you can specify the following types of
MFs.

• Constant — The location of the singleton MF in the output range is a constant value.
• Linear — The location of the singleton MF in the output range is a linear function of the input

values.

For these membership functions, you can specify the following parameters.

• Name — Membership function name
• Type — Membership function type
• Parameters — Membership function parameters

2 Fuzzy Inference System Modeling

2-50

For more information on Sugeno systems, see “Sugeno Fuzzy Inference Systems” on page 2-3.

Interactively Edit MFs

You can also interactively adjust the properties of a built-in type-1 or type-2 MF. To do so, in the
Membership Function Editor, first click the MF. Then, you can modify the MF by dragging the
control points.

 Define Membership Functions Using Fuzzy Logic Designer

2-51

Interactively editing a Sugeno output MF or a custom MF is not supported.

Delete MFs
To delete an MF from a variable, in the System Browser, under the variable, right-click the
membership function and select Delete.

2 Fuzzy Inference System Modeling

2-52

When you delete an MF from a variable, any rules that contain that variable are also deleted.

See Also
Fuzzy Logic Designer

Related Examples
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15
• “Get Started Using Fuzzy Logic Designer” on page 2-35
• “Define Fuzzy Rules Using Fuzzy Logic Designer” on page 2-54
• “Analyze Fuzzy System Using Fuzzy Logic Designer” on page 2-61

 Define Membership Functions Using Fuzzy Logic Designer

2-53

Define Fuzzy Rules Using Fuzzy Logic Designer
Once you create a fuzzy inference system (FIS) using Fuzzy Logic Designer and define the input
and output variables along with their respective membership functions, you can create a fuzzy rule
base for your system.

Each if-then rule in a fuzzy system has two components.

• Antecedent — The if portion of the rule, which specifies the input variable linguistic terms
• Consequent — The then portion of the rule, which specifies the output variable linguistic terms

For more information on fuzzy rule structure, see “Foundations of Fuzzy Logic” on page 1-7.

Once you define your rules, you can analyze the behavior of your FIS, including the rule inference
process. For more information, see “Analyze Fuzzy System Using Fuzzy Logic Designer” on page 2-
61.

Add Rules
To add a rule to your FIS, first open the Rule Editor document.

To add a rule, click . The app adds a default rule to the rule table and shows the rule properties in
the Property Editor. You can then edit the rule properties using the Property Editor.

2 Fuzzy Inference System Modeling

2-54

You can copy an existing rule by selecting the rule in the Rule Editor and clicking .

You can also add a rule by selecting either the FIS name or Rules in the System Browser. Then, on
the Design tab, in the Add Components gallery, click Rule.

 Define Fuzzy Rules Using Fuzzy Logic Designer

2-55

Add All Possible Rules

You can add AND-based rules to your FIS for all possible input combinations using one of the
following methods:

• In the Rule Editor, click Add All Possible Rules.

2 Fuzzy Inference System Modeling

2-56

• Select the FIS name or Rules in the System Browser. Then, in the Add Components gallery,
click Add All Rules.

Edit Rules
To configure a rule, first select the rule in the System Browser or the Rule Editor, which displays
the rule in the Property Editor.

 Define Fuzzy Rules Using Fuzzy Logic Designer

2-57

To define the rule antecedent, first specify the connection operator. To do so, set the Connection
parameter to one of the following values.

• And — Connect the input linguistic terms using an AND operation.
• Or — Connect the input linguistic terms using an OR operation.

Then, under If, select a linguistic term for each input variable. To do so, in the right-hand drop-down
list, select a membership function name. To ignore an input variable, select none.

Then, indicate whether to apply a NOT operation to the selected membership function. To apply a
NOT operation, in the left-hand drop-down list, select is not. Otherwise, select is.

Similarly, under Then configure each output variable in the consequent.

Typically, you weight the importance of all the rules in a FIS equally. However, you can decrease the
relative weighting of a rule. To do so, specify a value for the Weight parameter that is less than 1.

Delete Rules

To delete a rule from your FIS, in the Rule Editor, select the rule and click

Alternatively, in the System Browser, under Rules, right-click the rule and select Delete.

2 Fuzzy Inference System Modeling

2-58

To delete all of the rules from your FIS, in the Rule Editor, click Clear All Rules.

Alternatively, in the System Browser, right-click Rules, and select Delete all rules.

See Also
Fuzzy Logic Designer

 Define Fuzzy Rules Using Fuzzy Logic Designer

2-59

Related Examples
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15
• “Get Started Using Fuzzy Logic Designer” on page 2-35
• “Define Membership Functions Using Fuzzy Logic Designer” on page 2-44
• “Analyze Fuzzy System Using Fuzzy Logic Designer” on page 2-61

2 Fuzzy Inference System Modeling

2-60

Analyze Fuzzy System Using Fuzzy Logic Designer
Once you define the membership functions and rule base of your fuzzy inference system (FIS),
whether by manual construction or tuning, you can analyze your design using the following
documents.

• Control Surface — Plot the output values for all combinations of two input variables.
• Rule Inference — Specify input values and view the inference diagram and resulting output

value.
• System Validation — Compare FIS output values to corresponding reference validation data.
• Error Distribution — View the distribution of FIS output errors for different input combinations

based on reference validation data.

To open these documents, on the Design tab, select the corresponding icon in the Simulation
gallery.

You can export your analysis results to the MATLAB workspace for further analysis. For more
information, see “Export FIS and Simulation Data from Fuzzy Logic Designer” on page 2-71.

When analyzing your FIS, you can configure the resolution of the output variable universe of
discourse. To do so, set the Number of Samples parameter. This parameter is not supported for
Sugeno systems.

Control Surface
The Control Surface document shows the output values from the active FIS design for all possible
combinations of two input variables.

 Analyze Fuzzy System Using Fuzzy Logic Designer

2-61

In the Axes section, select the input and output variables using the corresponding drop-down menus.

In the Mesh Points section, you can specify the plot resolution along the X and Y axes. For a
smoother plot, specify larger resolution values.

If your system has more than two inputs, you must specify a reference value for each input variable
not shown in the plot. To do so, specify the Reference Inputs parameter. For example, the following
figure shows a reference input for a three-input system for which the first and second variables are
used in the control surface plot.

2 Fuzzy Inference System Modeling

2-62

For each variable that is used in the control surface plot, specify a reference value of NaN.

You can also view a control surface for a single input variable. In this case, in the Axes section, in the
X drop-down list, select the input variable and, in the Y drop-down list, selectnone. Then, specify the
reference values for all unused input variables using the Reference Inputs parameter.

For example, the following figure shows a control surface for a two-input system where the output is
plotted against the first input variable.

 Analyze Fuzzy System Using Fuzzy Logic Designer

2-63

Rule Inference
In the Rule Inference document, you specify values for your input variables, inspect the inference
process, and view the resulting output value produced by the active FIS design.

For more information on the fuzzy inference process for different FIS types, see:

• For type-1 Mamdani systems, see “Fuzzy Inference Process” on page 1-19.
• For type-1 Sugeno systems, see “Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2.
• For type-2 systems, see “Type-2 Fuzzy Inference Systems” on page 2-8.

To select input values, in the Rule Inference document, you can specify the Input values
parameter. Alternatively, you can drag the input bars

2 Fuzzy Inference System Modeling

2-64

The preceding figure shows the Rule Inference document for a type-1 Mamdani system.

The fuzzified inputs activate the second and third rules. The firing strengths of these rules are
applied to the output variable. When the resulting output membership functions are aggregated and
defuzzified, the final output value is 21.7.

The following figure shows the same inference process for a type-2 Mamdani system. In this case, the
fuzzified inputs generate firing strengths for both the upper and lower membership functions.

 Analyze Fuzzy System Using Fuzzy Logic Designer

2-65

System Validation
To validate your FIS designs, you can compare output values to corresponding reference validation
data.

The System Validation document shows simulation results for all designs that you select in the
Design Browser. To select a FIS design, select the corresponding entry in the Compare column.

2 Fuzzy Inference System Modeling

2-66

To perform system validation for your FIS, you must first specify reference input and output data. For
more information, see “Specify Validation Data” on page 2-69.

Using the System Validation document, you can view plots of:

• Reference input values. Select the inputs to plot in the Reference Inputs table.
• FIS output values and the corresponding reference output values. Select the outputs to plot in the

Outputs table.
• Output prediction errors, which are the differences between the output and reference output

values. To view the prediction errors, select the Prediction errors parameter. You can view the
root mean square error (RMSE) for each output in the legend of the prediction error plot.

To view corresponding numerical values from across all the plots, move your mouse over any of the
plot lines.

 Analyze Fuzzy System Using Fuzzy Logic Designer

2-67

Error Distribution
The Error Distribution document is a graphical representation of the output error for the active FIS
design as compared to reference output data.

For a multi-output FIS, in the Calculate drop-down list, select the output for which you want to
analyze the error distribution.

To analyze the error distribution for your FIS, you must first specify reference input and output data.
For more information, see “Specify Validation Data” on page 2-69.

Using the Error Distribution document, you can:

• Find input regions for which your FIS produces a less-accurate model of the data, which results in
larger output errors.

2 Fuzzy Inference System Modeling

2-68

• Find input regions where you have fewer data points

For example, the following figure shows the error distribution for a tipping system with two inputs,
service quality and food quality. The FIS performs well for most of the input space. However, there
are significant errors in the upper-right region of the plot, which corresponds to situations where
both the service and food have a high quality rating. In this case:

• If you manually created the FIS, you should add or update rules for this input condition.
• If you tuned the FIS from data, you might need more training data that covers this input region.

Specify Validation Data
The System Validation and Error Distribution analysis documents require reference validation
data.

To select validation data, on the Design tab:

 Analyze Fuzzy System Using Fuzzy Logic Designer

2-69

• In the Input Data drop-down list, select the reference input data.
• In the Output Data drop-down list, select the reference output data.

For both input and output data, you can select previously imported data, such as training data from
tuning, or data from the MATLAB workspace.

The Input Data and Output Data drop-down lists show only data that is compatible with the input
and output configurations of your FIS.

• The input validation data must be a numerical array where the number of columns is equal to the
number of input variables in your FIS.

• The output validation data must be a numerical array where the number of columns is equal to the
number of output variables in your FIS.

• The input data and output data arrays must have the same number of rows.

See Also
Fuzzy Logic Designer

Related Examples
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15
• “Define Fuzzy Rules Using Fuzzy Logic Designer” on page 2-54
• “Define Membership Functions Using Fuzzy Logic Designer” on page 2-44

2 Fuzzy Inference System Modeling

2-70

Export FIS and Simulation Data from Fuzzy Logic Designer
Once you design or tune your FIS using Fuzzy Logic Designer, you can export the active and stored
designs to:

• The MATLAB workspace
• FIS files (*.fis)

You can also export simulation results for your FIS designs.

Export FIS to Workspace
To export a FIS design to the MATLAB workspace, in Fuzzy Logic Designer, select Export > Export
Fuzzy Inference System to Workspace.

The Export Fuzzy Inference System to Workspace dialog box lists the active FIS design along with
any stored designs.

 Export FIS and Simulation Data from Fuzzy Logic Designer

2-71

In the Export column, select one or more systems that you want to export.

In the Export As column, specify names for the workspace variables.

Click Export.

The app saves the FIS to the MATLAB workspace as one of the following types of objects.

• mamfis — Type-1 Mamdani FIS
• sugfis — Type-1 Sugeno FIS
• mamfistype2 — Type-2 Mamdani FIS
• sugfistype2 — Type-2 Sugeno FIS

Once you export your FIS, you can:

• Perform additional simulations at the command line using the evalfis function.
• Simulate your system in Simulink using the Fuzzy Logic Controller block.
• Generate code for your system. For more information, see “Deployment”.

Save FIS to File
You can save your FIS between Fuzzy Logic Designer sessions using a FIS file. To do so, in Fuzzy
Logic Designer, under Save, select the fuzzy inference system.

You can select the current active design or any of the stored designs.

2 Fuzzy Inference System Modeling

2-72

In the Save Fuzzy Inference System dialog box, specify a filename and location, and click Save.

Export Simulation Data
After evaluating your FIS using Fuzzy Logic Designer, you can export the following simulation
results to the MATLAB workspace for the active and stored designs.

• Control surface data points
• Rule inference data

In Fuzzy Logic Designer, select Export > Export Simulation Results to Workspace.

The Export Simulation Results to Workspace dialog box lists the simulation results that are available
for export.

 Export FIS and Simulation Data from Fuzzy Logic Designer

2-73

The Simulation Results column indicates the FIS designs and the type of simulation data using one
of the following entries, where <design> indicates the FIS design.

• <design>_ControlSurfaceData — Control surface data points
• <design>_RuleInferenceData — Rule inference data
• <design>_ErrorDistributionData — Error distribution data
• SystemValidationData — System validation data for all selected designs

In the Export column, select one or more simulation results that you want to export.

In the Export As column, specify names for the workspace variables.

Click Export.

The app saves each selected simulation result to the MATLAB workspace as a structure, as defined in
the following table.

Simulation Data Description
Control surface data points Data points for the most recent plot displayed in the Control Surface

document for the active design, exported as a structure with the
following fields.

• X — Data values for first selected input
• Y — Data values for second selected input
• Z — Data values for selected output

The dimensions of X, Y, and Z match the Mesh Points selections in the
Control Surface document.

This control surface data matches the data points generated by the
gensurf function.

2 Fuzzy Inference System Modeling

2-74

Simulation Data Description
Rule inference data Rule inference results for the active design, including intermediate

computed values, exported as a structure with the following fields.

• inputs — Input values
• numSamplePoints — Number of sample points in output fuzzy

sets. To specify this value, on the Design tab, set the Number of
Samples parameter.

• outputs — Output values
• fuzzifiedInputs — Fuzzified input values
• ruleOutputs — Rule outputs calculated by applying the rule firing

strengths to the output membership function using the FIS
implication method

• aggregatedOutputs — Aggregated output calculated by
combining the rule outputs using the FIS aggregation method

• rulefiringStrengths — Rule firing strengths calculated by
applying the rule connection operator to the values of the fuzzified
inputs

The dimensions of the fuzzifiedInputs, ruleOutputs,
aggregatedOutputs, and rulefiringStrengths fields depend on
the type of FIS you exported. For more information, see evalfis.

Error distribution data Error distribution data for the active design, exported as a structure
with the following fields, each containing a numeric array.

• refInput — Validation input data specified on the Design in the
Input Data drop-down list

• refOutput — Validation input data specified on the Design in the
Output Data drop-down list

• simOutput — FIS outputs from processing the values in refInput
• simError — Simulation error, which is the difference between the

values in refOutput and simOutput

 Export FIS and Simulation Data from Fuzzy Logic Designer

2-75

Simulation Data Description
System validation data System validation data for all selected FIS designs, exported as a

structure with the following fields, each containing a numeric array.

• refInput — Validation input data specified on the Design in the
Input Data drop-down list

• refOutput — Validation input data specified on the Design in the
Output Data drop-down list

• simOutput — FIS outputs from processing the values in
refInput, returned as a structure with one field for each selected
FIS design

• simError — Simulation error, which is the difference between the
values in refOutput and simOutput, , returned as a structure
with one field for each selected FIS design

A selected design is a design for which you select the Compare option
in the Design Browser.

For the active FIS design, the exported simulation results correspond to the simulation settings, such
as the input values in the Rule Inference document or the selected axes in the Control Surface
document, currently defined in the app.

For a stored FIS design, the exported simulation results correspond to the simulation settings when
the design was most recently active in the app. In other words, the exported results for a stored
design may not use the simulation settings currently defined in the app.

See Also
Fuzzy Logic Designer

Related Examples
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15
• “Get Started Using Fuzzy Logic Designer” on page 2-35
• “Define Fuzzy Rules Using Fuzzy Logic Designer” on page 2-54
• “Define Membership Functions Using Fuzzy Logic Designer” on page 2-44
• “Analyze Fuzzy System Using Fuzzy Logic Designer” on page 2-61

2 Fuzzy Inference System Modeling

2-76

Build Fuzzy Systems at the Command Line

You can construct a fuzzy inference system (FIS) at the MATLAB® command line. This method is an
alternative to interactively designing your FIS using Fuzzy Logic Designer. For an example that
interactively builds a FIS, see “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15.

To demonstrate the command-line functionality for creating and viewing fuzzy inference systems, this
example uses a solution to the tipping problem defined in “Fuzzy vs. Nonfuzzy Logic” on page 1-30.
For this problem, tipping behavior is defined using the following three rules.

1 If the service is poor or the food is rancid, then the tip is cheap.
2 If the service is good, then the tip is average.
3 If the service is excellent or the food is delicious, then the tip is generous.

While this example creates a type-1 Mamdani FIS, the general methods used apply to creating type-2
and Sugeno systems as well. For more information on the different types of fuzzy systems, see
“Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2 and “Type-2 Fuzzy Inference Systems”
on page 2-8.

FIS Objects

You represent fuzzy inference systems using mamfis, sugfis, mamfistype2, and sugfistype2
objects. These objects contain all the fuzzy inference system information, including the variable
names, membership function definitions, and fuzzy inference methods. Each FIS is itself a hierarchy
of objects. The following objects are used within a fuzzy system.

• fisvar objects represent both input and output variables.
• fismf objects represent membership functions within each input and output variable. Type-2

fuzzy systems use fismftype2 objects to represent membership functions.
• fisrule objects represent fuzzy rules that map inputs to outputs.

Load the FIS.

fis = readfis("tipper.fis");

View all the information for a FIS by directly listing its properties.

fis

fis =
 mamfis with properties:

 Name: "tipper"
 AndMethod: "min"
 OrMethod: "max"
 ImplicationMethod: "min"
 AggregationMethod: "max"
 DefuzzificationMethod: "centroid"
 DisableStructuralChecks: 0
 Inputs: [1x2 fisvar]
 Outputs: [1x1 fisvar]
 Rules: [1x3 fisrule]

 Build Fuzzy Systems at the Command Line

2-77

 See 'getTunableSettings' method for parameter optimization.

You can access the properties of the objects within a FIS object using dot notation. For example, view
the fisvar object for first input variable.

fis.Inputs(1)

ans =
 fisvar with properties:

 Name: "service"
 Range: [0 10]
 MembershipFunctions: [1x3 fismf]

Also, view the membership functions for this variable.

fis.Inputs(1).MembershipFunctions

ans =
 1x3 fismf array with properties:

 Type
 Parameters
 Name

 Details:
 Name Type Parameters
 ___________ _________ __________

 1 "poor" "gaussmf" 1.5 0
 2 "good" "gaussmf" 1.5 5
 3 "excellent" "gaussmf" 1.5 10

System Display Functions

To get a high-level view of your fuzzy system from the command line, use the plotfis, plotmf, and
gensurf functions. plotfis displays the whole system as a block diagram.

plotfis(fis)

2 Fuzzy Inference System Modeling

2-78

The plotmf function plots all the membership functions associated with a given variable. For
example, view the membership functions for the first input variable.

plotmf(fis,"input",1)

 Build Fuzzy Systems at the Command Line

2-79

Similarly, view the membership functions for the first output variable.

plotmf(fis,"output",1)

2 Fuzzy Inference System Modeling

2-80

plotmf does not support viewing the output membership functions for Sugeno systems.

The gensurf function plots the output of the FIS for any one or two input variables.

gensurf(fis)

 Build Fuzzy Systems at the Command Line

2-81

View the rules of the fuzzy system.

fis.Rules

ans =
 1x3 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 Details:
 Description
 __

 1 "service==poor | food==rancid => tip=cheap (1)"
 2 "service==good => tip=average (1)"
 3 "service==excellent | food==delicious => tip=generous (1)"

Build Fuzzy Inference System

As an alternative to using the Fuzzy Logic Designer app, you can construct a FIS entirely from the
command line.

First, create a Mamdani FIS, specifying its name.

2 Fuzzy Inference System Modeling

2-82

fis = mamfis("Name","tipper");

Add input variables for the service and food quality.

fis = addInput(fis,[0 10],"Name","service");
fis = addInput(fis,[0 10],"Name","food");

Add membership functions for each of the service quality levels using Gaussian membership
functions. For more information on Gaussian membership functions, see gaussmf.

fis = addMF(fis,"service","gaussmf",[1.5 0],"Name","poor");
fis = addMF(fis,"service","gaussmf",[1.5 5],"Name","good");
fis = addMF(fis,"service","gaussmf",[1.5 10],"Name","excellent");

Add membership functions for each of the food quality levels using trapezoidal membership functions.
For information on trapezoidal membership functions, see trapmf.

fis = addMF(fis,"food","trapmf",[-2 0 1 3],"Name","rancid");
fis = addMF(fis,"food","trapmf",[7 9 10 12],"Name","delicious");

Add the output variable for the tip, and add three triangular membership functions for the tip levels.
For more information on triangular membership functions, see trimf.

fis = addOutput(fis,[0 30],"Name","tip");
fis = addMF(fis,"tip","trimf",[0 5 10],"Name","cheap");
fis = addMF(fis,"tip","trimf",[10 15 20],"Name","average");
fis = addMF(fis,"tip","trimf",[20 25 30],"Name","generous");

Specify the following three rules for the FIS as a numeric array.

1 If (service is poor) or (food is rancid), then (tip is cheap).
2 If (service is good), then (tip is average).
3 If (service is excellent) or (food is delicious), then (tip is generous).

Each row of the array contains one rule in the following format.

• Column 1 - Index of membership function for first input
• Column 2 - Index of membership function for second input
• Column 3 - Index of membership function for output
• Column 4 - Rule weight (from 0 to 1)
• Column 5 - Fuzzy operator (1 for AND, 2 for OR)

For the membership function indices, indicate a NOT condition using a negative value. For more
information on fuzzy rule specification, see addRule.

ruleList = [1 1 1 1 2;
 2 0 2 1 1;
 3 2 3 1 2];

Add the rules to the FIS.

fis = addRule(fis,ruleList);

Alternatively, you can create the fuzzy inference system using a combination of dot notation and
fisvar, fismf, and fisrule objects. This method is not a good practice for most applications.

 Build Fuzzy Systems at the Command Line

2-83

However, you can use this approach when your application requires greater flexibility in constructing
and modifying your FIS.

Create the fuzzy inference system.

fis = mamfis("Name","tipper");

Add and configure the first input variable. In this case, create a default fisvar object and specify its
properties using dot notation.

fis.Inputs(1) = fisvar;
fis.Inputs(1).Name = "service";
fis.Inputs(1).Range = [0 10];

Define the membership functions for the first input variable. For each MF, create a fismf object, and
set the properties using dot notation.

fis.Inputs(1).MembershipFunctions(1) = fismf;
fis.Inputs(1).MembershipFunctions(1).Name = "poor";
fis.Inputs(1).MembershipFunctions(1).Type = "gaussmf";
fis.Inputs(1).MembershipFunctions(1).Parameters = [1.5 0];
fis.Inputs(1).MembershipFunctions(2) = fismf;
fis.Inputs(1).MembershipFunctions(2).Name = "good";
fis.Inputs(1).MembershipFunctions(2).Type = "gaussmf";
fis.Inputs(1).MembershipFunctions(2).Parameters = [1.5 5];
fis.Inputs(1).MembershipFunctions(3) = fismf;
fis.Inputs(1).MembershipFunctions(3).Name = "excellent";
fis.Inputs(1).MembershipFunctions(3).Type = "gaussmf";
fis.Inputs(1).MembershipFunctions(3).Parameters = [1.5 10];

Add and configure the second input variable. For this variable, specify the name and range when you
create the fisvar object.

fis.Inputs(2) = fisvar([0 10],"Name","food");

Specify the membership functions for the second input. For each MF, specify the name, type, and
parameters when you create the fismf object.

fis.Inputs(2).MembershipFunctions(1) = fismf("trapmf",[-2 0 1 3],...
 "Name","rancid");
fis.Inputs(2).MembershipFunctions(2) = fismf("trapmf",[7 9 10 12],...
 "Name","delicious");

Similarly, add and configure the output variable and its membership functions.

fis.Outputs(1) = fisvar([0 30],"Name","tip");

In this case, specify the output membership functions using a vector of fismf objects.

mf1 = fismf("trimf",[0 5 10],"Name","cheap");
mf2 = fismf("trimf",[10 15 20],"Name","average");
mf3 = fismf("trimf",[20 25 30],"Name","generous");
fis.Outputs(1).MembershipFunctions = [mf1 mf2 mf3];

Create the rules for the fuzzy system. For each rule create a fisrule object. Then, specify the rules
using a vector of these objects. When creating a fisrule object using numeric values, you must
specify the number of inputs variables.

2 Fuzzy Inference System Modeling

2-84

rule1 = fisrule([1 1 1 1 2],2);
rule2 = fisrule([2 0 2 1 1],2);
rule3 = fisrule([3 2 3 1 2],2);
rules = [rule1 rule2 rule3];

Before adding the rules to your fuzzy system, you must update them using the data in the FIS object.
Update the rules using the update function, and add them the fuzzy system.

rules = update(rules,fis);
fis.Rules = rules;

When constructing your fuzzy system, you can also specify custom membership functions and
inference functions. For more information, see “Build Fuzzy Systems Using Custom Functions” on
page 2-86.

Evaluate Fuzzy Inference System

To evaluate the output of a fuzzy system for a given input combination, use the evalfis function. For
example, evaluate fis using input variable values of 1 and 2.

evalfis(fis,[1 2])

ans = 5.5586

You can also evaluate multiple input combinations using an array where each row represents one
input combination.

inputs = [3 5;
 2 7;
 3 1];
evalfis(fis,inputs)

ans = 3×1

 12.2184
 7.7885
 8.9547

See Also
mamfis | sugfis | plotfis | plotmf | gensurf | evalfis

More About
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15

 Build Fuzzy Systems at the Command Line

2-85

Build Fuzzy Systems Using Custom Functions
When you build a fuzzy inference system (FIS), you can replace the built-in membership functions or
inference functions with custom functions. You can create a FIS that uses these custom functions in
the Fuzzy Logic Designer app and at the MATLAB command line.

For more information on creating a FIS, see “Build Fuzzy Systems Using Fuzzy Logic Designer” on
page 2-15 and “Build Fuzzy Systems at the Command Line” on page 2-77.

Define Custom Membership Functions
You can create custom membership functions and use them in the fuzzy inference process. The values
of these functions must lie between 0 and 1. For more information on the properties of membership
functions, see “Membership Functions” on page 1-9.

When you create a custom membership function, you must save it in your current working folder or
on the MATLAB path. You can then design a FIS that uses the custom membership function at the
command line or in the Fuzzy Logic Designer app.

The following is an example of a multistep custom membership function custmf1, that depends on
eight parameters between 0 and 10.

% Function to generate a multi-step custom membership function
% using 8 parameters for the input argument x
function out = custmf1(x,params)

for i = 1:length(x)
 if x(i) < params(1)
 y(i) = params(1);
 elseif x(i) < params(2)
 y(i) = params(2);
 elseif x(i) < params(3)
 y(i) = params(3);
 elseif x(i) < params(4)
 y(i) = params(4);
 elseif x(i) < params(5)
 y(i) = params(5);
 elseif x(i) < params(6)
 y(i) = params(6);
 elseif x(i) < params(7)
 y(i) = params(7);
 elseif x(i) <= params(8)
 y(i) = params(8);
 else
 y(i) = 0;
 end
end

% Scale the output to the range [0,1].
out = 0.1*y';
end

2 Fuzzy Inference System Modeling

2-86

Specify Custom Membership Functions Using Fuzzy Logic Designer

To use a custom membership function when designing a FIS using the Fuzzy Logic Designer app,
first select the corresponding variable in the System Browser. Then, in the Add Components
gallery, click MF.

 Build Fuzzy Systems Using Custom Functions

2-87

The app adds a default triangular membership function to the selected variable.

In the Property Editor:

1 In the Range field, specify an input range that matches the expected range of your membership
function.

2 In the Name column, specify a name for the membership function.
3 In the Type column, specify the name of the custom membership function.
4 In the Parameters column, enter the membership function parameters.

To verify the appearance of your membership function, select the membership function in the System
Browser and open the Membership Function Editor.

2 Fuzzy Inference System Modeling

2-88

The following features are not supported for custom membership functions:

• Interactively adjusting the parameters of a custom membership function in the Membership
Function Editor.

• Automatically distributing custom membership functions across a variable range.

Define Custom Inference Functions
Depending on the type of FIS you design, you can replace the built-in AND, OR, implication,
aggregation, and defuzzification inference methods with custom functions. For each type of inference
function, the following table lists the FIS objects that support using custom functions.

Inference Function Supported FIS Objects
AND All FIS objects
OR
Implication • Type-1 Mamdani FIS

• Type-2 Mamdani FISAggregation
Defuzzification Type-1 Mamdani FIS

 Build Fuzzy Systems Using Custom Functions

2-89

Inference Function Supported FIS Objects
Type-reduction • Type-2 Mamdani FIS

• Type-2 Sugeno FIS

When you create a custom inference function, you must save it in your current working folder or on
the MATLAB path. You can then design a FIS that uses the custom inference function at the command
line or in the Fuzzy Logic Designer app.

Create Custom AND and OR Functions

The custom AND and OR inference functions must operate column-wise on a matrix in the same way
as the MATLAB functions max, min, and prod. For example:

• For a row or column vector x, min returns the minimum element.

x = [1 2 3 4];
min(x)

ans =
 1

• For a matrix x, min returns a row vector containing the minimum element from each column.

x = [1 2 3 4;5 6 7 8;9 10 11 12];
min(x)

ans =
 1 2 3 4

For N-D matrices, min operates along the first non-singleton dimension.
• For two arrays, x and y, min returns an array that is same size as the larger of x or y with the

minimum elements from x or y. Either of the input arguments can be a scalar.

x = [1 2; 3 4];
y = [2 2; 2 2];
min(x,y)

ans =
 1 2
 2 2

In Fuzzy Logic Toolbox software:

• AND inference functions perform an element by element matrix operation, similar to the command
min(x,y).

• OR inference functions perform an element by element matrix operation, similar to the command
max(x,y).

Create Custom Implication Functions

Custom implication functions must operate in the same way as the MATLAB functions max, min, and
prod. Your custom implication function must be a T-norm fuzzy intersection operation. For more
information, see “Additional Fuzzy Operators” on page 1-14.

An implication function must support either one or two inputs because the software calls the function
in two ways.

2 Fuzzy Inference System Modeling

2-90

• To calculate the output fuzzy set values using the firing strength of all the rules and the
corresponding output membership functions. In this case, the software calls the implication
function using two inputs as follows.

impvals = customimp(w,outputmf)

• w — Firing strength of multiple rules, specified as an Nr-by-Ns matrix. Here, Nr is the number
of rules and Ns is the number of samples of the output membership functions.

w(:,j) = w(:,1) for all j. w(i,1) is the firing strength of the ith rule.
• outputmf — Output membership function values, specified as an Nr-by-Ns matrix.

outputmf(i,:) contains the data of the ith output membership function.
• To calculate the output fuzzy value using the firing strength of a single rule and the corresponding

output membership function, for a given sample. In this case, the software calls the implication
function using one input, similar to the following example:

impval = customimp([w outputmf])

w and outputmf are scalar values representing the firing strength of a rule and the corresponding
output membership function value, for a given sample.

The following is an example of a bounded product custom implication function with binary mapping
T a, b = max 0, a + b− 1 . [1]

function y = customimp(x1,x2)

if nargin == 1
 % x1 assumed to be nonempty column vector or matrix.
 minVal = zeros(1,size(x1,2));
 y = ones(1,size(x1,2));

 for i = 1:size(x1,1)
 y = max(minVal,sum([y;x1(i,:)])-1);
 end
else
 % x1 and x2 assumed to be nonempty matrices.
 minVal = zeros(1,size(x1,2));
 y = zeros(size(x1));

 for i = 1:size(x1,1)
 y(i,:) = max(minVal,sum([x1(i,:);x2(i,:)])-1);
 end
end

end

Note Custom implication functions are not supported for Sugeno systems.

Create Custom Aggregation Functions

The custom aggregation functions must operate in the same way as the MATLAB functions max, min,
and prod and must be of the form y = customagg(x). Your custom implication function must be a
T-conorm (S-norm) fuzzy intersection operation. For more information, see “Additional Fuzzy
Operators” on page 1-14.

 Build Fuzzy Systems Using Custom Functions

2-91

x is an Nv-by-Nr matrix, which is the list of truncated output functions returned by the implication
method for each rule. Nv is the number of output variables and Nr is the number of rules. The output
of the aggregation method is one fuzzy set for each output variable.

The following is an example of a bounded sum custom aggregation function with binary mapping
S a, b = min a + b, 1 . [1]

function y = customagg(x)

maxVal = ones(1,size(x,2));
y = zeros(1,size(x,2));

for i = 1:size(x,1)
 y = min(maxVal,sum([y;x(i,:)]));
end

end

Note Custom aggregation functions are not supported for Sugeno systems.

Create Custom Defuzzification Functions

Custom defuzzification functions must be of the form y = customdefuzz(x,ymf), where x is the
vector of values in the membership function input range and ymf contains the values of the
membership function for each x value.

The following is an example of a custom defuzzification function.

function defuzzfun = customdefuzz(x,ymf)

total_area = sum(ymf);
defuzzfun = sum(ymf.*x)/total_area;

end

Note Custom defuzzification functions are not supported for Sugeno systems.

Create Custom Type-Reduction Function

For type-2 fuzzy inference systems, you can specify a custom type-reduction function. This function
must be of the form y = customtr(x,umf,lmf), where x is the vector of values in the membership
function input range. umf and lmf are the respective values of the upper and lower membership
function for each x value. The output y is a two-element row vector of centroids [cL,cR].

For more information on type reduction, see “Type-2 Fuzzy Inference Systems” on page 2-8.

By default, type-2 Sugeno systems support only a weighted average form of type reduction. The
following custom type-reduction function implements a weighted sum form of type reduction for a
Sugeno system.

function y = customtr(x,umf,lmf)

y = zeros(1,2);

2 Fuzzy Inference System Modeling

2-92

y(1) = sum(x.*umf);
y(2) = sum(x.*lmf);

end

Specify Custom Inference Functions Using Fuzzy Logic Designer

To use custom inference functions when designing a FIS using the Fuzzy Logic Designer app, first
select the FIS in the System Browser. Then, in the Property Editor, enter the name of the custom
function in the corresponding inference function field.

This table shows the Property Editor field for each type of inference function.

Inference Function Property Editor Field
AND And method
OR Or method
Implication Implication method
Aggregation Aggregation method
Defuzzification Defuzzification method
Type-reduction Type-reduction method

 Build Fuzzy Systems Using Custom Functions

2-93

Specify Custom Inference Functions at Command Line

To use custom inference functions when designing a FIS at the MATLAB command line, set the
corresponding FIS object property to the custom inference function name. For example, the following
command sets the aggregation function of FIS myFIS to the customagg function.

myFIS.AggregationMethod = "customagg";

This table shows the FIS object property for each type of inference function.

Inference Function FIS Object Property
AND AndMethod
OR OrMethod
Implication ImplicationMethod
Aggregation AggregationMethod
Defuzzification DefuzzificationMethod
Type-reduction TypeReductionMethod

Use Custom Functions in Code Generation
You can use custom functions in fuzzy inference systems for which you generate code. For more
information on code generation for fuzzy systems, see “Deploy Fuzzy Inference Systems” on page 6-
2.

If you use a nondouble data type for your generated code, you must propagate the data type from the
input arguments of your custom function to the output argument. For example, the following custom
aggregation function maintains the data type of x in y using the ones and zeros functions with the
'like' argument.

function y = customagg(x)
%#codegen

maxVal = ones(1,size(x,2),'like',x);
y = zeros(1,size(x,2),'like',x);

for i = 1:size(x,1)
 y = min(maxVal,sum([y;x(i,:)]));
end

end

For more information on writing functions that support C/C++ code generation, see “MATLAB
Programming for Code Generation” (MATLAB Coder).

References
[1] Mizumoto, Masaharu. "Pictorial Representations of Fuzzy Connectives, Part II: Cases of

Compensatory Operators and Self-Dual Operators." Fuzzy Sets and Systems 32, no. 1 (August
1989): 45–79. https://doi.org/10.1016/0165-0114(89)90087-0.

2 Fuzzy Inference System Modeling

2-94

See Also
Fuzzy Logic Designer

Related Examples
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15
• “Build Fuzzy Systems at the Command Line” on page 2-77

 Build Fuzzy Systems Using Custom Functions

2-95

Fuzzy Trees
As the number of inputs to a fuzzy system increases, the number of rules increases exponentially. This
large rule base reduces the computational efficiency of the fuzzy system. It also makes the operation
of the fuzzy system harder to understand, and it makes the tuning of rule and membership function
parameters more difficult. Because many applications have a limited amounts of training data, a large
rule base reduces the generalizability of tuned fuzzy systems.

To overcome this issue, you can implement a fuzzy inference system (FIS) as a tree of smaller
interconnected FIS objects rather than as a single monolithic FIS object. These fuzzy trees are also
known as hierarchical fuzzy systems because the fuzzy systems are arranged in hierarchical tree
structures. In a tree structure, the outputs of the low-level fuzzy systems are used as inputs to the
high-level fuzzy systems. A fuzzy tree is more computationally efficient and easier to understand than
a single FIS with the same number of inputs.

Types of Hierarchical Structures
There are several fuzzy tree structures that you can use for your application. The following figure
shows commonly used fuzzy tree structures: an incremental, aggregated, or cascaded structure.

Incremental Structure

In an incremental structure, input values are incorporated in multiple stages to refine the output
values in several levels. For example, the previous figure shows a three-level incremental fuzzy tree
having fuzzy inference systems FISi

n, where i indicates the index of a FIS in the nth level. In an
incremental fuzzy tree, i = 1, meaning that each level has only one fuzzy inference system. In the
previous figure, the jth input of the ith FIS in the nth level is shown as input xi jn, whereas the kth
output of the ith FIS in the nth level is shown as input yikn. In the figure, n = 3, j = 1 or 2, and k = 1.

2 Fuzzy Inference System Modeling

2-96

If each input has m membership functions (MFs), each FIS has a complete set of m2 rules. Hence, the
total number of rules is nm2 = 3 × 32 = 27.

The following figure shows a monolithic (n = 1) FIS with four inputs (j=1, 2, 3, 4) and three MFs (m =
3).

In the FIS of this figure, the total number of rules is nm4 = 1 × 34 = 81. Hence, the total number of
rules in an incremental fuzzy tree is linear with the number of input pairs.

Input selection at different levels in an incremental fuzzy tree uses input rankings based on their
contributions to the final output values. The input values that contribute the most are generally used
at the lowest level, while the least influential ones are used at the highest level. In other words, low-
rank input values are dependent on high-rank input values.

In an incremental fuzzy tree, each input value usually contributes to the inference process to a
certain extent, without being significantly correlated with the other inputs. For example, a fuzzy
system forecasts the possibility of buying an automobile using four inputs: color, number of doors,
horse power, and autopilot. The inputs are four distinct automobile features, which can independently
influence a buyer’s decision. Hence, the inputs can be ranked using the existing data to construct a
fuzzy tree, as shown in the following figure.

For an example that illustrates creating an incremental fuzzy tree in MATLAB, see the "Create
Incremental FIS Tree" example on the fistree reference page.

Aggregated Structure

In an aggregated structure, input values are incorporated as groups at the lowest level, where each
input group is fed into a FIS. The outputs of the lower level fuzzy systems are combined (aggregated)
using the higher level fuzzy systems. For example, the following shows a two-level aggregated fuzzy
tree having fuzzy inference systems FISin

n , where in indicates the index of a FIS in the nth level.

 Fuzzy Trees

2-97

In this aggregated fuzzy tree, i1 = 1,2 and i2 = 1. Hence, each level includes a different number of
FIS. The jth input of the inth FIS is shown in the figure as input xin j, and the kth output of the inth FIS
is shown as output yink. In the figure, j = 1,2 and k = 1. In other words, each FIS has two inputs and
one output. If each input has m MFs, then each FIS has a complete set of m2 rules. Hence, the total
number of rules for the three fuzzy systems is 3 m2 = 3 × 32 = 27, which is the same as an
incremental FIS for a similar configuration.

In an aggregated fuzzy tree, input values are naturally grouped together for specific decision-making.
For example, an autonomous robot navigation task combines obstacle avoidance and target reaching
subtasks for collision-free navigation. To achieve the navigation task, the fuzzy tree can use four
inputs: distance to the closest obstacle, angle of the closest obstacle, distance to the target, and angle
of the target. Distances and angles are measured with respect to the current position and heading
direction of the robot. In this case, at the lowest level, the inputs naturally group as shown in the
following figure: obstacle distance and obstacle angle (group 1) and target distance and target angle
(group 2). Two fuzzy systems separately process individual group inputs and then another fuzzy
system combines their outputs to produce a collision-free heading for the robot.

For an example that illustrates creating an aggregated fuzzy tree in MATLAB, see the example Create
Aggregated FIS Tree on the fistree reference page.

Variation on Aggregated Structure

In a variation of the aggregated structure known as parallel structure [1], the outputs of the lowest-
level fuzzy systems are directly summed to generate the final output value. The following figure

2 Fuzzy Inference System Modeling

2-98

shows an example of a parallel fuzzy tree, where outputs of fis1 and fis2 are summed to produce
the final output.

The fistree object does not provide the summing node Σ. Therefore, you must add a custom
aggregation method to evaluate a parallel fuzzy tree. For an example, see the "Create and Evaluate
Parallel FIS Tree" example on the fistree reference page.

Cascaded or Combined Structure

A cascaded structure, also known as combined structure, combines both incremental and aggregated
structures to construct a fuzzy tree. This structure is suitable for a system that includes both
correlated and uncorrelated inputs. The tree groups the correlated inputs in an aggregated structure,
and adds uncorrelated inputs in an incremental structure. The following figure shows an example of a
cascaded tree structure, where the first four inputs are grouped pairwise in an aggregated structure
and the fifth input is added in an incremental structure.

 Fuzzy Trees

2-99

For example, consider the robot navigation task discussed in “Aggregated Structure” on page 2-97.
Suppose that task includes another input, the previous heading of the robot, taken into account to
prevent large changes in the robot heading. You can add this input using the incremental structure of
the following diagram.

For an example that illustrates creating an aggregated fuzzy tree in MATLAB, see the "Create
Cascaded FIS Tree" example on the fistree reference page.

Add or Remove FIS Tree Outputs
When you evaluate a fistree object, it returns results for only the open outputs, which are not
connected to any FIS inputs in the fuzzy tree. You can optionally access other outputs in the tree. For
instance, in the following diagram of an aggregated fuzzy tree, you might want to obtain the output of
fis2 when you evaluate the tree.

You can add such outputs to a fistree object. You can also remove outputs, provided that the fuzzy
tree always has at least one output. For an example, see the "Update FIS Tree Outputs" example on
the fistree reference page.

Use the Same Value for Multiple inputs of FIS Tree
A fistree object allows using the same value for multiple inputs. For instance, in the following
figure, input2 of fis1 and input1 of fis2 use the same value during evaluation.

2 Fuzzy Inference System Modeling

2-100

For an example showing how to construct a FIS tree in this way, see the "Use Same Value for Multiple
Inputs of a FIS Tree" example on the fistree reference page.

Update Fuzzy Inference Systems in FIS Tree
You can add or remove individual FIS elements from a fistree object. When you do so, the software
automatically updates the Connections, Inputs, and Outputs properties of the fistree object.
For an example, see the "Update Fuzzy Inference Systems in a FIS Tree" example on the fistree
reference page.

Tune a Fuzzy Tree
Once you have configured the internal connections in your fuzzy tree, the next step is to tune the
parameters of the tree. For an example, see “Tune FIS Tree for Gas Mileage Prediction” on page 3-
69.

References
[1] Siddique, Nazmul, and Hojjat Adeli. Computational Intelligence: Synergies of Fuzzy Logic, Neural

Networks and Evolutionary Computing. Oxford, UK: John Wiley & Sons Ltd, 2013. https://
doi.org/10.1002/9781118534823.

See Also
fistree

More About
• “Tuning Fuzzy Inference Systems” on page 3-2
• “Tune FIS Tree for Gas Mileage Prediction” on page 3-69

 Fuzzy Trees

2-101

https://doi.org/10.1002/9781118534823
https://doi.org/10.1002/9781118534823

Fuzzy PID Control with Type-2 FIS

This example compares a type-2 fuzzy PID controller with both a type-1 fuzzy PID controller and
conventional PID controller. This example is adapted from [1].

Fuzzy PID Control

This example uses the following fuzzy logic controller (FLC) structure as described in [1]. The output
of the controller (u) is found using the error (e) and the derivative of the error (ė). Using scaling
factors Ce and Cd, inputs e and ė are normalized to E and ΔE, respectively. The normalized ranges for
both inputs are in the range [-1,1]. The fuzzy logic controller also produces a normalized output in the
range [-1,1]. Additional scaling factors C0 and C1 map the fuzzy logic controller output U into u.

This example uses a delayed first-order system G s as the plant model.

G s = Ce−Ls

Ts + 1

Here, C, L, and T are the gain, time delay, and time constant, respectively.

The scaling factors Cd, C0, and C1 are defined as follows, where τc is the closed-loop time constant.

Cd = min T, L
2 × Ce

C0 = 1
C × Ce τc + L

2

C1 = max T, L
2 × C0

The input scaling factorCe is:

Ce ≡
1

r tr − y tr

where r tr and y tr are the reference and system output values at time t = tr. These values
correspond to the nominal operating point of the system.

This example compares the performance of type-1 and type-2 Sugeno fuzzy inference systems (FISs)
using the Fuzzy Logic Controller Simulink® block.

2 Fuzzy Inference System Modeling

2-102

Construct Type-1 FIS

Create a type-1 FIS using sugfis.

fis1 = sugfis;

Add input variables to the FIS.

fis1 = addInput(fis1,[-1 1],'Name','E');
fis1 = addInput(fis1,[-1 1],'Name','delE');

Add three uniformly distributed overlapping triangular membership functions (MFs) to each input.
The MF names stand for negative (N), zero (Z), and positive (P).

fis1 = addMF(fis1,'E','trimf',[-2 -1 0],'Name','N');
fis1 = addMF(fis1,'E','trimf',[-1 0 1],'Name','Z');
fis1 = addMF(fis1,'E','trimf',[0 1 2],'Name','P');
fis1 = addMF(fis1,'delE','trimf',[-2 -1 0],'Name','N');
fis1 = addMF(fis1,'delE','trimf',[-1 0 1],'Name','Z');
fis1 = addMF(fis1,'delE','trimf',[0 1 2],'Name','P');

Plot the input membership functions.

figure
subplot(1,2,1)
plotmf(fis1,'input',1)
title('Input 1')
subplot(1,2,2)
plotmf(fis1,'input',2)
title('Input 2')

 Fuzzy PID Control with Type-2 FIS

2-103

Add the output variable to the FIS.

fis1 = addOutput(fis1,[-1 1],'Name','U');

Add uniformly distributed constant functions to the output. The MF names stand for negative big
(NB), negative medium (NM), zero (Z), positive medium (PM), and positive big (PB).

fis1 = addMF(fis1,'U','constant',-1,'Name','NB');
fis1 = addMF(fis1,'U','constant',-0.5,'Name','NM');
fis1 = addMF(fis1,'U','constant',0,'Name','Z');
fis1 = addMF(fis1,'U','constant',0.5,'Name','PM');
fis1 = addMF(fis1,'U','constant',1,'Name','PB');

Add rules to the FIS. These rules create a proportional control surface.

rules = [...
 "E==N & delE==N => U=NB"; ...
 "E==Z & delE==N => U=NM"; ...
 "E==P & delE==N => U=Z"; ...
 "E==N & delE==Z => U=NM"; ...
 "E==Z & delE==Z => U=Z"; ...
 "E==P & delE==Z => U=PM"; ...
 "E==N & delE==P => U=Z"; ...
 "E==Z & delE==P => U=PM"; ...
 "E==P & delE==P => U=PB" ...
];
fis1 = addRule(fis1,rules);

2 Fuzzy Inference System Modeling

2-104

Plot the control surface.

figure
gensurf(fis1)
title('Control surface of type-1 FIS')

Construct Type-2 FIS

Convert the type-1 FIS, fis1, to a type-2 FIS.

fis2 = convertToType2(fis1);

The type-2 Sugeno system, fis2, uses type-2 membership functions for the input variables and
type-1 membership functions for the output variables.

Define the footprint of uncertainty (FOU) for the input MFs as defined in [1]. To do so, set the lower
MF scaling factor for each MF. For this example, set the lower MF lag values to 0.

scale = [0.2 0.9 0.2;0.3 0.9 0.3];
for i = 1:length(fis2.Inputs)
 for j = 1:length(fis2.Inputs(i).MembershipFunctions)
 fis2.Inputs(i).MembershipFunctions(j).LowerLag = 0;
 fis2.Inputs(i).MembershipFunctions(j).LowerScale = scale(i,j);
 end
end

Plot the type-2 input membership functions.

 Fuzzy PID Control with Type-2 FIS

2-105

figure
subplot(1,2,1)
plotmf(fis2,'input',1)
title('Input 1')
subplot(1,2,2)
plotmf(fis2,'input',2)
title('Input 2')

The FOU adds additional uncertainty to the FIS and produces a nonlinear control surface.

figure
gensurf(fis2)
title('Control surface of type-2 FIS')

2 Fuzzy Inference System Modeling

2-106

Conventional PID Controller

This example compares the fuzzy logic controller performance with that of the following conventional
PID controller.

PID s = Kp +
Ki
s +

Kds
τfs + 1

Here, Kp is proportional gain, Ki is integrator gain, Kd is derivative gain, and τf is the derivative filter
time constant.

Configure Simulation

Define the nominal plant model.

C = 0.5;
L = 0.5;
T = 0.5;
G = tf(C,[T 1],'Outputdelay',L);

Generate the conventional PID controller parameters using pidtune.

pidController = pidtune(G,'pidf');

In this example, the reference (r is a step signal and tr = 0, which results in Ce = 1 as follows.

Ce = 1
r tr − y tr

= 1
1 − 0=1.

 Fuzzy PID Control with Type-2 FIS

2-107

Ce = 1;

To configure the simulation, use the following nominal controller parameters.

tauC = 0.2;

Cd = min(T,L/2)*Ce;
C0 = 1/(C*Ce*(tauC+L/2));
C1 = max(T,L/2)*C0;

To simulate the controllers, use the comparepidcontrollers Simulink model.

model = 'comparepidcontrollers';
load_system(model)

Simulate Nominal Process

Simulate the model at the nominal operating conditions.

out1 = sim(model);

Plot the step response of the system for all three controllers.

plotTitle = ['Nominal: C=' num2str(C) ', L=' num2str(L) ', T=' num2str(T)];
plotOutput(out1,plotTitle)

2 Fuzzy Inference System Modeling

2-108

Obtain the step-response characteristics of the system for each controller. Here, rise time and settling
time are in seconds, overshoot is a percentage of the final value, and the absolute error is integrated
over the step response.

stepResponseTable(out1)

ans=3×4 table
 Rise Time Overshoot Settling Time Absolute Error
 _________ _________ _____________ ______________

 PID 0.62412 11.234 4.5583 1.04
 Type-1 FLC 1.4267 0 4.1023 1.1522
 Type-2 FLC 1.8662 0 5.129 1.282

For the nominal process:

• Both the type-1 and type-2 fuzzy logic controllers outperform the conventional PID controller in
terms of overshoot.

• The conventional PID controller, performs better with respect to rise-time and integral of absolute
error (IAE).

• The type-1 FLC performs better than the type-2 FLC in terms of rise-time, settling-time, and IAE.

Simulate Modified Process

Modify the plant model by increasing the gain, time delay, and time constant values as compared to
the nominal process.

 Fuzzy PID Control with Type-2 FIS

2-109

C = 0.85;
L = 0.6;
T = 0.6;
G = tf(C,[T 1],'Outputdelay',L);

Simulate the model using the updated plant parameters.

out2 = sim(model);

Plot the step response of the system for all three controllers.

plotTitle = ['Modified 1: C=' num2str(C) ',L=' num2str(L) ',T=' num2str(T)];
plotOutput(out2,plotTitle)

Obtain the step-response characteristics of the system for each controller.

stepResponseTable(out2)

ans=3×4 table
 Rise Time Overshoot Settling Time Absolute Error
 _________ _________ _____________ ______________

 PID 0.38464 80.641 29.458 4.7486
 Type-1 FLC 0.47262 24.877 4.6788 1.1137
 Type-2 FLC 0.47262 22.787 3.4561 1.076

For this modified process:

2 Fuzzy Inference System Modeling

2-110

• The conventional PID controller exhibits significant overshoot, larger settling-time, and higher IAE
as compared to the fuzzy logic controllers

• For all performance measures, the type-2 FLC produces the same or superior performance
compared to the type-1 FLC.

Conclusion

Overall, the type-1 FLC produces superior performance for the nominal plant as compared to the
conventional PID controller. The type-2 FLC shows more robust performance for the modified plant.

The robustness of the conventional PID controller can be improved using different methods, such as
prediction or multiple PID controller configurations. On the other hand, the performance of a type-2
FLC can be improved by using a different:

• Rule base
• Number of rules
• FOU

For example, you can create a type-2 FLC that defines the FOU using both the lower MF scaling
factor and lower MF lag.

For fis2, set the lower MF scale and lag values to 0.7 and 0.1, respectively for all input
membership functions.

for i = 1:length(fis2.Inputs)
 for j = 1:length(fis2.Inputs(i).MembershipFunctions)
 fis2.Inputs(i).MembershipFunctions(j).LowerScale = 0.7;
 fis2.Inputs(i).MembershipFunctions(j).LowerLag = 0.1;
 end
end

Plot the updated membership functions.

figure
subplot(1,2,1)
plotmf(fis2,'input',1)
title('Input 1')
subplot(1,2,2)
plotmf(fis2,'input',2)
title('Input 2')

 Fuzzy PID Control with Type-2 FIS

2-111

Simulate the model using the nominal plant, and plot the step responses for the controllers.

C = 0.5;
L = 0.5;
T = 0.5;
G = tf(C,[T 1],'Outputdelay',L);

out4 = sim(model);
close_system(model,0)
plotTitle = ['Nominal: C=' num2str(C) ', L=' num2str(L) ', T=' num2str(T)];
plotOutput(out4,plotTitle)

2 Fuzzy Inference System Modeling

2-112

Obtain the step-response characteristics of the system for each controller.

stepResponseTable(out4)

ans=3×4 table
 Rise Time Overshoot Settling Time Absolute Error
 _________ _________ _____________ ______________

 PID 0.62412 11.234 4.5583 1.04
 Type-1 FLC 1.4267 0 4.1023 1.1522
 Type-2 FLC 1.2179 0 3.8746 1.1087

In this case, the updated FOU of type-2 FLC improves the rise-time of the step response.

However, the lower MF lag values also increase the overshoot in the case of the modified plant.

C = 0.85;
L = 0.6;
T = 0.6;
G = tf(C,[T 1],'Outputdelay',L);

out5 = sim(model);
plotTitle = ['Nominal: C=' num2str(C) ', L=' num2str(L) ', T=' num2str(T)];
plotOutput(out5,plotTitle)

 Fuzzy PID Control with Type-2 FIS

2-113

t = stepResponseTable(out5)

t=3×4 table
 Rise Time Overshoot Settling Time Absolute Error
 _________ _________ _____________ ______________

 PID 0.38464 80.641 29.458 4.7486
 Type-1 FLC 0.47262 24.877 4.6788 1.1137
 Type-2 FLC 0.47262 26.699 4.6812 1.1278

Therefore, to obtain desired step response characteristics, you can vary the lower MF scale and lag
values to find a suitable combination.

You can further improve the fuzzy logic controller outputs using a Mamdani type FIS since it also
provides lower MF scale and lag parameters for output membership functions. However, a Mamdani
type-2 FLC introduces additional computational delay due to the expensive type-reduction process.

References

[1] Mendel, J. M., Uncertain Rule-Based Fuzzy Systems: Introduction and New Directions, Second
Edition, Springer, 2017, pp. 229-234, 600-608.

Local Functions

function plotOutput(out,plotTitle)
figure

2 Fuzzy Inference System Modeling

2-114

plot([0 20],[1 1])
hold on
plot(out.yout{1}.Values)
plot(out.yout{2}.Values)
plot(out.yout{3}.Values)
hold off
grid minor
xlabel('Time (sec)')
ylabel('Output')
title(plotTitle)
legend(["Reference","PID","Type-1 FLC","Type-2 FLC"],'Location',"best")
end

function t = stepResponseTable(out)
s = stepinfo(out.yout{1}.Values.Data,out.yout{1}.Values.Time);
stepResponseInfo(1).RiseTime = s.RiseTime;
stepResponseInfo(1).Overshoot = s.Overshoot;
stepResponseInfo(1).SettlingTime = s.SettlingTime;
stepResponseInfo(1).IAE = out.yout{4}.Values.Data(end);

s = stepinfo(out.yout{2}.Values.Data,out.yout{2}.Values.Time);
stepResponseInfo(2).RiseTime = s.RiseTime;
stepResponseInfo(2).Overshoot = s.Overshoot;
stepResponseInfo(2).SettlingTime = s.SettlingTime;
stepResponseInfo(2).IAE = out.yout{5}.Values.Data(end);

s = stepinfo(out.yout{3}.Values.Data,out.yout{3}.Values.Time);
stepResponseInfo(3).RiseTime = s.RiseTime;
stepResponseInfo(3).Overshoot = s.Overshoot;
stepResponseInfo(3).SettlingTime = s.SettlingTime;
stepResponseInfo(3).IAE = out.yout{6}.Values.Data(end);

t = struct2table(stepResponseInfo,"RowNames",["PID" "Type-1 FLC" "Type-2 FLC"]);
t.Properties.VariableNames{1} = 'Rise Time';
t.Properties.VariableNames{2} = t.Properties.VariableNames{2};
t.Properties.VariableNames{3} = 'Settling Time';
t.Properties.VariableNames{4} = 'Absolute Error';
end

See Also
mamfistype2 | sugfistype2

More About
• “Type-2 Fuzzy Inference Systems” on page 2-8

 Fuzzy PID Control with Type-2 FIS

2-115

Fuzzy Logic Image Processing

This example shows how to use fuzzy logic for image processing. Specifically, this example shows how
to detect edges in an image.

An edge is a boundary between two uniform regions. You can detect an edge by comparing the
intensity of neighboring pixels. However, because uniform regions are not crisply defined, small
intensity differences between two neighboring pixels do not always represent an edge. Instead, the
intensity difference might represent a shading effect.

The fuzzy logic approach for image processing allows you to use membership functions to define the
degree to which a pixel belongs to an edge or a uniform region.

Import RGB Image and Convert to Grayscale

Import the image.

Irgb = imread('peppers.png');

Irgb is a 384 x 512 x 3 uint8 array. The three channels of Irgb (third array dimension) represent
the red, green, and blue intensities of the image.

Convert Irgb to grayscale so that you can work with a 2-D array instead of a 3-D array. To do so, use
the rgb2gray function.

Igray = rgb2gray(Irgb);

figure
image(Igray,'CDataMapping','scaled')
colormap('gray')
title('Input Image in Grayscale')

2 Fuzzy Inference System Modeling

2-116

Convert Image to Double-Precision Data

The evalfis function for evaluating fuzzy inference systems supports only single-precision and
double-precision data. Therefore, convert Igray to a double array using the im2double function.

I = im2double(Igray);

Obtain Image Gradient

The fuzzy logic edge-detection algorithm for this example relies on the image gradient to locate
breaks in uniform regions. Calculate the image gradient along the x-axis and y-axis.

Gx and Gy are simple gradient filters. To obtain a matrix containing the x-axis gradients of I, you
convolve I with Gx using the conv2 function. The gradient values are in the [-1 1] range. Similarly, to
obtain the y-axis gradients of I, convolve I with Gy.

Gx = [-1 1];
Gy = Gx';
Ix = conv2(I,Gx,'same');
Iy = conv2(I,Gy,'same');

Plot the image gradients.

figure
image(Ix,'CDataMapping','scaled')
colormap('gray')
title('Ix')

 Fuzzy Logic Image Processing

2-117

figure
image(Iy,'CDataMapping','scaled')
colormap('gray')
title('Iy')

2 Fuzzy Inference System Modeling

2-118

You can use other filters to obtain the image gradients, such as the Sobel operator or the Prewitt
operator. For information about how you can filter an image using convolution, see “What Is Image
Filtering in the Spatial Domain?” (Image Processing Toolbox)

Alternatively, if you have the Image Processing Toolbox software, you can use the imfilter (Image
Processing Toolbox), imgradientxy (Image Processing Toolbox), or imgradient (Image Processing
Toolbox) functions to obtain the image gradients.

Define Fuzzy Inference System (FIS) for Edge Detection

Create a fuzzy inference system (FIS) for edge detection, edgeFIS.

edgeFIS = mamfis('Name','edgeDetection');

Specify the image gradients, Ix and Iy, as the inputs of edgeFIS.

edgeFIS = addInput(edgeFIS,[-1 1],'Name','Ix');
edgeFIS = addInput(edgeFIS,[-1 1],'Name','Iy');

Specify a zero-mean Gaussian membership function for each input. If the gradient value for a pixel is
0, then it belongs to the zero membership function with a degree of 1.

sx = 0.1;
sy = 0.1;
edgeFIS = addMF(edgeFIS,'Ix','gaussmf',[sx 0],'Name','zero');
edgeFIS = addMF(edgeFIS,'Iy','gaussmf',[sy 0],'Name','zero');

 Fuzzy Logic Image Processing

2-119

sx and sy specify the standard deviation for the zero membership function for the Ix and Iy inputs.
To adjust the edge detector performance, you can change the values of sx and sy. Increasing the
values makes the algorithm less sensitive to the edges in the image and decreases the intensity of the
detected edges.

Specify the intensity of the edge-detected image as an output of edgeFIS.

edgeFIS = addOutput(edgeFIS,[0 1],'Name','Iout');

Specify the triangular membership functions, white and black, for Iout.

wa = 0.1;
wb = 1;
wc = 1;
ba = 0;
bb = 0;
bc = 0.7;
edgeFIS = addMF(edgeFIS,'Iout','trimf',[wa wb wc],'Name','white');
edgeFIS = addMF(edgeFIS,'Iout','trimf',[ba bb bc],'Name','black');

As you can with sx and sy, you can change the values of wa, wb, wc, ba, bb, and bc to adjust the
edge detector performance. The triplets specify the start, peak, and end of the triangles of the
membership functions. These parameters influence the intensity of the detected edges.

Plot the membership functions of the inputs and outputs of edgeFIS.

figure
subplot(2,2,1)
plotmf(edgeFIS,'input',1)
title('Ix')
subplot(2,2,2)
plotmf(edgeFIS,'input',2)
title('Iy')
subplot(2,2,[3 4])
plotmf(edgeFIS,'output',1)
title('Iout')

2 Fuzzy Inference System Modeling

2-120

Specify FIS Rules

Add rules to make a pixel white if it belongs to a uniform region and black otherwise. A pixel is in a
uniform region when the image gradient is zero in both directions. If either direction has a nonzero
gradient, then the pixel is on an edge.

r1 = "If Ix is zero and Iy is zero then Iout is white";
r2 = "If Ix is not zero or Iy is not zero then Iout is black";
edgeFIS = addRule(edgeFIS,[r1 r2]);
edgeFIS.Rules

ans =
 1x2 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 Details:
 Description

 1 "Ix==zero & Iy==zero => Iout=white (1)"
 2 "Ix~=zero | Iy~=zero => Iout=black (1)"

 Fuzzy Logic Image Processing

2-121

Evaluate FIS

Evaluate the output of the edge detector for each row of pixels in I using corresponding rows of Ix
and Iy as inputs.

Ieval = zeros(size(I));
for ii = 1:size(I,1)
 Ieval(ii,:) = evalfis(edgeFIS,[(Ix(ii,:));(Iy(ii,:))]');
end

Plot Results

Plot the original grayscale image.

figure
image(I,'CDataMapping','scaled')
colormap('gray')
title('Original Grayscale Image')

Plot the detected edges.

figure
image(Ieval,'CDataMapping','scaled')
colormap('gray')
title('Edge Detection Using Fuzzy Logic')

2 Fuzzy Inference System Modeling

2-122

See Also
evalfis

More About
• “Build Fuzzy Systems at the Command Line” on page 2-77

 Fuzzy Logic Image Processing

2-123

Fuzzy Inference System Tuning

• “Tuning Fuzzy Inference Systems” on page 3-2
• “Tune Fuzzy Inference System Using Fuzzy Logic Designer” on page 3-6
• “Tune Fuzzy Inference System at the Command Line” on page 3-21
• “Select Rules and Parameters to Tune in Fuzzy Logic Designer” on page 3-31
• “Select FIS Rules and Parameters to Tune at the Command Line” on page 3-36
• “Tune Fuzzy Trees” on page 3-47
• “Configure Tuning Options in Fuzzy Logic Designer” on page 3-52
• “Customize FIS Tuning Process” on page 3-57
• “Tune FIS Tree for Gas Mileage Prediction” on page 3-69
• “Optimize FIS Parameters with K-Fold Cross-Validation” on page 3-82
• “Predict Chaotic Time Series Using Type-2 FIS” on page 3-89
• “Tune Fuzzy Robot Obstacle Avoidance System Using Custom Cost Function” on page 3-102
• “Classify Pixels Using Fuzzy Systems” on page 3-113
• “Autonomous Parking Using Fuzzy Inference System” on page 3-128
• “Design Controller for Artificial Pancreas Using Fuzzy Logic” on page 3-145
• “Explain Black-Box Model Using Fuzzy Support System” on page 3-163
• “Explainable Fuzzy Support System for Black-Box Model of Robot Obstacle Avoidance”

on page 3-186
• “Neuro-Adaptive Learning and ANFIS” on page 3-203
• “Train Adaptive Neuro-Fuzzy Inference Systems” on page 3-207
• “Predict Chaotic Time-Series Using ANFIS” on page 3-219
• “Modeling Inverse Kinematics in a Robotic Arm” on page 3-227
• “Adaptive Noise Cancellation Using ANFIS” on page 3-235
• “Nonlinear System Identification” on page 3-243
• “Gas Mileage Prediction” on page 3-253

3

Tuning Fuzzy Inference Systems
Designing a complex fuzzy inference system (FIS) with a large number of inputs and membership
functions (MFs) is a challenging problem due to the large number of MF parameters and rules. To
design such a FIS, you can use a data-driven approach to learn rules and tune FIS parameters. To
tune a fuzzy system, you can use:

• Fuzzy Logic Designer — Interactively tune FIS rules and parameters
• tunefis — Programmatically tune FIS rules and parameters

Using Fuzzy Logic Toolbox software, you can tune both type-1 and type-2 FISs as well as FIS trees.
For examples, see “Predict Chaotic Time Series Using Type-2 FIS” on page 3-89 and “Tune FIS Tree
for Gas Mileage Prediction” on page 3-69. Tuning FIS trees is not supported in Fuzzy Logic
Designer.

During training, the optimization algorithm generates candidate FIS parameter sets. The fuzzy
system is updated with each parameter set and then evaluated using the input training data.

If you have input/output training data, the cost for each solution is computed based on the difference
between the output of the fuzzy system and the expected output values from the training data. For
examples that uses this approach, see “Tune Fuzzy Inference System Using Fuzzy Logic Designer” on
page 3-6 and Tune Mamdani Fuzzy Inference System on page 3-21.

If you do not have input/output training data, you can specify a custom model and cost function for
evaluating candidate FIS parameter sets. The cost measurement function sends an input to the fuzzy
system and receives the evaluated output. The cost is based on the difference between the evaluated
output and the output expected by the model. For more information and an example that uses this

3 Fuzzy Inference System Tuning

3-2

approach, see “Tune Fuzzy Robot Obstacle Avoidance System Using Custom Cost Function” on page
3-102.

For more information on tuning fuzzy systems see:

• “Select FIS Rules and Parameters to Tune at the Command Line” on page 3-36
• “Tune Fuzzy Trees” on page 3-47
• “Customize FIS Tuning Process” on page 3-57

Tuning Methods
The following table shows the tuning methods supported by the Fuzzy Logic Designer and tunefis
function.

Method Description More Information
Genetic algorithm Population-based global

optimization method that
searches randomly by
mutation and crossover
among population members

“What Is the Genetic Algorithm?”
(Global Optimization Toolbox)

Particle swarm optimization Population-based global
optimization method in which
population members step
throughout a search region

“What Is Particle Swarm
Optimization?” (Global Optimization
Toolbox)

 Tuning Fuzzy Inference Systems

3-3

Method Description More Information
Pattern search Direct-search local

optimization method that
searches a set of points near
the current point to find a
new optimum

“What Is Direct Search?” (Global
Optimization Toolbox)

Simulated annealing A local optimization method
that simulates a heating and
cooling process to that finds
a new optimal point near the
current point

“What Is Simulated Annealing?”
(Global Optimization Toolbox)

Adaptive neuro-fuzzy
inference

Back-propagation algorithm
that tunes membership
function parameters.
Alternatively, you can use the
anfis function.

“Neuro-Adaptive Learning and ANFIS”
on page 3-203

The first four tuning methods require Global Optimization Toolbox software.

Global optimization methods, such as genetic algorithms and particle swarm optimization, perform
better for large parameter tuning ranges. These algorithms are useful for both the rule-learning and
parameter-tuning stages of FIS optimization.

On the other hand, local search methods, such as pattern search and simulated annealing, perform
better for small parameter ranges. If you generate a FIS from training data or a rule base is already
added to a FIS, then these algorithms can produce faster convergence compared to global
optimization methods.

Prevent Overfitting of Tuned System
Data overfitting is a common problem in FIS parameter optimization. When overfitting occurs, the
tuned FIS produces optimized results for the training data set but performs poorly for a test data set.
To overcome the data overfitting problem, a tuning process can stop early based on an unbiased
evaluation of the model using a separate validation dataset.

You can prevent overfitting using k-fold cross validation. For more information and a command-line
example, see “Optimize FIS Parameters with K-Fold Cross-Validation” on page 3-82. You can also
configure k-fold cross validation when setting the tuning options in Fuzzy Logic Designer. For more
information, see “Configure Tuning Options in Fuzzy Logic Designer” on page 3-52.

The ANFIS tuning method does not support k-fold cross validation. Instead, you must specify separate
validation data. For more information, see “Neuro-Adaptive Learning and ANFIS” on page 3-203.

Improve Tuning Results
To improve the performance of your tuned fuzzy systems, consider the following guidelines.

• Use multiple phases in your tuning process. For example, first learn the rules of a fuzzy system,
and then tune input/output MF parameters using the learned rule base.

• Increase the number of iterations in both the rule-learning and parameter-tuning phases. Doing so
increases the duration of the optimization process and can also increase validation error due to

3 Fuzzy Inference System Tuning

3-4

overtuned system parameters with the training data. To avoid overfitting, train your system using
k-fold cross validation.

• Change the clustering technique when you create a FIS from data. Depending on the clustering
technique, the generated rules can differ in their representation of the training data. Hence, the
use of different clustering techniques can affect the tuning performance.

• Change FIS properties. Try changing properties such as the type of FIS, number of inputs, number
of input/output MFs, MF types, and number of rules. A Sugeno system has fewer output MF
parameters (assuming constant MFs) and faster defuzzification. Therefore, for fuzzy systems with
a large number of inputs, a Sugeno FIS generally converges faster than a Mamdani FIS. Small
numbers of MFs and rules reduce the number of parameters to tune, producing a faster tuning
process. Furthermore, a large number of rules might overfit the training data.

• Modify tunable parameter settings for MFs and rules. For example, you can tune the support of a
triangular MF without changing its peak location. Doing so reduces the number of tunable
parameters and can produce a faster tuning process for specific applications. For rules, you can
exclude zero MF indices, which reduces the overall number of rules during the learning phase.

To improve the tuning results for fuzzy trees, consider the following guidelines.

• If you have the corresponding training data, you can separately tune the parameters of each FIS
in a FIS tree. You can then tune all the fuzzy systems together to generalize the parameter values.

• Change FIS tree properties, such as the number of fuzzy systems and the connections between the
fuzzy systems.

• Use different rankings and groupings of the inputs to a FIS tree. For more information about
creating FIS trees, see Fuzzy Trees on page 2-96.

See Also
Apps
Fuzzy Logic Designer

Functions
tunefis | getTunableSettings | genfis

More About
• “Tune Fuzzy Inference System Using Fuzzy Logic Designer” on page 3-6
• “Tune Fuzzy Inference System at the Command Line” on page 3-21
• “Tune FIS Tree for Gas Mileage Prediction” on page 3-69
• “Predict Chaotic Time Series Using Type-2 FIS” on page 3-89

 Tuning Fuzzy Inference Systems

3-5

Tune Fuzzy Inference System Using Fuzzy Logic Designer

This example shows how to tune membership function (MF) and rule parameters of a Mamdani fuzzy
inference system (FIS) at the MATLAB command line. This example uses particle swarm and pattern
search optimization, which require Global Optimization Toolbox software.

For this example, you tune a FIS using a two-step process.

1 Learn the rule base while keeping the input and output MF parameters constant.
2 Tune the parameters of the input and output MFs and rules.

The first step is less computationally expensive due to the small number of rule parameters, and it
quickly converges to a fuzzy rule base during training. In the second step, using the rule base from
the first step as an initial condition provides fast convergence of the parameter tuning process.

For an example that tunes a FIS at the command line, see “Tune Fuzzy Inference System at the
Command Line” on page 3-21.

Load Example Data

This example trains a FIS using automobile fuel consumption data. The goal is for the FIS to predict
fuel consumption in miles per gallon (MPG) using several automobile profile attributes. The training
data is available in the University of California at Irvine Machine Learning Repository and contains
data collected from automobiles of various makes and models.

This example uses the following six input data attributes to predict the output data attribute MPG
with a FIS:

1 Number of cylinders
2 Displacement
3 Horsepower
4 Weight
5 Acceleration
6 Model year

Load the data. Each row of the dataset obtained from the repository represents a different automobile
profile.

[data,name] = loadGasData;

data contains 7 columns, where the first six columns contain the input attribute values. The final
column contains the predicted MPG output. Split data into input and output data sets, X and Y,
respectively.

X = data(:,1:6);
Y = data(:,7);

Partition the input and output data sets into training data (odd-indexed samples) and validation data
(even-indexed samples).

3 Fuzzy Inference System Tuning

3-6

https://www.ics.uci.edu/~mlearn/MLRepository.html

trnX = X(1:2:end,:); % Training input data set
trnY = Y(1:2:end,:); % Training output data set
vldX = X(2:2:end,:); % Validation input data set
vldY = Y(2:2:end,:); % Validation output data set

Initial FIS Structure

To train a FIS, you must first create an initial FIS structure. For this example, load the initial FIS
structure.

load mpgInitialFIS

This FIS has six inputs, one for each automobile profile attribute, and one output, the predicted fuel
consumption.

• Each input has two membership functions (MFs), which results in 26 = 64 input MF combinations.
Therefore, the FIS uses a maximum of 64 rules corresponding to the input MF combinations.

• To improve data generalization beyond the training data, the FIS has 64 MFs for the output
variable. Doing so allows the FIS to use a different output MF for each rule.

• The input and output variables use default triangular MFs, which are uniformly distributed over
the variable ranges.

For more information on creating this FIS structure, see “Tune Fuzzy Inference System at the
Command Line” on page 3-21.

Define Initial FIS Structure
The first step of the tuning process is to define the initial structure of your FIS. When define this
structure, specify:

• Input and output variables with defined ranges.
• Initial membership functions for each variable.
• (optional) Initial rule base

To create your FIS in the app, you can:

• Create a FIS based on your training data. For more information, see “Get Started Using Fuzzy
Logic Designer” on page 2-35.

• Manually build a FIS. For an example, see “Build Fuzzy Systems Using Fuzzy Logic Designer” on
page 2-15.

• Create a FIS at the command line and import It into the app.

For this example, open Fuzzy Logic Designer and import the mpgInitialFIS system from the
MATLAB workspace.

fuzzyLogicDesigner(mpgInitialFIS)

 Tune Fuzzy Inference System Using Fuzzy Logic Designer

3-7

Import Training Data
To select input and output data for tuning, on the Tuning tab:

• In the Input Data drop-down list, under Workspace Data Sets, select trnX.
• In the Output Data drop-down list, under Workspace Data Sets, select trnY.

3 Fuzzy Inference System Tuning

3-8

Learn Rules
To learn the rules for your FIS, first specify the tuning options. Click Tuning Options.

In the Tuning Options dialog box, configure the following tuning options:

• In the Optimization Type section, select Learning.
• In the Method drop-down list, select Particle swarm. Particle swarm optimization is a global

optimization method. Such methods perform better in large parameter tuning ranges as compared
to local optimization methods.

• Set the maximum number of optimization iterations to 20.

• Clear the Use default method options parameter
• Under Method Options: Particle swarm, in the leftmost drop-down list, select Run time

limits. By default, the next drop-down list shows Max Iterations.
• In the text box, enter 20.

• Set the maximum number of rules to generate during learning. Clear the auto parameter and set
the Max number of rules option to 64.

• For reproducible results, set the Random number seed parameter to Initialize Mersenne
Twister generator option.

• Keep the remaining training options at their default values.

 Tune Fuzzy Inference System Using Fuzzy Logic Designer

3-9

Click OK.

To only learn rules without modifying the MF parameters, you must disable the input and output
tunable parameter settings.

• In the System Browser, select fis.
• In the Tunable Parameters section, click Tune None for both the input and output tables.

3 Fuzzy Inference System Tuning

3-10

To train the FIS, on the Tuning tab, click Tune. For this example, learning rules takes several
minutes.

The Tune tab shows the training progress.

• The Convergence Plot document, plots the optimization cost (training error) after each epoch for
both the training and validation data.

• The Convergence Results document shows the ANFIS system properties, the training error and
minimum root mean-squared error results for the training and validation data sets.

The following figure shows the completed training process. The training error decreases throughout
the tuning process. The tuning stops after the maximum number of iterations is reached.

 Tune Fuzzy Inference System Using Fuzzy Logic Designer

3-11

The final root mean-squared error (RMSE) cost value for the tuned FIS is 4.452 MPG.

To accept the training results, click Accept.

The app adds the tuned FIS fis_tuned to the Design Browser and sets this FIS as the active
design.

Select the fis_tuned row in the Design Browser. Click the FIS name and rename the FIS
fis_learned

To validate the performance of the tuned FIS, compare its performance to the validation data.

To select validation data, on the Design tab:

• In the Input Data drop-down list, under Workspace Data Sets, select vldX.
• In the Output Data drop-down list, under Workspace Data Sets, select vldY.

3 Fuzzy Inference System Tuning

3-12

To ensure that the first untuned FIS is not included in any system validation, in the Design Browser,
clear the corresponding entry in the Compare column.

Click System Validation.

The System Validation document shows the input values, reference output values, and FIS output
values.

• To view just the reference and FIS output values, click Unselect All for the Reference Inputs
table.

• To view the error between the reference and FIS output values, select Prediction errors.

 Tune Fuzzy Inference System Using Fuzzy Logic Designer

3-13

The FIS output tracks the reference output well.

The bottom plot shows the output error. The legend for this plot displays an RMSE of 4.315 MPG for
the validation data, which is comparable to the RMSE for the training data.

Tune MF and Rule Parameters
To further improve the FIS performance, you can tune the MF and rule parameters of fis_learned.
To do so, first specify the tuning options.

In Fuzzy Logic Designer, on the Tune tab, click Tuning Options.

In the Tuning Options dialog box, configure the following tuning options:

• In the Optimization Type section, select Tuning.

3 Fuzzy Inference System Tuning

3-14

• In the Method drop-down list, select Pattern search. Particle swarm optimization is a local
optimization method which provides that converges quickly for the parameter tuning.

• Set the maximum number of optimization iterations to 60.

• Under Method Options: Pattern search, in the leftmost drop-down list, select Run time
limits. By default, the next drop-down list shows Max Iterations.

• In the text box, enter 60.
• To improve the pattern search results, use a complete poll.

• Under Method Options: Pattern search, click +. The app adds a new option row.
• In this row, in the leftmost drop-down list, select Poll settings
• In the next drop-down list, select Do a complete poll.
• Select the checkbox.

• Keep the remaining training options at their previous values.

 Tune Fuzzy Inference System Using Fuzzy Logic Designer

3-15

Click OK.

To tune the MF and rule parameters, you must enable the corresponding tunable parameter settings.

• In the System Browser, select fis_learned.
• In the Tunable Parameters section, click Tune All for both the input and output tables.
• In the rule table, all the rule parameters are already selected.

3 Fuzzy Inference System Tuning

3-16

To train the FIS, on the Tuning tab, click Tune. For this example, tuning parameters takes
approximately 5 minutes.

The following figure shows the completed training process. The training error decreases throughout
the tuning process. The tuning stops after the maximum number of iterations is reached.

 Tune Fuzzy Inference System Using Fuzzy Logic Designer

3-17

The final root mean-squared error (RMSE) cost value for the tuned FIS is 3.337 MPG.

To accept the training results, click Accept.

The app adds the tuned FIS fis_learned_tuned to the Design Browser and sets this FIS as the
active design.

Rename this FIS to fis_tuned.

Open the System Validation document. The plots update to show the validation results for
fis_tuned.

3 Fuzzy Inference System Tuning

3-18

The results are similar to the results for fis_learned. In the Prediction Errors plot, the RMSE for
fis_tuned is 3.556 MPG. Tuning the MF and rule parameters has improved the performance of the
tuned FIS.

Export Tuned FIS
To save your FIS for further analysis and development, you can either export it to the MATLAB
workspace or save it to a FIS file. For this example, save the FIS to a file.

On the Design tab, under Save, select fis_tuned.

 Tune Fuzzy Inference System Using Fuzzy Logic Designer

3-19

In the Save Fuzzy Inference System window, specify a file name and click Save.

See Also
Apps
Fuzzy Logic Designer

Related Examples
• “Configure Tuning Options in Fuzzy Logic Designer” on page 3-52
• “Tune Fuzzy Inference System at the Command Line” on page 3-21

3 Fuzzy Inference System Tuning

3-20

Tune Fuzzy Inference System at the Command Line

This example shows how to tune membership function (MF) and rule parameters of a Mamdani fuzzy
inference system (FIS) at the MATLAB® command line. This example uses particle swarm and
pattern search optimization, which require Global Optimization Toolbox™ software.

For an example that tunes a FIS using the Fuzzy Logic Designer app, see “Tune Fuzzy Inference
System Using Fuzzy Logic Designer” on page 3-6.

Automobile fuel consumption prediction in miles per gallon (MPG) is a typical nonlinear regression
problem. It uses several automobile profile attributes to predict fuel consumption. The training data
is available in the University of California at Irvine Machine Learning Repository and contains data
collected from automobiles of various makes and models.

This example uses the following six input data attributes to predict the output data attribute MPG
with a FIS:

1 Number of cylinders
2 Displacement
3 Horsepower
4 Weight
5 Acceleration
6 Model year

Prepare Data

Load the data. Each row of the dataset obtained from the repository represents a different automobile
profile.

[data,name] = loadGasData;

Remove leading and trailing whitespace from the attribute names.

name = strtrim(string(name));

data contains 7 columns, where the first six columns contain the following input attributes.

• Number of cylinders
• Displacement
• Horsepower
• Weight
• Acceleration
• Model year

The seventh column contains the output attribute, MPG.

Create separate input and output data sets, X and Y, respectively.

X = data(:,1:6);
Y = data(:,7);

 Tune Fuzzy Inference System at the Command Line

3-21

https://www.ics.uci.edu/~mlearn/MLRepository.html

Partition the input and output data sets into training data (odd-indexed samples) and validation data
(even-indexed samples).

trnX = X(1:2:end,:); % Training input data set
trnY = Y(1:2:end,:); % Training output data set
vldX = X(2:2:end,:); % Validation input data set
vldY = Y(2:2:end,:); % Validation output data set

Extract the range of each data attribute, which you will use for input/output range definition during
FIS construction.

dataRange = [min(data)' max(data)'];

Construct FIS using Data Attribute Ranges

Create a Mamdani FIS for tuning.

fisin = mamfis;

Add input and output variables to the FIS, where each variable represents one of the data attributes.
For each variable, use the corresponding attribute name and range.

To reduce the number of rules, use two MFs for each input variable, which results in 26 = 64 input
MF combinations. Therefore, the FIS uses a maximum of 64 rules corresponding to the input MF
combinations.

To improve data generalization beyond the training data, use 64 MFs for the output variable. Doing
so allows the FIS to use a different output MF for each rule.

Both input and output variables use default triangular MFs, which are uniformly distributed over the
variable ranges.

for i = 1:6
 fisin = addInput(fisin,dataRange(i,:),'Name',name(i),'NumMFs',2);
end
fisin = addOutput(fisin,dataRange(7,:),'Name',name(7),'NumMFs',64);

View the FIS structure. Initially, the FIS has zero rules. The rules of the system are found during the
tuning process.

figure
plotfis(fisin)

3 Fuzzy Inference System Tuning

3-22

Tune FIS with Training Data

Tuning is performed in two steps.

1 Learn the rule base while keeping the input and output MF parameters constant.
2 Tune the parameters of the input/output MFs and rules.

The first step is less computationally expensive due to the small number of rule parameters, and it
quickly converges to a fuzzy rule base during training. In the second step, using the rule base from
the first step as an initial condition provides fast convergence of the parameter tuning process.

Learn Rules

To learn a rule base, first specify tuning options using a tunefisOptions object. Since the FIS
allows a large number of output MFs (used in rule consequents), use a global optimization method
(genetic algorithm or particle swarm). Such methods perform better in large parameter tuning
ranges as compared to local optimization methods (pattern search and simulation annealing). For this
example, tune the FIS using the particle swarm optimization method ('particleswarm').

To learn new rules, set the OptimizationType to 'learning'. Restrict the maximum number of
rules to 64. The number of tuned rules can be less than this limit, since the tuning process removes
duplicate rules.

options = tunefisOptions('Method','particleswarm',...
 'OptimizationType','learning', ...
 'NumMaxRules',64);

 Tune Fuzzy Inference System at the Command Line

3-23

If you have Parallel Computing Toolbox™ software, you can improve the speed of the tuning process
by setting options.UseParallel to true. If you do not have Parallel Computing Toolbox software,
set options.UseParallel to false.

Set the maximum number of iterations to 20. To reduce training error in the rule learning process,
you can increase the number of iterations. However, using too many iterations can overtune the FIS
to the training data, increasing the validation errors.

options.MethodOptions.MaxIterations = 20;

Since particle swarm optimization uses random search, to obtain reproducible results, initialize the
random number generator to its default configuration.

rng('default')

Tune the FIS using the specified tuning data and options.

Learning rules using the tunefis function takes approximately 5 minutes. For this example, enable
tuning by setting runtunefis to true. To load pretrained results without running tunefis, you can
set runtunefis to false.

runtunefis = false;

Parameter settings can be empty when learning new rules. For more information, see tunefis.

if runtunefis
 fisout1 = tunefis(fisin,[],trnX,trnY,options); %#ok<UNRCH>
else
 tunedfis = load('tunedfismpgprediction.mat');
 fisout1 = tunedfis.fisout1;
 fprintf('Training RMSE = %.3f MPG\n',calculateRMSE(fisout1,trnX,trnY));
end

Training RMSE = 4.452 MPG

The Best f(x) column shows the training root-mean-squared-error (RMSE).

View the structure of the tuned FIS, fisout1.

plotfis(fisout1)

3 Fuzzy Inference System Tuning

3-24

The learning process produces a set of new rules for the FIS. For example, view the descriptions of
the first three rules.

[fisout1.Rules(1:3).Description]'

ans = 3x1 string
 "Cylinder==mf2 & Disp==mf2 & Power==mf2 & Weight==mf2 & Year==mf2 => MPG=mf5 (1)"
 "Cylinder==mf1 & Power==mf2 & Weight==mf2 & Acceler==mf2 & Year==mf1 => MPG=mf63 (1)"
 "Cylinder==mf2 & Disp==mf1 & Acceler==mf2 => MPG=mf28 (1)"

The learned system should have similar RMSE performance for both the training and validation data
sets. To calculate the RMSE for the validation data set, evaluate fisout1 using validation input data
set vldX. To hide run-time warnings during evaluation, set all the warning options to none.

Calculate the RMSE between the generated output data and the validation output data set vldY.

plotActualAndExpectedResultsWithRMSE(fisout1,vldX,vldY)

 Tune Fuzzy Inference System at the Command Line

3-25

Since the training and validation errors are similar, the learned system does not overfit the training
data.

Tune All Parameters

After learning the new rules, tune the input/output MF parameters along with the parameters of the
learned rules. To obtain the tunable parameters of the FIS, use the getTunableSettings function.

[in,out,rule] = getTunableSettings(fisout1);

To tune the existing FIS parameter settings without learning new rules, set the OptimizationType
to 'tuning'.

options.OptimizationType = 'tuning';

Since the FIS already learned rules using the training data, use a local optimization method for fast
convergence of the parameter values. For this example, use the pattern search optimization method
('patternsearch').

options.Method = 'patternsearch';

Tuning the FIS parameters takes more iterations than the previous rule-learning step. Therefore,
increase the maximum number of iterations of the tuning process to 60. As in the first tuning stage,
you can reduce training errors by increasing the number of iterations. However, using too many
iterations can overtune the parameters to the training data, increasing the validation errors.

3 Fuzzy Inference System Tuning

3-26

options.MethodOptions.MaxIterations = 60;

To improve pattern search results, set method option UseCompletePoll to true.

options.MethodOptions.UseCompletePoll = true;

Tune the FIS parameters using the specified tunable settings, training data, and tuning options.

Tuning parameter values with tunefis function takes approximately 5 minutes. To load pretrained
results without running tunefis, you can set runtunefis to false.

if runtunefis
 rng('default') %#ok<UNRCH>
 fisout = tunefis(fisout1,[in;out;rule],trnX,trnY,options);
else
 fisout = tunedfis.fisout;
 fprintf('Training RMSE = %.3f MPG\n',calculateRMSE(fisout,trnX,trnY));
end

Training RMSE = 2.903 MPG

At the end of the tuning process, some of the tuned MF shapes are different than the original ones.

figure
plotfis(fisout)

Check Performance

Validate the performance of the tuned FIS, fisout, using the validation input data set vldX.

 Tune Fuzzy Inference System at the Command Line

3-27

Compare the expected MPG obtained from the validation output data set vldY and actual MPG
generated using fisout. Compute the RMSE between these results.

plotActualAndExpectedResultsWithRMSE(fisout,vldX,vldY);

Tuning the FIS parameters improves the RMSE compared to the results from the initial learned rule
base. Since the training and validation errors are similar, the parameters values are not overtuned.

Conclusion

You can further improve the training error of the tuned FIS by:

• Increasing number of iterations in both the rule-learning and parameter-tuning phases. Doing so
increases the duration of the optimization process and can also increase validation error due to
overtuned system parameters with the training data.

• Using global optimization methods, such as ga and particleswarm, in both rule-learning and
parameter-tuning phases. ga and particleswarm perform better for large parameter tuning
ranges since they are global optimizers. On the other hand, patternsearch and
simulannealbnd perform better for small parameter ranges since they are local optimizers. If a
FIS is generated from training data with genfis or a rule base is already added to a FIS using
training data, then patternsearch and simulannealbnd may produce faster convergence as
compared to ga and particleswarm. For more information on these optimization methods and
their options, see ga (Global Optimization Toolbox), particleswarm (Global Optimization
Toolbox), patternsearch (Global Optimization Toolbox), and simulannealbnd (Global
Optimization Toolbox).

3 Fuzzy Inference System Tuning

3-28

• Changing the FIS properties, such as the type of FIS, number of inputs, number of input/output
MFs, MF types, and number of rules. For fuzzy systems with a large number of inputs, a Sugeno
FIS generally converges faster than a Mamdani FIS since a Sugeno system has fewer output MF
parameters (if constant MFs are used) and faster defuzzification. Small numbers of MFs and
rules reduce the number of parameters to tune, producing a faster tuning process. Furthermore, a
large number of rules may overfit the training data. In general, for larger fuzzy systems, a FIS tree
can produce similar performance with a smaller number of rules as compared to a single FIS. For
an example, see “Tune FIS Tree for Gas Mileage Prediction” on page 3-69.

• Modifying tunable parameter settings for MFs and rules. For example, you can tune the support of
a triangular MF without changing its peak location. Doing so reduces the number of tunable
parameters and can produce a faster tuning process for specific applications. For rules, you can
exclude zero MF indices by setting the AllowEmpty tunable setting to false, which reduces the
overall number of rules during the learning phase.

Local Functions

function plotActualAndExpectedResultsWithRMSE(fis,x,y)

% Calculate RMSE bewteen actual and expected results
[rmse,actY] = calculateRMSE(fis,x,y);

% Plot results
figure
subplot(2,1,1)
hold on
bar(actY)
bar(y)
bar(min(actY,y),'FaceColor',[0.5 0.5 0.5])
hold off
axis([0 200 0 60])
xlabel("Validation input dataset index"),ylabel("MPG")
legend(["Actual MPG" "Expected MPG" "Minimum of actual and expected values"],...
 'Location','NorthWest')
title("RMSE = " + num2str(rmse) + " MPG")

subplot(2,1,2)
bar(actY-y)
xlabel("Validation input dataset index"),ylabel("Error (MPG)")
title("Difference Between Actual and Expected Values")

end

function [rmse,actY] = calculateRMSE(fis,x,y)

% Specify options for FIS evaluation
persistent evalOptions
if isempty(evalOptions)
 evalOptions = evalfisOptions("EmptyOutputFuzzySetMessage","none", ...
 "NoRuleFiredMessage","none","OutOfRangeInputValueMessage","none");
end

% Evaluate FIS
actY = evalfis(fis,x,evalOptions);

% Calculate RMSE
del = actY - y;

 Tune Fuzzy Inference System at the Command Line

3-29

rmse = sqrt(mean(del.^2));

end

See Also
tunefis | getTunableSettings | genfis

More About
• “Tune Fuzzy Inference System Using Fuzzy Logic Designer” on page 3-6
• “Tune FIS Tree for Gas Mileage Prediction” on page 3-69

3 Fuzzy Inference System Tuning

3-30

Select Rules and Parameters to Tune in Fuzzy Logic Designer
When you tune a fuzzy inference system (FIS) using the Fuzzy Logic Designer app you must specify
which rules and parameters you want to tune. You can perform the following tuning tasks in the app.

• Tune membership function (MF) parameters for input and output variables
• Tune the antecedent and consequent parameters of fuzzy rules
• Learn fuzzy rules

For an example of tuning a FIS using Fuzzy Logic Designer, see “Tune Fuzzy Inference System
Using Fuzzy Logic Designer” on page 3-6.

Tune MF Parameters
For both type-1 and type-2 FISs, you can specify the tunable parameters for the input and output MFs
and tune the values of the selected parameters. You can tune the parameters for any combination of
input and output MFs.

To select MF parameters for tuning, while on the Tuning tab, first select a membership function in
the System Browser.

Then, in the Tunable Parameters section, select the parameters to tune.

To tune a parameter, select the corresponding row in the Tune column. You can also enable or disable
the tuning for all the parameters in the table by clicking either Tune All or Tune None, respectively.

 Select Rules and Parameters to Tune in Fuzzy Logic Designer

3-31

You can specify a tuning range for each parameter using the Minimum and Maximum columns.

To enable or disable all the MF parameters for a given variable, in the System Browser select either
Inputs or Outputs. Then, in the Tunable Parameters section, select or clear the corresponding
entry in the Tune column.

Tune Rule Parameters
In addition to tuning membership function parameters, you can tune the antecedent and consequent
parameters of the rules in a fuzzy system. You can also simultaneously tune both rule and MF
parameters.

To select MF parameters for tuning, while on the Tuning tab, first select a rule in the System
Browser.

3 Fuzzy Inference System Tuning

3-32

Then, in the Tunable Parameters section, select the parameters to tune.

• To tune an antecedent parameter, select the corresponding row in the Tune column of the
Antecedent table.

• To tune a consequent parameter, select the corresponding row in the Tune column of the
Consequent table.

You can also enable or disable the tuning for all the parameters in each table by clicking either Tune
All or Tune None, respectively.

For each rule parameter, you can specify the following settings:

• Allow NOT — Enable this parameter to allow NOT logic for the corresponding variable.
• Allow Empty —Enable this parameter to allow a rule to ignore the corresponding variable (don't

care condition).

 Select Rules and Parameters to Tune in Fuzzy Logic Designer

3-33

Learn Rules
You can learn new rules for a FIS up to a specified maximum number of rules. To do so, on the
Tuning tab, click Tuning Options.

In the Tuning Options dialog box, in the Optimization Type section, select Learning.

To configure the maximum number of rules, specify the Max number of rules option. Select the
auto option to automatically select the rule limit based on the number of input variables and the
number of membership functions for each input.

The size of the tuned rule base might be less than the maximum number of rules because the tuning
algorithm removes duplicate rules from the tuned FIS.

3 Fuzzy Inference System Tuning

3-34

See Also
Fuzzy Logic Designer

Related Examples
• “Tune Fuzzy Inference System Using Fuzzy Logic Designer” on page 3-6
• “Configure Tuning Options in Fuzzy Logic Designer” on page 3-52

 Select Rules and Parameters to Tune in Fuzzy Logic Designer

3-35

Select FIS Rules and Parameters to Tune at the Command Line

This example shows how to tune different components of a fuzzy inference system (FIS) at the
command line. Using the tunefis function, you can:

• Tune membership function parameters for input and output variables.
• Learn fuzzy rules.
• Tune the antecedent and consequent parameters of fuzzy rules.

For more information on tuning a FIS, see “Tuning Fuzzy Inference Systems” on page 3-2.

Tune Membership Function Parameters

For both type-1 and type-2 FISs, you can specify tunable parameter settings for the input and output
MFs and tune the values of the selected parameters. You can tune the parameters for any
combination of input and output MFs. This example shows an tuning workflow using a type-1 FIS. For
an example that tunes a type-2 FIS, see “Predict Chaotic Time Series Using Type-2 FIS” on page 3-
89.

Create a FIS.

fis = mamfis;
fis = addInput(fis,[0 10],'NumMFs',3);
fis = addOutput(fis,[0 1],'NumMFs',3);
fis = addRule(fis,[1 1 1 1;1 1 1 1;1 1 1 1]);

Extract input and output parameter settings from the FIS.

[in,out] = getTunableSettings(fis)

in =
 VariableSettings with properties:

 Type: "input"
 VariableName: "input1"
 MembershipFunctions: [1x3 fuzzy.tuning.MembershipFunctionSettings]
 FISName: "fis"

out =
 VariableSettings with properties:

 Type: "output"
 VariableName: "output1"
 MembershipFunctions: [1x3 fuzzy.tuning.MembershipFunctionSettings]
 FISName: "fis"

The parameter settings are represented by VariableSettings objects that include the FIS name,
variable type, variable name, and MF parameter settings. Examine the parameter settings of MF 1 of
input 1.

in(1).MembershipFunctions(1).Parameters

ans =
 NumericParameters with properties:

3 Fuzzy Inference System Tuning

3-36

 Minimum: [-Inf -Inf -Inf]
 Maximum: [Inf Inf Inf]
 Free: [1 1 1]

For each parameter value of an input or output MF, you can specify its availability for tuning and its
minimum and maximum values. By default, all MF parameters are free for tuning and their ranges
are set to [-Inf, Inf].

You can specify the tunability of all parameters in an MF using the setTunable function. For
example, make MF 1 of input 1 nontunable.

in(1).MembershipFunctions(1) = setTunable(in(1).MembershipFunctions(1),false);

You can also specify the tunability of individual MF parameters. Make the first parameter of MF 2 of
input 1 nontunable.

in(1).MembershipFunctions(2).Parameters.Free(1) = false;

For each parameter, you can specify the range of possible values. For example, set the minimum
values for the second and third parameters of MF 3 of input 1 to 0.

in(1).MembershipFunctions(3).Parameters.Minimum(2:3) = 0;

Similarly, set the maximum values for second and third parameters of MF 3 of input 1 to 15.

in(1).MembershipFunctions(3).Parameters.Maximum(2:3) = 15;

The tuning process sets the default minimum and maximum range values of tunable MF parameters
to their corresponding input or output ranges.

Finally, make the MF parameters of all output membership functions nontunable.

out = setTunable(out,false);

Specify input and output training data. For this example, generate training data using the following
function.

y = sin 2x
ex/5

x = (0:0.1:10)';
y = abs(sin(2*x)./exp(x/5));

Specify options for tunefis. For this example, use the genetic algorithm tuning method. Use a
maximum of five generations for optimization.

options = tunefisOptions("Method","ga");
options.MethodOptions.MaxGenerations = 5;

If you have Parallel Computing Toolbox™ software, you can improve the speed of the tuning process
by setting options.UseParallel to true. If you do not have Parallel Computing Toolbox software,
set options.UseParallel to false, which is the default value.

By default, tunefis uses the root mean squared error (RMSE) for cost calculation. You can change
the cost function to norm1 or norm2 by setting options.DistanceMetric.

 Select FIS Rules and Parameters to Tune at the Command Line

3-37

options.DistanceMetric = "norm1";

Tune fis using the parameter settings, training data, and tuning options.

rng('default') % for reproducibility
[fisout,optimout] = tunefis(fis,[in;out],x,y,options);

Single objective optimization:
5 Variable(s)

Options:
CreationFcn: @gacreationuniform
CrossoverFcn: @crossoverscattered
SelectionFcn: @selectionstochunif
MutationFcn: @mutationadaptfeasible

 Best Mean Stall
Generation Func-count f(x) f(x) Generations
 1 100 32.84 32.84 0
 2 147 32.84 32.84 1
 3 194 32.84 32.84 2
 4 241 32.84 32.84 3
 5 288 32.84 32.84 4
Optimization terminated: maximum number of generations exceeded.

fisout includes the updated parameter values. optimout provides additional outputs of the
optimization method and any error messages that are returned during the update process of the input
fuzzy system using the optimized parameter values.

optimout

optimout = struct with fields:
 tuningOutputs: [1x1 struct]
 totalFcnCount: 288
 totalRuntime: 3.3962
 errorMessage: []

optimout.tuningOutputs

ans = struct with fields:
 x: [5 9.1667 5.8333 10 14.1667]
 fval: 32.8363
 exitflag: 0
 output: [1x1 struct]
 population: [50x5 double]
 scores: [50x1 double]

You can optionally tune fis using either the input or output parameter settings only. In this example,
since you set the output parameter settings to nontunable, tuning the FIS with just the input
parameter settings produces the same results.

rng('default')
[fisout,optimout] = tunefis(fis,in,x,y,options);

Single objective optimization:
5 Variable(s)

3 Fuzzy Inference System Tuning

3-38

Options:
CreationFcn: @gacreationuniform
CrossoverFcn: @crossoverscattered
SelectionFcn: @selectionstochunif
MutationFcn: @mutationadaptfeasible

 Best Mean Stall
Generation Func-count f(x) f(x) Generations
 1 100 32.84 32.84 0
 2 147 32.84 32.84 1
 3 194 32.84 32.84 2
 4 241 32.84 32.84 3
 5 288 32.84 32.84 4
Optimization terminated: maximum number of generations exceeded.

optimout

optimout = struct with fields:
 tuningOutputs: [1x1 struct]
 totalFcnCount: 288
 totalRuntime: 3.1682
 errorMessage: []

optimout.tuningOutputs

ans = struct with fields:
 x: [5 9.1667 5.8333 10 14.1667]
 fval: 32.8363
 exitflag: 0
 output: [1x1 struct]
 population: [50x5 double]
 scores: [50x1 double]

Tune Fuzzy Rules

In addition to tuning membership function parameters, you can tune the antecedent and consequent
parameters of the rules in a fuzzy system.

Obtain rule parameter settings from a fuzzy system using getTunableSettings.

[~,~,rule] = getTunableSettings(fis)

rule=3×1 object
 3x1 RuleSettings array with properties:

 Index
 Antecedent
 Consequent
 FISName

Each rule parameter setting includes the FIS name, the index of the rule in the FIS, and parameter
settings for the rule antecedent and consequent (the rule clauses).

For a rule clause, you can set the following parameters settings.

 Select FIS Rules and Parameters to Tune at the Command Line

3-39

• AllowNot — Allow the use of NOT logic, that is, negative MF indices. By default, rules do not
allow NOT logic.

• Free — Make the input/output MF indices available for tuning. By default, clause parameters are
available for tuning.

• AllowEmpty — Allow the absence of input/output variables, that is, zero MF indices. By default,
the absence of a variable is allowed.

rule(1).Antecedent(1)

ans =
 ClauseParameters with properties:

 AllowNot: 0
 AllowEmpty: 1
 Free: 1

Allow NOT logic in the antecedent of rule 1.

rule(1).Antecedent.AllowNot = true;

Make the consequent of rule 1 not available for tuning.

rule(1).Consequent.Free = 0;

Do not allow absence of a variable in the consequent of rule 2.

rule(2).Consequent.AllowEmpty = false;

Set rule 3 as nontunable.

rule(3) = setTunable(rule(3),false);

Set options.DistanceMetric to norm2.

options.DistanceMetric = "norm2";

Tune fis using the rule parameter settings.

rng('default') % for reproducibility
fisout = tunefis(fis,rule,x,y,options);

Single objective optimization:
3 Variable(s)

Options:
CreationFcn: @gacreationuniform
CrossoverFcn: @crossoverscattered
SelectionFcn: @selectionstochunif
MutationFcn: @mutationadaptfeasible

 Best Mean Stall
Generation Func-count f(x) f(x) Generations
 1 100 1.648 2.575 0
 2 147 1.648 2.448 1
 3 194 1.648 2.212 2
 4 241 1.648 2.052 3

3 Fuzzy Inference System Tuning

3-40

 5 288 1.648 1.874 4
Optimization terminated: maximum number of generations exceeded.

Since you specified rule 3 as nontunable, you can exclude rule 3 when you tune fis. Doing so
produces the same tuning result.

rng('default') % for reproducibility
fisout = tunefis(fis,rule(1:2),x,y,options);

Single objective optimization:
3 Variable(s)

Options:
CreationFcn: @gacreationuniform
CrossoverFcn: @crossoverscattered
SelectionFcn: @selectionstochunif
MutationFcn: @mutationadaptfeasible

 Best Mean Stall
Generation Func-count f(x) f(x) Generations
 1 100 1.648 2.575 0
 2 147 1.648 2.448 1
 3 194 1.648 2.212 2
 4 241 1.648 2.052 3
 5 288 1.648 1.874 4
Optimization terminated: maximum number of generations exceeded.

Learn Fuzzy Rules

You can configure tunefis to learn the rules of a fuzzy system. To do so, set the
OptimizationType option of tunefisOptions to "learning".

fisin = fis;
fisin.Rules = [];
options.OptimizationType = "learning";

Set the maximum number of rules in the tuned FIS to 3.

options.NumMaxRules = 3;

The size of the tuned rule base might be less than NumMaxRules, because tunefis removes
duplicate rules from the tuned FIS. If you do not specify NumMaxRules, then tunefis adds the
maximum number of rules determined by the possible combinations of input MFs. The default input
MF combinations include zero MF indices, which allow absence of variables. The default
combinations exclude negative MF indices, so that NOT logic is not allowed.

Set options.DistanceMetric to "rmse" and tune the FIS.

options.DistanceMetric = "rmse";
rng('default') % for reproducibility
fisout = tunefis(fisin,[],x,y,options);

Single objective optimization:
6 Variable(s)

Options:
CreationFcn: @gacreationuniform
CrossoverFcn: @crossoverscattered

 Select FIS Rules and Parameters to Tune at the Command Line

3-41

SelectionFcn: @selectionstochunif
MutationFcn: @mutationadaptfeasible

 Best Mean Stall
Generation Func-count f(x) f(x) Generations
 1 400 0.165 0.2956 0
 2 590 0.165 0.2805 1
 3 780 0.165 0.2578 2
 4 970 0.165 0.2393 3
 5 1160 0.165 0.2322 4
Optimization terminated: maximum number of generations exceeded.

During the tuning process, the FIS automatically learns rules after cost optimization with the training
data. Examine the tuned rules.

fisout.Rules

ans =
 1x3 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 Details:
 Description

 1 "input1==mf3 => output1=mf1 (1)"
 2 "input1==mf1 => output1=mf2 (1)"
 3 "input1==mf2 => output1=mf1 (1)"

You can remove some of the existing rules and learn additional rules.

fisout.Rules(2:end) = [];
rng('default') % for reproducibility
fisout = tunefis(fisin,[],x,y,options);

Single objective optimization:
6 Variable(s)

Options:
CreationFcn: @gacreationuniform
CrossoverFcn: @crossoverscattered
SelectionFcn: @selectionstochunif
MutationFcn: @mutationadaptfeasible

 Best Mean Stall
Generation Func-count f(x) f(x) Generations
 1 400 0.165 0.2956 0
 2 590 0.165 0.2805 1
 3 780 0.165 0.2578 2
 4 970 0.165 0.2393 3
 5 1160 0.165 0.2322 4
Optimization terminated: maximum number of generations exceeded.

3 Fuzzy Inference System Tuning

3-42

fisout.Rules

ans =
 1x3 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 Details:
 Description

 1 "input1==mf3 => output1=mf1 (1)"
 2 "input1==mf1 => output1=mf2 (1)"
 3 "input1==mf2 => output1=mf1 (1)"

You can also tune the antecedents and consequents of existing rules and learn new rules. To do so,
obtain the tunable rule parameter settings and pass them to the tunefis function.

fisout.Rules(2:end) = [];
fisout.Rules(1).Antecedent = 1;
fisout.Rules(1).Consequent = 1;
[~,~,rule] = getTunableSettings(fisout);
rng('default')
fisout = tunefis(fisin,rule,x,y,options);

Single objective optimization:
8 Variable(s)

Options:
CreationFcn: @gacreationuniform
CrossoverFcn: @crossoverscattered
SelectionFcn: @selectionstochunif
MutationFcn: @mutationadaptfeasible

 Best Mean Stall
Generation Func-count f(x) f(x) Generations
 1 400 0.165 0.3063 0
 2 590 0.165 0.2845 1
 3 780 0.165 0.2549 2
 4 970 0.165 0.2344 3
 5 1160 0.165 0.2153 4
Optimization terminated: maximum number of generations exceeded.

fisout.Rules

ans =
 1x3 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 Select FIS Rules and Parameters to Tune at the Command Line

3-43

 Details:
 Description

 1 "input1==mf1 => output1=mf2 (1)"
 2 "input1==mf2 => output1=mf1 (1)"
 3 "input1==mf3 => output1=mf1 (1)"

Tune MF and Rule Parameters

You can tune all MF and rule parameters simultaneously. First, obtain all parameter settings for the
FIS.

[in,out,rule] = getTunableSettings(fis);

Configure the tuning options.

options = tunefisOptions('Method','ga');
options.MethodOptions.MaxGenerations = 5;

Tune the MF and rule parameters of the FIS.

rng('default') % for reproducibility
fisout = tunefis(fis,[in;out;rule],x,y,options);

Single objective optimization:
24 Variable(s)

Options:
CreationFcn: @gacreationuniform
CrossoverFcn: @crossoverscattered
SelectionFcn: @selectionstochunif
MutationFcn: @mutationadaptfeasible

 Best Mean Stall
Generation Func-count f(x) f(x) Generations
 1 400 0.165 0.296 0
 2 590 0.1638 0.2821 0
 3 780 0.1625 0.2697 0
 4 970 0.1625 0.2616 1
 5 1160 0.1604 0.2512 0
Optimization terminated: maximum number of generations exceeded.

For a large fuzzy system, if you tune all FIS parameters in the same tuning process, obtaining the
expected results can take several iterations. To improve the tuning time, you can tune parameters
using the following two steps.

1 Tune or learn rule parameters only.
2 Tune both MF and rule parameters.

Learning and tuning rules is less computationally expensive that tuning the MF parameters, due to
the small number of rule parameters. Therefore, the first step quickly converges to a fuzzy rule base
during training. In the second step, using the rule base from the first step as an initial condition
improves convergence of the parameter tuning process.

3 Fuzzy Inference System Tuning

3-44

Generate FIS from Data and Tune

When you manually create a FIS for tuning, you must either manually create an initial rule base or
learn the initial rules. Alternatively, you can generate a FIS using the genfis function, which creates
an initial rule base based on your training data. You can then optimize the FIS using tunefis. In this
approach, the tuning process can employ a local optimization method because the rule base is
derived from the training data.

This example uses the same training data as the preceding examples.

Create options for genfis that specify five MFs, a Gaussian MF for the input, and a constant MF for
the output.

goptions = genfisOptions('GridPartition','NumMembershipFunctions',5, ...
 'InputMembershipFunctionType','gaussmf', ...
 'OutputMembershipFunctionType','constant');

Generate the initial FIS and get its parameter settings.

fisin = genfis(x,y,goptions);
[in,out,rule] = getTunableSettings(fisin);

Use the pattern search method for optimization, setting the maximum number of iterations to 25, and
tune the FIS.

toptions = tunefisOptions('Method','patternsearch');
toptions.MethodOptions.MaxIterations = 25;
rng('default')
fisout = tunefis(fisin,[in;out],x,y,toptions);

Iter Func-count f(x) MeshSize Method
 0 1 0.346649 1
 1 8 0.346649 0.5 Refine Mesh
 2 19 0.273812 1 Successful Poll
 3 20 0.183534 2 Successful Poll
 4 20 0.183534 1 Refine Mesh
 5 27 0.183534 0.5 Refine Mesh
 6 29 0.163795 1 Successful Poll
 7 36 0.163795 0.5 Refine Mesh
 8 52 0.163795 0.25 Refine Mesh
 9 54 0.159964 0.5 Successful Poll
 10 70 0.159964 0.25 Refine Mesh
 11 71 0.159488 0.5 Successful Poll
 12 87 0.159488 0.25 Refine Mesh
 13 92 0.159294 0.5 Successful Poll
 14 108 0.159294 0.25 Refine Mesh
 15 126 0.159084 0.5 Successful Poll
 16 138 0.158973 1 Successful Poll
 17 145 0.158973 0.5 Refine Mesh
 18 152 0.158308 1 Successful Poll
 19 158 0.158308 0.5 Refine Mesh
 20 176 0.158308 0.25 Refine Mesh
 21 197 0.158308 0.125 Refine Mesh
 22 201 0.157953 0.25 Successful Poll
 23 222 0.157953 0.125 Refine Mesh
 24 246 0.157953 0.0625 Refine Mesh
 25 253 0.157951 0.125 Successful Poll

 Select FIS Rules and Parameters to Tune at the Command Line

3-45

 26 269 0.157901 0.25 Successful Poll
Maximum number of iterations exceeded: increase options.MaxIterations.

You can increase the number of iterations to further optimize the cost.

See Also
tunefis | getTunableSettings | genfis

More About
• “Tune Fuzzy Inference System at the Command Line” on page 3-21
• “Tune FIS Tree for Gas Mileage Prediction” on page 3-69
• “Tune Fuzzy Trees” on page 3-47

3 Fuzzy Inference System Tuning

3-46

Tune Fuzzy Trees

This example shows how to tune the parameters of a FIS tree using the following two-step process.
For more information about a similar two-step process, see “Tuning Fuzzy Inference Systems” on
page 3-2.

1 Learn and tune the rules of the FISs in the tree.
2 Learn the MF parameters of the FISs in the tree.

Tuning FIS trees is not supported in the Fuzzy Logic Designer app.

Create a FIS tree to model sin x + cos x
exp x , as shown in the following figure. For more information on

creating FIS trees, see “Fuzzy Trees” on page 2-96.

Create fis1 as a Sugeno-type FIS, which results in a faster tuning process compared to a Mamdani
system, due to its computationally efficient defuzzification method. Add two inputs, both with range
[0, 10] and with three MFs each. Use a smooth, differentiable MF, such as gaussmf, to match the
characteristics of the data type you are modeling.

fis1 = sugfis("Name","fis1");
fis1 = addInput(fis1,[0 10],"NumMFs",3,"MFType","gaussmf");
fis1 = addInput(fis1,[0 10],"NumMFs",3,"MFType","gaussmf");

Add an output with the range [–1.5, 1.5] having nine MFs corresponding to the nine possible input
MF combinations. Doing so provides maximum granularity for the FIS rules. Set the output range
according to the possible values of sin x + cos x .

fis1 = addOutput(fis1,[-1.5 1.5],"NumMFs",9);

Create fis2 as a Sugeno-type FIS. Add two inputs. Set the range of the first input to [–1.5, 1.5],
which matches the range of the output of fis1. The second input is the same as the inputs of fis1.
Therefore, use the same input range, [0, 10]. Add three MFs for each of the inputs.

fis2 = sugfis("Name","fis2");
fis2 = addInput(fis2,[-1.5 1.5],"NumMFs",3,"MFType","gaussmf");
fis2 = addInput(fis2,[0 10],"NumMFs",3,"MFType","gaussmf");

 Tune Fuzzy Trees

3-47

Add an output with range [0, 1] and nine MFs. The output range is set according to the possible
values of sin x + cos x

exp x .

fis2 = addOutput(fis2,[0 1],"NumMFs",9);

Connect the inputs and the outputs as shown in the diagram. The first output of fis1, output1,
connects to the first input of fis2, input1. The inputs of fis1 connect to each other, and the second
input of fis1 connects to the second input of fis2.

con1 = ["fis1/output1" "fis2/input1"];
con2 = ["fis1/input1" "fis1/input2"];
con3 = ["fis1/input2" "fis2/input2"];

Finally, create a FIS tree using the specified FISs and connections.

fisT = fistree([fis1 fis2],[con1;con2;con3]);

Add an additional output to the FIS tree to access the output of fis1.

fisT.Outputs = ["fis1/output1";fisT.Outputs];

Generate input and output training data.

x = (0:0.1:10)';
y1 = sin(x)+cos(x);
y2 = y1./exp(x);
y = [y1 y2];

Tune the FIS tree parameters in two steps. First, learn the rules of the FIS tree using a global
optimization method. For this example, use particle swarm.

options = tunefisOptions("Method","particleswarm","OptimizationType","learning");

This tuning step uses a small number of iterations to learn a rule base without overfitting the training
data. The rule base provides an educated initial condition that the second step can use to optimize all
the FIS tree parameters together. Set the maximum iteration number to 5, and learn the rule base.

options.MethodOptions.MaxIterations = 5;
rng("default") % for reproducibility
fisTout1 = tunefis(fisT,[],x,y,options);

 Best Mean Stall
Iteration f-count f(x) f(x) Iterations
 0 100 0.6682 0.9395 0
 1 200 0.6682 1.023 0
 2 300 0.6652 0.9308 0
 3 400 0.6259 0.958 0
 4 500 0.6259 0.918 1
 5 600 0.5969 0.9179 0
Optimization ended: number of iterations exceeded OPTIONS.MaxIterations.

Next, to tune all the FIS tree parameters at once, use a local optimization method. For this example,
use pattern search. Local optimization is generally faster than global optimization and can produce
better results when the input fuzzy system parameters are already consistent with the training data.

Use the patternsearch method for optimization. Set the number of iterations to 25.

3 Fuzzy Inference System Tuning

3-48

options.Method = "patternsearch";
options.MethodOptions.MaxIterations = 25;

Use getTunableSettings to obtain input, output, and rule parameter settings from the FIS tree.

[in,out,rule] = getTunableSettings(fisTout1);

Tune the FIS tree parameters.

rng("default") % for reproducibility
fisTout2 = tunefis(fisTout1,[in;out;rule],x,y,options);

Iter Func-count f(x) MeshSize Method
 0 1 0.596926 1
 1 8 0.594989 2 Successful Poll
 2 14 0.580893 4 Successful Poll
 3 14 0.580893 2 Refine Mesh
 4 36 0.580893 1 Refine Mesh
 5 43 0.577757 2 Successful Poll
 6 65 0.577757 1 Refine Mesh
 7 79 0.52794 2 Successful Poll
 8 102 0.52794 1 Refine Mesh
 9 120 0.524443 2 Successful Poll
 10 143 0.524443 1 Refine Mesh
 11 170 0.52425 2 Successful Poll
 12 193 0.52425 1 Refine Mesh
 13 221 0.524205 2 Successful Poll
 14 244 0.524205 1 Refine Mesh
 15 329 0.508752 2 Successful Poll
 16 352 0.508752 1 Refine Mesh
 17 434 0.508233 2 Successful Poll
 18 457 0.508233 1 Refine Mesh
 19 546 0.506136 2 Successful Poll
 20 569 0.506136 1 Refine Mesh
 21 659 0.505982 2 Successful Poll
 22 682 0.505982 1 Refine Mesh
 23 795 0.505811 2 Successful Poll
 24 818 0.505811 1 Refine Mesh
 25 936 0.505811 0.5 Refine Mesh
 26 950 0.504362 1 Successful Poll
Maximum number of iterations exceeded: increase options.MaxIterations.

The optimization cost reduces from 0.60 to 0.40 in the second step.

Alternatively, you can tune the specific fuzzy systems separately within a FIS tree. For this example,
after learning the rule base of the FIS tree, separately tune the fis1 and fis2 parameters.

To obtain parameter settings of a FIS within the FIS tree, use getTunableSettings, specifying the
FIS name. First, get the parameter settings for fis1.

[in,out,rule] = getTunableSettings(fisTout1,"FIS","fis1");

Tune the parameters of fis1.

rng("default")
fisTout2 = tunefis(fisTout1,[in;out;rule],x,y,options);

Iter Func-count f(x) MeshSize Method
 0 1 0.596926 1

 Tune Fuzzy Trees

3-49

 1 14 0.548082 2 Successful Poll
 2 32 0.548082 1 Refine Mesh
 3 48 0.54804 2 Successful Poll
 4 66 0.54804 1 Refine Mesh
 5 109 0.547504 2 Successful Poll
 6 127 0.547504 1 Refine Mesh
 7 207 0.547504 0.5 Refine Mesh
 8 227 0.535549 1 Successful Poll
 9 307 0.535549 0.5 Refine Mesh
 10 334 0.458199 1 Successful Poll
 11 414 0.458199 0.5 Refine Mesh
 12 466 0.457367 1 Successful Poll
 13 546 0.457367 0.5 Refine Mesh
 14 622 0.449427 1 Successful Poll
 15 702 0.449427 0.5 Refine Mesh
 16 802 0.43661 1 Successful Poll
 17 847 0.436555 2 Successful Poll
 18 867 0.436555 1 Refine Mesh
 19 947 0.436555 0.5 Refine Mesh
 20 1046 0.430626 1 Successful Poll
 21 1126 0.430626 0.5 Refine Mesh
 22 1181 0.430585 1 Successful Poll
 23 1261 0.430585 0.5 Refine Mesh
 24 1383 0.430585 0.25 Refine Mesh
 25 1386 0.379851 0.5 Successful Poll
 26 1507 0.379851 0.25 Refine Mesh
Maximum number of iterations exceeded: increase options.MaxIterations.

In this case, the optimization cost is improved by tuning only the fis1 parameter values.

Next, obtain the parameter settings for fis2 and tune the fis2 parameters.

[in,out,rule] = getTunableSettings(fisTout2,"FIS","fis2");
rng("default")
fisTout3 = tunefis(fisTout2,[in;out;rule],x,y,options);

Iter Func-count f(x) MeshSize Method
 0 1 0.379851 1
 1 7 0.36047 2 Successful Poll
 2 25 0.36047 1 Refine Mesh
 3 36 0.360464 2 Successful Poll
 4 54 0.360464 1 Refine Mesh
 5 66 0.356372 2 Successful Poll
 6 83 0.356372 1 Refine Mesh
 7 97 0.356325 2 Successful Poll
 8 114 0.356325 1 Refine Mesh
 9 127 0.356322 2 Successful Poll
 10 144 0.356322 1 Refine Mesh
 11 195 0.352944 2 Successful Poll
 12 212 0.352944 1 Refine Mesh
 13 269 0.347813 2 Successful Poll
 14 286 0.347813 1 Refine Mesh
 15 350 0.344695 2 Successful Poll
 16 367 0.344695 1 Refine Mesh
 17 434 0.344464 2 Successful Poll
 18 451 0.344464 1 Refine Mesh
 19 493 0.344381 2 Successful Poll
 20 510 0.344381 1 Refine Mesh

3 Fuzzy Inference System Tuning

3-50

 21 579 0.344051 2 Successful Poll
 22 596 0.344051 1 Refine Mesh
 23 616 0.344051 2 Successful Poll
 24 633 0.344051 1 Refine Mesh
 25 711 0.344051 0.5 Refine Mesh
 26 789 0.343802 1 Successful Poll
Maximum number of iterations exceeded: increase options.MaxIterations.

The optimization cost is further reduced by tuning the fis2 parameter values. To avoid overfitting of
individual FIS parameter values, you can further tune both the fis1 and fis2 parameters together.

[in,out,rule] = getTunableSettings(fisTout3);
rng("default")
fisTout4 = tunefis(fisTout3,[in;out;rule],x,y,options);

Iter Func-count f(x) MeshSize Method
 0 1 0.343802 1
 1 19 0.304764 2 Successful Poll
 2 46 0.304764 1 Refine Mesh
 3 88 0.304733 2 Successful Poll
 4 115 0.304733 1 Refine Mesh
 5 197 0.304375 2 Successful Poll
 6 224 0.304375 1 Refine Mesh
 7 313 0.252524 2 Successful Poll
 8 340 0.252524 1 Refine Mesh
 9 412 0.236664 2 Successful Poll
 10 415 0.236587 4 Successful Poll
 11 415 0.236587 2 Refine Mesh
 12 429 0.236511 4 Successful Poll
 13 429 0.236511 2 Refine Mesh
 14 456 0.236511 1 Refine Mesh
 15 471 0.232892 2 Successful Poll
 16 497 0.232892 1 Refine Mesh
 17 572 0.203613 2 Successful Poll
 18 596 0.20355 4 Successful Poll
 19 596 0.20355 2 Refine Mesh
 20 621 0.203488 4 Successful Poll
 21 621 0.203488 2 Refine Mesh
 22 646 0.203488 1 Refine Mesh
 23 721 0.201124 2 Successful Poll
 24 724 0.201107 4 Successful Poll
 25 724 0.201107 2 Refine Mesh
 26 738 0.201091 4 Successful Poll
Maximum number of iterations exceeded: increase options.MaxIterations.

Overall, the optimization cost is smaller after using three tuning steps than after using only one.

See Also
tunefis | getTunableSettings

More About
• “Fuzzy Trees” on page 2-96
• “Tune Fuzzy Inference System at the Command Line” on page 3-21

 Tune Fuzzy Trees

3-51

Configure Tuning Options in Fuzzy Logic Designer

To select an algorithm for tuning your fuzzy inference system (FIS) and configure the algorithm
options in the Fuzzy Logic Designer app, open the Tuning Options dialog box. On the Tuning tab,
click Tuning Options.

In the Tuning Options dialog box, you can:

• Select the type of optimization to perform.
• Select a tuning algorithm. You can choose between several Global Optimization Toolbox methods

or adaptive neuro-fuzzy inference system (ANFIS) tuning.
• Configure k-fold cross validation to prevent overfitting to your training data.

For more information on FIS tuning, see “Tuning Fuzzy Inference Systems” on page 3-2.

Optimization Type and Method
Select one of the following types of tuning.

Optimization Type Description
Tuning Optimize the existing input, output, and rule

parameters without learning new rules.
Learning Learn new rules up to a maximum number of

rules. To specify the maximum number of rules,
use the Max number of rules option.

This type of optimization is not supported for
ANFIS tuning.

To select a tuning algorithm, in the Method drop-down list, select one of the following tuning
methods.

Method Description
Genetic algorithm Population-based global optimization method that searches

randomly by mutation and crossover among population members
Particle swarm
optimization

Population-based global optimization method in which population
members step throughout a search region

Pattern search Direct-search local optimization method that searches a set of
points near the current point to find a new optimum

Simulated annealing A local optimization method that simulates a heating and cooling
process to that finds a new optimal point near the current point

Adaptive neuro-fuzzy
inference

Back-propagation algorithm that tunes membership function
parameters.

The first four tuning methods require Global Optimization Toolbox software.

To use default tuning options for any method, select the Use default method options parameter.

3 Fuzzy Inference System Tuning

3-52

Global Optimization Toolbox Method Options
To configure options for one of the Global Optimization Toolbox tuning methods, you must configure
two sets of options: algorithm-specific options and FIS tuning options.

Algorithm-Specific Options

To specify algorithm-specific options, expand the Method Options section, and add optimization
options. Any options that you do not specify use their default values.

To configure an option, in the leftmost drop-down list, select the option category. In the next drop-
down list, select the optimization option. Then, specify the option value.

For example, the following figure shows how to configure the following options for the genetic
algorithm tuning method.

• Maximum number of generations, where:

• The option category is Run time limits.
• The option is Max generations.
• The option value is 20.

• Population size, where:

• The option category is Population settings.
• The option is Population size.
• The option value is 100.

To add or remove options, click the corresponding + or –, respectively.

For more information on the algorithm-specific tuning options, click see the “Global Optimization
Toolbox” documentation.

FIS Tuning Options

For all Global Optimization Toolbox optimization methods, you can specify the following FIS tuning
options.

 Configure Tuning Options in Fuzzy Logic Designer

3-53

Validation Option Description
Max number of rules Maximum number of rules, NR, in a FIS after optimization when

using th eLearning optimization type. The number of rules in a
FIS (after optimization) can be less than NR, since duplicate rules
with the same antecedent values are removed from the rule base
during tuning.

To automatically set NR based on the number of input variables and
the number of membership functions for each input variable, select
the auto parameter.

This option is ignored when the optimization type is Tuning.
Random number seed Select a method for setting the random number generator seed

before tuning. For more information, see rng.

• Initialize generator with seed zero — Initialize the
generator with a seed of zero.

• Initialize Mersenne Twister generator with seed
0 for reproducible results — Initialize the Mersenne
Twister generator with seed 0. Use this option for reproducible
tuning results. This is the default setting at the start of each
MATLAB session.

• Initialize generator based on the current time
for different sequences — Initialize the generator based
on the current time, resulting in a different sequence for each
tuning process.

Distance metric Type of distance metric used for computing the cost for the
optimized parameter values with respect to the training data,
specified as one of the following:

• Root mean square error — Root-mean-squared error
• Vector 1-norm — Vector 1-norm
• Vector 2-norm — Vector 2-norm

Ignore invalid parameters Select this parameter to invalid parameter values generated
during the tuning process.

Use parallel computing Select this parameter to use parallel computation in the
optimization process. Using parallel computing requires Parallel
Computing Toolbox™ software.

ANFIS Tuning Options
To configure the ANFIS tuning algorithm, specify the following tuning options. For more information,
see “Neuro-Adaptive Learning and ANFIS” on page 3-203.

3 Fuzzy Inference System Tuning

3-54

ANFIS Option Description
Optimization method Optimization method used in membership function parameter

training In the drop-down list, select one of the following:

• Backpropagation with gradient descent — A steepest-
decent backpropagation approach for all parameters.

• Least squares integration with backpropagation —
Hybrid method consisting of backpropagation for the
parameters associated with the input membership functions,
and least squares estimation for the parameters associated
with the output membership functions.

Epoch number Maximum number of training epochs, specified as a positive
integer.

Error goal Training error goal, specified as positive scalar. The training
process stops when the training error is less than or equal to the
training error goal.

Initial step size Initial training step size, specified as a positive scalar.

During training, the software updates the step size according to
the following rules:

• If the error undergoes four consecutive reductions, increase
the step size by multiplying it by the step-size increase rate.

• If the error undergoes two consecutive combinations of one
increase and one reduction, decrease the step size by
multiplying it by the step-size decrease rate.

Step size decrease rate Step-size decrease rate, specified as a positive scalar less than 1.
Step size increase rate Step-size increase rate, specified as a scalar greater than 1.
Input validation data To specify input validation data, in the drop-down list:

• To use data previously imported into the app, select a data set
under Imported Data Sets.

• To use data from the MATLAB workspace, select a data set
under Workspace Data Sets.

Output validation data To specify output validation data, in the drop-down list:

• To use data previously imported into the app, select a data set
under Imported Data Sets.

• To use data from the MATLAB workspace, select a data set
under Workspace Data Sets.

K-Fold Cross Validation
When tuning a system using a Global Optimization Toolbox method, you can use k-fold cross-
validation to prevent overfitting to your data. To configure the validation, in the Tuning Options
dialog box, on the Validation tab, specify the following options.

 Configure Tuning Options in Fuzzy Logic Designer

3-55

Validation Option Description
Number of cross-validation Number of cross validations to perform, NV specified as a

nonnegative integer less than or equal to the number of rows in
the training data.

When the NV is 0 or 1, the tuning algorithm uses the entire input
data set for training and does not perform validation.

Otherwise, the tuning algorithm randomly partitions the input data
intoNV subsets of approximately equal size. The algorithm then
performs NV training-validation iterations. For each iteration, one
data subset is used as validation data with the remaining subsets
used as training data.

Validation tolerance Maximum allowable increase in validation cost when using k-fold
cross validation, specified as a scalar value in the range [0,1]. A
higher validation tolerance value produces a longer training-
validation iteration, with an increased possibility of data
overfitting.

The increase in validation cost, ΔC, is the difference between the
average validation cost and the minimum validation cost, Cmin, for
the current training-validation iteration. The average validation
cost is a moving average with a window size specified using the
Validation window size option.

The stops the current training-validation iteration when the ratio
between ΔC and Cmin exceeds the validation tolerance.

Validation window size Window size for computing average validation cost, specified as a
positive integer. The validation cost moving average is computed
over the last NW validation cost values, where NW is the validation
window size. A higher window size value produces a longer
training-validation iteration, with an increased possibility of data
overfitting. A lower window size can cause early termination of the
tuning process when the training data is noisy.

K-fold cross validation is not supported for ANFIS tuning.

For more information on k-fold cross validation, see “Optimize FIS Parameters with K-Fold Cross-
Validation” on page 3-82.

See Also
Apps
Fuzzy Logic Designer

Related Examples
• “Tune Fuzzy Inference System Using Fuzzy Logic Designer” on page 3-6

3 Fuzzy Inference System Tuning

3-56

Customize FIS Tuning Process
You can customize your FIS tuning process by either:

• Specifying a custom cost function, which is supported for both Fuzzy Logic Designer and
tunefis. A custom cost function is useful for:

• Training a FIS using a custom model in MATLAB without using input/output training data. For
an example, see “Tune Fuzzy Robot Obstacle Avoidance System Using Custom Cost Function”
on page 3-102.

• Training a FIS using a custom model implemented in Simulink. For an example, see “Design
Controller for Artificial Pancreas Using Fuzzy Logic” on page 3-145.

• Combining the outputs of the component FISs of a FIS tree using mathematical operations, as
shown in “Tune FIS Using Custom Optimization Method” on page 3-63.

• Using a custom optimization method, which is supported only at the command line and does not
use tunefis. For an example, see “Tune FIS Using Custom Cost Function” on page 3-60.

For more information on tuning a FIS, see “Tuning Fuzzy Inference Systems” on page 3-2.

Specify Custom Cost Function in Fuzzy Logic Designer

To specify a custom cost function when tuning a FIS using Fuzzy Logic Designer, on the Tuning
tab, select Custom Cost Function.

Then, in the Custom Cost Function drop-down list, select Add a Custom Cost Fcn.

For this example, consider the following cost function, myCostFcn, which simulates a Simulink model
using the specified FIS.

• The first input of the cost function is the FIS object, which is a required input.
• The other inputs are the name of the Simulink model and the FIS variable name in the MATLAB

workspace. Specifying additional inputs is optional.

 Customize FIS Tuning Process

3-57

• The cost function updates the FIS variable in the workspace and simulates the model. It then
extracts the reference and actual outputs from the model and computes the root mean square
error.

• The output of the cost function is the scalar cost value, which in this case is the root mean square
error.

function cost = myCostFcn(fis,model,fisVarName)
% Evaluate model, generate output, and find the cost.

% Update workspace variable for the controller.
assignin('base',fisVarName,fis)

% Get simulation output.
out = sim(model);

% Get output and reference values from simulation output.
outVal = out.yout.signals(1).values;
refVal = out.yout.signals(2).values;
tout = out.yout.time;

% Calculate error from the nominal value.
err = outVal - refVal;

% Calculate cost as the root mean square of the error.
cost = sqrt(mean(err.^2));

end

In the Add cost function dialog box, in the Function field, enter the name of your custom cost
function. When you do so, the Required Inputs table shows the FIS input argument and the
Additional Inputs table shows the other inputs.

3 Fuzzy Inference System Tuning

3-58

Specify values for the additional inputs by selecting previously defined variables from the MATLAB
workspace. For this example:

• input2 corresponds to the Simulink model name. Select the modelName variable.
• input3 corresponds to the FIS name in model workspace. Select the fisName variable.

The values of these variables are saved in the app with the cost function. Therefore, their values do
not change when the variable in the MATLAB workspace changes. For this example, if the model
name or FIS name change, you must add a new custom cost function in the app.

 Customize FIS Tuning Process

3-59

The dialog box shows a preview of the cost function signature. To add this cost function to the app,
click Import.

The app imports and selects the custom cost function.

Tune FIS Using Custom Cost Function

You can use a custom cost function to combine the outputs of the component FISs of a FIS tree using
mathematical operations.

As an example, consider the FIS tree from “Tune Fuzzy Trees” on page 3-47.

3 Fuzzy Inference System Tuning

3-60

Suppose you want to modify the FIS tree as shown in the following diagram, combining the FIS
outputs using known mathematical operations from the training data.

Create the FIS tree, which contains three FIS objects. The outputs of the FIS tree are the outputs of
the individual FIS objects.

fis1 = sugfis('Name','fis1');
fis1 = addInput(fis1,[0 10],'NumMFs',3,'MFType','gaussmf');
fis1 = addOutput(fis1,[-1 1],'NumMFs',3);

fis2 = sugfis('Name','fis2');
fis2 = addInput(fis2,[0 10],'NumMFs',3,'MFType','gaussmf');
fis2 = addOutput(fis2,[-1 1],'NumMFs',3);

fis3 = sugfis('Name','fis3');
fis3 = addInput(fis3,[0 10],'NumMFs',3,'MFType','gaussmf');
fis3 = addOutput(fis3,[0 1],'NumMFs',3);

con = ["fis1/input1" "fis2/input1";"fis2/input1" "fis3/input1"];

fisT = fistree([fis1 fis2 fis3],con);

 Customize FIS Tuning Process

3-61

Generate training data.

x = (0:0.1:10)';
y1 = sin(x)+cos(x);
y2 = y1./exp(x);
y = [y1;y2];

To implement the addition and multiplication operations, use a cost function. For this example, use
the custom function customcostfcn, included at the end of the example. Learn a rule base using
this cost function.

options = tunefisOptions('Method',"particleswarm",'OptimizationType',"learning");
options.MethodOptions.MaxIterations = 5;
rng('default')
fisTout1 = tunefis(fisT,[],@(fis)customcostfcn(fis,x,y),options);

 Best Mean Stall
Iteration f-count f(x) f(x) Iterations
 0 100 0.746 1.31 0
 1 200 0.5089 1.249 0
 2 300 0.5089 1.086 1
 3 400 0.5089 1.112 2
 4 500 0.5089 1.106 3
 5 600 0.4999 1.051 0
Optimization ended: number of iterations exceeded OPTIONS.MaxIterations.

Next, tune all the parameters of the FIS tree.

options.Method = 'patternsearch';
options.MethodOptions.MaxIterations = 25;
[in,out,rule] = getTunableSettings(fisTout1);
rng('default')
fisTout2 = tunefis(fisTout1,[in;out;rule],@(fis)customcostfcn(fis,x,y),options);

Iter Func-count f(x) MeshSize Method
 0 1 0.499882 1
 1 17 0.499882 2 Successful Poll
 2 21 0.499882 1 Refine Mesh
 3 64 0.499882 0.5 Refine Mesh
 4 128 0.499882 0.25 Refine Mesh
 5 143 0.499309 0.5 Successful Poll
 6 206 0.499309 0.25 Refine Mesh
 7 216 0.497834 0.5 Successful Poll
 8 237 0.49493 1 Successful Poll
 9 279 0.49493 0.5 Refine Mesh
 10 341 0.49493 0.25 Refine Mesh
 11 405 0.49493 0.125 Refine Mesh
 12 463 0.490647 0.25 Successful Poll
 13 527 0.490647 0.125 Refine Mesh
 14 567 0.490257 0.25 Successful Poll
 15 631 0.490257 0.125 Refine Mesh
 16 673 0.486303 0.25 Successful Poll
 17 737 0.486303 0.125 Refine Mesh
 18 748 0.485744 0.25 Successful Poll
 19 812 0.485744 0.125 Refine Mesh
 20 884 0.485744 0.0625 Refine Mesh
 21 921 0.484482 0.125 Successful Poll
 22 932 0.484045 0.25 Successful Poll

3 Fuzzy Inference System Tuning

3-62

 23 996 0.484045 0.125 Refine Mesh
 24 1067 0.484045 0.0625 Refine Mesh
 25 1080 0.483977 0.125 Successful Poll
 26 1151 0.483977 0.0625 Refine Mesh
Maximum number of iterations exceeded: increase options.MaxIterations.

You can add more input/output MFs and specify additional FIS tree outputs to improve the tuning
performance. Using additional MF parameters and more training data for additional FIS tree outputs
can further fine-tune the outputs of fis1, fis2, and fis3.

Custom Cost Function

function cost = customcostfcn(fis,x,y)

tY = evalfis(fis,x);
sincosx = tY(:,1)+tY(:,2);
sincosexpx = sincosx.*tY(:,3);
actY = [sincosx;sincosexpx];
d = y(:)-actY;
cost = sqrt(mean(d.*d));

end

Tune FIS Using Custom Optimization Method

You can also implement your own FIS parameter optimization method using getTunableSettings,
getTunableValues, and setTunableValues. This example uses these functions to tune a rule
base of a fuzzy system.

Create a FIS to approximate sin θ , where θ varies from 0 to 2π.

fisin = mamfis;

Add an input with a range of [0, 2π] and having five Gaussian MFs. Also, add an output with a range
of [–1, 1] and having five Gaussian MFs.

fisin = addInput(fisin,[0 2*pi],'NumMFs',5,'MFType','gaussmf');
fisin = addOutput(fisin,[-1 1],'NumMFs',5,'MFType','gaussmf');

Add five rules.

fisin = addRule(fisin,[1 1 1 1;2 2 1 1;3 3 1 1;4 4 1 1;5 5 1 1]);
fisin.Rules

ans =
 1x5 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 Details:
 Description

 Customize FIS Tuning Process

3-63

 1 "input1==mf1 => output1=mf1 (1)"
 2 "input1==mf2 => output1=mf2 (1)"
 3 "input1==mf3 => output1=mf3 (1)"
 4 "input1==mf4 => output1=mf4 (1)"
 5 "input1==mf5 => output1=mf5 (1)"

For a faster FIS update, set DisableStructuralChecks to true.

fisin.DisableStructuralChecks = true;

Obtain the rule parameter settings.

[~,~,rule] = getTunableSettings(fisin);

Make the rule antecedents nontunable. In the rule consequents, do not allow NOT logic (negative MF
indices) or empty variables (zero MF indices).

for i = 1:numel(rule)
 rule(i).Antecedent.Free = false;
 rule(i).Consequent.AllowNot = false;
 rule(i).Consequent.AllowEmpty = false;
end

Generate data for tuning.

x = (0:0.1:2*pi)';
y = sin(x);

To tune the rule parameters, use the custom function customtunefis included at the end of this
example. Set the number of iterations to 2, and do not allow invalid parameter values when updating
the FIS using setTunableValues.

numite = 2;
ignoreinvp = false;
fisout = customtunefis(fisin,rule,x,y,numite,ignoreinvp);

Initial cost = 1.170519
Iteration 1: Cost = 0.241121
Iteration 2: Cost = 0.241121

Display the tuned rules.

fisout.Rules

ans =
 1x5 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 Details:
 Description

3 Fuzzy Inference System Tuning

3-64

 1 "input1==mf1 => output1=mf4 (1)"
 2 "input1==mf2 => output1=mf5 (1)"
 3 "input1==mf3 => output1=mf3 (1)"
 4 "input1==mf4 => output1=mf1 (1)"
 5 "input1==mf5 => output1=mf2 (1)"

Allow NOT logic in the rules and optimize the FIS again.

for i = 1:numel(rule)
 rule(i).Consequent.AllowNot = true;
end
fisout = customtunefis(fisin,rule,x,y,numite,ignoreinvp);

Initial cost = 1.170519
Iteration 1: Cost = 0.357052
Iteration 2: Cost = 0.241121

fisout.Rules

ans =
 1x5 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 Details:
 Description

 1 "input1==mf1 => output1=mf4 (1)"
 2 "input1==mf2 => output1=mf5 (1)"
 3 "input1==mf3 => output1=mf3 (1)"
 4 "input1==mf4 => output1=mf1 (1)"
 5 "input1==mf5 => output1=mf2 (1)"

Using NOT logic creates more combinations of rule parameters, resulting in more iterations to tune a
FIS.

Next, reset AllowNot to false and set AllowEmpty to true. In other words, allow the absence of
variables (zero output MF indices) in the consequents. Tune the FIS with the updated rule parameter
settings.

for i = 1:numel(rule)
 rule(i).Consequent.AllowNot = false;
 rule(i).Consequent.AllowEmpty = true;
end

try
 fisout = customtunefis(fisin,rule,x,y,numite,ignoreinvp);
catch me
 disp("Error: "+me.message)
end

Initial cost = 1.170519

 Customize FIS Tuning Process

3-65

Error: Rule consequent must have at least one nonzero membership function index.

The tuning process fails since the FIS contains only one output, which must be nonzero (nonempty) in
the rule consequent. To ignore invalid parameter values, specify IgnoreInvalidParameters with
setTunableValues.

Set ignoreinvp to true, which specifies the IgnoreInvalidParameters value in the call to
setTunableValues used in customtunefis.

ignoreinvp = true;
fisout = customtunefis(fisin,rule,x,y,numite,ignoreinvp);

Initial cost = 1.170519
Iteration 1: Cost = 0.241121
Iteration 2: Cost = 0.241121

fisout.Rules

ans =
 1x5 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 Details:
 Description

 1 "input1==mf1 => output1=mf4 (1)"
 2 "input1==mf2 => output1=mf5 (1)"
 3 "input1==mf3 => output1=mf3 (1)"
 4 "input1==mf4 => output1=mf1 (1)"
 5 "input1==mf5 => output1=mf2 (1)"

In this case, the tuning process bypasses the invalid values and uses only valid parameter values for
optimization.

By default, tunefis ignores invalid values when updating fuzzy system parameters. You can change
this behavior by setting tunefisOptions.IgnoreInvalidParameters to false.

Custom Functions

function fis = customtunefis(fis,rule,x,y,n,ignore)

% Show the initial cost.
cost = findcost(fis,x,y);
fprintf('Initial cost = %f\n',cost);

% Optimize the rule parameters.
numMFs = numel(fis.Outputs.MembershipFunctions);
for ite = 1:n
 for i = 1:numel(rule)
 % Get the consequent value.
 pval = getTunableValues(fis,rule(i));

3 Fuzzy Inference System Tuning

3-66

 % Loop through the output MF indices to minimize the cost.
 % Use the output indices according to AllowNot and AllowEmpty.
 allowNot = rule(i).Consequent.AllowNot;
 allowEmpty = rule(i).Consequent.AllowEmpty;
 if allowNot && allowEmpty
 mfID = -numMFs:numMFs;
 elseif allowNot && ~allowEmpty
 mfID = [-numMFs:-1 1:numMFs];
 elseif ~allowNot && allowEmpty
 mfID = 0:numMFs;
 else
 mfID = 1:numMFs;
 end
 cost = 1000;
 minCostFIS = fis;
 for j = 1:length(mfID)
 % Update the consequent value.
 pval(1) = mfID(j);
 % Set the consequent value in the FIS.
 fis = setTunableValues(fis,rule(i),pval,'IgnoreInvalidParameters',ignore);
 % Evaluate cost.
 rmse = findcost(fis,x,y);
 % Update the FIS with the minimum cost.
 if rmse<cost
 cost = rmse;
 minCostFIS = fis;
 end
 end
 fis = minCostFIS;
 end
 fprintf('Iteration %d: Cost = %f\n',ite,cost);
end

end

function cost = findcost(fis,x,y)

actY = evalfis(fis,x);
d = y - actY;
cost = sqrt(mean(d.*d));

end

See Also
Apps
Fuzzy Logic Designer

Functions
tunefis | getTunableSettings

More About
• “Tune Fuzzy Inference System Using Fuzzy Logic Designer” on page 3-6
• “Tune Fuzzy Inference System at the Command Line” on page 3-21

 Customize FIS Tuning Process

3-67

• “Tune Fuzzy Trees” on page 3-47

3 Fuzzy Inference System Tuning

3-68

Tune FIS Tree for Gas Mileage Prediction

This example shows how to tune parameters of a FIS tree, which is a collection of connected fuzzy
inference systems. This example uses particle swarm and pattern search optimization, which require
Global Optimization Toolbox™ software.

Automobile fuel consumption prediction in miles per gallon (MPG) is a typical nonlinear regression
problem. It uses several automobile profile attributes to predict fuel consumption. The training data
is available in the University of California at Irvine Machine Learning Repository and contains data
collected from automobiles of various makes and models.

This example uses the following six input data attributes to predict the output data attribute MPG
with a FIS tree:

1 Number of cylinders
2 Displacement
3 Horsepower
4 Weight
5 Acceleration
6 Model year

Prepare Data

Load the data. Each row of the dataset obtained from the repository represents a different automobile
profile.

data = loadGasData;

data contains 7 columns, where the first six columns contain the following input attributes.

• Number of cylinders
• Displacement
• Horsepower
• Weight
• Acceleration
• Model year

The seventh column contains the output attribute, MPG.

Create separate input and output data sets, X and Y, respectively.

X = data(:,1:6);
Y = data(:,7);

Partition the input and output data sets into training data (odd-indexed samples) and validation data
(even-indexed samples).

trnX = X(1:2:end,:); % Training input data set
trnY = Y(1:2:end,:); % Training output data set
vldX = X(2:2:end,:); % Validation input data set
vldY = Y(2:2:end,:); % Validation output data set

 Tune FIS Tree for Gas Mileage Prediction

3-69

https://www.ics.uci.edu/~mlearn/MLRepository.html

Extract the range of each data attribute, which you will use for input/output range definition during
FIS construction.

dataRange = [min(data)' max(data)'];

Construct a FIS Tree

For this example, construct a FIS tree using the following steps:

1 Rank the input attributes based on their correlations with the output attribute.
2 Create multiple FIS objects using the ranked input attributes.
3 Construct a FIS tree from the FIS objects.

Rank Inputs According to Correlation Coefficients

Calculate the correlation coefficients for the training data. In the final row of the correlation matrix,
the first six elements show the correlation coefficients between the six put data attributes and the
output attribute.

c1 = corrcoef(data);
c1(end,:)

ans = 1×7

 -0.7776 -0.8051 -0.7784 -0.8322 0.4233 0.5805 1.0000

The first four input attributes have negative values, and the last two input attributes have positive
values.

Rank the input attributes that have negative correlations in descending order by the absolute value of
their correlation coefficients.

1 Weight
2 Displacement
3 Horsepower
4 Number of cylinders

Rank the input attributes that have positive correlations in descending order by the absolute value of
their correlation coefficients.

1 Model year
2 Acceleration

These rankings show that the weight and model year have the highest negative and positive
correlations with MPG, respectively.

Create Fuzzy Inference Systems

For this example, implement a FIS tree with the following structure.

3 Fuzzy Inference System Tuning

3-70

The FIS tree uses multiple two-input-one-output FIS objects to reduce the total number of rules used
In the inference process. fis1, fis2, and fis3 directly take the input values and generate
intermediate MPG values, which are further combined using fis4 and fis5.

Input attributes with negative and positive correlation values are paired up to combine both positive
and negative effects on the output for prediction. The inputs are grouped according to their ranks as
follows:

• Weight and model year
• Displacement and acceleration
• Horsepower and number of cylinders

The last group includes only inputs with negative correlation values since there are only two inputs
with positive correlation values.

This example uses Sugeno-type FIS objects for faster evaluation during the tuning process as
compared to Mamdani systems. Each FIS includes two inputs and one output, where each input
contains two default triangular membership functions (MFs), and the output includes 4 default
constant MFs. Specify the input and output ranges using the corresponding data attribute ranges.

The first FIS combines the weight and model year attributes.

fis1 = sugfis('Name','fis1');
fis1 = addInput(fis1,dataRange(4,:),'NumMFs',2,'Name',"weight");
fis1 = addInput(fis1,dataRange(6,:),'NumMFs',2,'Name',"year");
fis1 = addOutput(fis1,dataRange(7,:),'NumMFs',4);

The second FIS combines the displacement and acceleration attributes.

fis2 = sugfis('Name','fis2');
fis2 = addInput(fis2,dataRange(2,:),'NumMFs',2,'Name',"displacement");
fis2 = addInput(fis2,dataRange(5,:),'NumMFs',2,'Name',"acceleration");
fis2 = addOutput(fis2,dataRange(7,:),'NumMFs',4);

The third FIS combines the horsepower and number of cylinder attributes.

fis3 = sugfis('Name','fis3');
fis3 = addInput(fis3,dataRange(3,:),'NumMFs',2,'Name',"horsepower");
fis3 = addInput(fis3,dataRange(1,:),'NumMFs',2,'Name',"cylinders");
fis3 = addOutput(fis3,dataRange(7,:),'NumMFs',4);

The fourth FIS combines the outputs of the first and second FIS.

 Tune FIS Tree for Gas Mileage Prediction

3-71

fis4 = sugfis('Name','fis4');
fis4 = addInput(fis4,dataRange(7,:),'NumMFs',2);
fis4 = addInput(fis4,dataRange(7,:),'NumMFs',2);
fis4 = addOutput(fis4,dataRange(7,:),'NumMFs',4);

The final FIS combines the outputs of third and fourth FIS and generates the estimated MPG. This
FIS has the same input and output ranges as the fourth FIS.

fis5 = fis4;
fis5.Name = 'fis5';
fis5.Outputs(1).Name = "mpg";

Construct FIS Tree

Connect the fuzzy systems (fis1, fis2, fis3, fis4, and fis5) according to the FIS tree diagram.

fisTin = fistree([fis1 fis2 fis3 fis4 fis5],[...
 "fis1/output1" "fis4/input1"; ...
 "fis2/output1" "fis4/input2"; ...
 "fis3/output1" "fis5/input2"; ...
 "fis4/output1" "fis5/input1"])

fisTin =
 fistree with properties:

 Name: "fistreemodel"
 FIS: [1x5 sugfis]
 Connections: [4x2 string]
 Inputs: [6x1 string]
 Outputs: "fis5/mpg"
 DisableStructuralChecks: 0

 See 'getTunableSettings' method for parameter optimization.

Tune FIS Tree with Training Data

Tuning is performed in two steps.

1 Learn the rule base while keeping the input and output MF parameters constant.
2 Tune the parameters of the input/output MFs and rules.

The first step is less computationally expensive due to the small number of rule parameters, and it
quickly converges to a fuzzy rule base during training. In the second step, using the rule base from
the first step as an initial condition provides fast convergence of the parameter tuning process.

Learn Rules

To learn a rule base, first specify tuning options using a tunefisOptions object. Global optimization
methods (genetic algorithm or particle swarm) are suitable for initial training when all the
parameters of a fuzzy system are untuned. For this example, tune the FIS tree using the particle
swarm optimization method ('particleswarm').

3 Fuzzy Inference System Tuning

3-72

To learn new rules, set the OptimizationType to 'learning'. Restrict the maximum number of
rules to 4. The number of tuned rules of each FIS can be less than this limit, since the tuning process
removes duplicate rules.

options = tunefisOptions('Method','particleswarm',...
 'OptimizationType','learning', ...
 'NumMaxRules',4);

If you have Parallel Computing Toolbox™ software, you can improve the speed of the tuning process
by setting options.UseParallel to true. If you do not have Parallel Computing Toolbox software,
set options.UseParallel to false.

Set the maximum number of iterations to 50. To reduce training error in the rule learning process,
you can increase the number of iterations. However, using too many iterations can overtune the FIS
tree to the training data, increasing the validation errors.

options.MethodOptions.MaxIterations = 50;

Since particle swarm optimization uses random search, to obtain reproducible results, initialize the
random number generator to its default configuration.

rng('default')

Tune the FIS tree using the specified tuning data and options. Set the input order of the training data
according to the FIS tree connections as follows: weight, year, displacement, acceleration,
horsepower, and cylinders.

inputOrders1 = [4 6 2 5 3 1];
orderedTrnX1 = trnX(:,inputOrders1);

Learning rules with tunefis function takes approximately 4 minutes. For this example, enable
tuning by setting runtunefis to true. To load pretrained results without running tunefis, you can
set runtunefis to false.

runtunefis = false;

Parameter settings can be empty when learning new rules. For more information, see tunefis.

if runtunefis
 fisTout1 = tunefis(fisTin,[],orderedTrnX1,trnY,options); %#ok<UNRCH>
else
 tunedfis = load('tunedfistreempgprediction.mat');
 fisTout1 = tunedfis.fisTout1;
 rmseValue = calculateRMSE(fisTout1,orderedTrnX1,trnY);
 fprintf('Training RMSE = %.3f MPG\n',rmseValue);
end

Training RMSE = 3.399 MPG

The Best f(x) column shows the training root-mean-squared-error (RMSE).

The learning process produces a set of new rules for the FIS tree.

fprintf("Total number of rules = %d\n",numel([fisTout1.FIS.Rules]));

Total number of rules = 17

 Tune FIS Tree for Gas Mileage Prediction

3-73

The learned system should have similar RMSE performance for both the training and validation data
sets. To calculate the RMSE for the validation data set, evaluate fisout1 using validation input data
set vldX. To hide run-time warnings during evaluation, set all the warning options to none.

Calculate the RMSE between the generated output data and the validation output data set vldY.
Since the training and validation errors are similar, the learned system does not overfit the training
data.

orderedVldX1 = vldX(:,inputOrders1);
plotActualAndExpectedResultsWithRMSE(fisTout1,orderedVldX1,vldY)

Tune All Parameters

After learning the new rules, tune the input/output MF parameters along with the parameters of the
learned rules. To obtain the tunable parameters of the FIS tree, use the getTunableSettings
function.

[in,out,rule] = getTunableSettings(fisTout1);

To tune the existing FIS tree parameter settings without learning new rules, set the
OptimizationType to 'tuning'.

options.OptimizationType = 'tuning';

3 Fuzzy Inference System Tuning

3-74

Since the FIS tree already learned rules using the training data, use a local optimization method for
fast convergence of the parameter values. For this example, use the pattern search optimization
method ('patternsearch').

options.Method = 'patternsearch';

Tuning the FIS tree parameters takes more iterations than the previous rule-learning step. Therefore,
increase the maximum number of iterations of the tuning process to 75. As in the first tuning stage,
you can reduce training errors by increasing the number of iterations. However, using too many
iterations can overtune the parameters to the training data, increasing the validation errors.

options.MethodOptions.MaxIterations = 75;

To improve pattern search results, set method option UseCompletePoll to true.

options.MethodOptions.UseCompletePoll = true;

Tune the FIS tree parameters using the specified tunable settings, training data, and tuning options.

Tuning parameter values with tunefis function takes several minutes. To load pretrained results
without running tunefis, you can set runtunefis to false.

rng('default')
if runtunefis
 fisTout2 = tunefis(fisTout1,[in;out;rule],orderedTrnX1,trnY,options); %#ok<UNRCH>
else
 fisTout2 = tunedfis.fisTout2;
 rmseValue = calculateRMSE(fisTout2,orderedTrnX1,trnY);
 fprintf('Training RMSE = %.3f MPG\n',rmseValue);
end

Training RMSE = 3.037 MPG

At the end of the tuning process, the training error reduces compared to the previous step.

Check Performance

Validate the performance of the tuned FIS tree, fisout2, using the validation input data set vldX.

Compare the expected MPG obtained from the validation output data set vldY and actual MPG
generated using fisout2. Compute the RMSE between these results.

plotActualAndExpectedResultsWithRMSE(fisTout2,orderedVldX1,vldY)

 Tune FIS Tree for Gas Mileage Prediction

3-75

Tuning the FIS tree parameters improves the RMSE compared to the results from the initial learned
rule base. Since the training and validation errors are similar, the parameters values are not
overtuned.

Analyze Intermediate Data

To gain insight into the operation of your fuzzy tree, you can add the outputs of the component fuzzy
systems as outputs of your FIS tree. For this example, to access the intermediate FIS outputs, add
three additional outputs to the tuned FIS tree.

fisTout3 = fisTout2;
fisTout3.Outputs(end+1) = "fis1/output1";
fisTout3.Outputs(end+1) = "fis2/output1";
fisTout3.Outputs(end+1) = "fis3/output1";

To generate the additional outputs, evaluate the augmented FIS tree, fisTout3.

actY = evaluateFIS(fisTout3,orderedVldX1);
figure
plot(actY(:,[2 3 4 1]))
xlabel("Input dataset index")
ylabel("MPG"),axis([1 200 0 55])
legend(["Output of fis1" "Output of fis2" "Output of fis3" "Output of fis5"],...
 'Location','NorthEast','NumColumns',2)
title("Intermediate and Final Outputs")

3 Fuzzy Inference System Tuning

3-76

The final output of the FIS tree (fis5 output) appears to be highly correlated with the outputs of
fis1 and fis3. To validate this assessment, check the correlation coefficients of the FIS outputs.

c2 = corrcoef(actY(:,[2 3 4 1]));
c2(end,:)

ans = 1×4

 0.9541 0.8245 -0.8427 1.0000

The last row of the correlation matrix shows that the outputs of fis1 and fis3 (first and third
column, respectively) have higher correlations with the final output as compared to the output of
fis2 (second column). This result indicates that simplifying the FIS tree by removing fis2 and fis4
and can potentially produce similar training results compared to the original tree structure.

Simplify and Retrain FIS Tree

Remove fis2 and fis4 from the FIS tree and connect the output of fis1 to the first input of fis5.
When you remove a FIS from a FIS tree, any existing connections to that FIS are also removed.

 Tune FIS Tree for Gas Mileage Prediction

3-77

fisTout3.FIS([2 4]) = [];
fisTout3.Connections(end+1,:) = ["fis1/output1" "fis5/input1"];
fis5.Inputs(1).Name = "fis1out";

To make the number of FIS tree outputs match the number of outputs in the training data, remove
the FIS tree outputs from fis1 and fis3.

fisTout3.Outputs(2:end) = [];

Update the input training data order according to the new FIS tree input configuration.

inputOrders2 = [4 6 3 1];
orderedTrnX2 = trnX(:,inputOrders2);

Since the FIS tree configuration is changed, you must rerun both the learning and tuning steps. In
the learning phase, the existing rule parameters are also tuned to fit the new configuration of the FIS
tree.

options.Method = "particleswarm";
options.OptimizationType = "learning";
options.MethodOptions.MaxIterations = 50;

[~,~,rule] = getTunableSettings(fisTout3);

rng('default')
if runtunefis
 fisTout4 = tunefis(fisTout3,rule,orderedTrnX2,trnY,options); %#ok<UNRCH>
else
 fisTout4 = tunedfis.fisTout4;
 rmseValue = calculateRMSE(fisTout4,orderedTrnX2,trnY);
 fprintf('Training RMSE = %.3f MPG\n',rmseValue);
end

Training RMSE = 3.380 MPG

In the training phase, the parameters of the membership function and rules are tuned.

options.Method = "patternsearch";
options.OptimizationType = "tuning";
options.MethodOptions.MaxIterations = 75;
options.MethodOptions.UseCompletePoll = true;
[in,out,rule] = getTunableSettings(fisTout4);
rng('default')
if runtunefis

3 Fuzzy Inference System Tuning

3-78

 fisTout5 = tunefis(fisTout4,[in;out;rule],orderedTrnX2,trnY,options); %#ok<UNRCH>
else
 fisTout5 = tunedfis.fisTout5;
 rmseValue = calculateRMSE(fisTout5,orderedTrnX2,trnY);
 fprintf('Training RMSE = %.3f MPG\n',rmseValue);
end

Training RMSE = 3.049 MPG

At the end of the tuning process, the FIS tree contains updated MF and rule parameter values. The
rule base size of the new FIS tree configuration is smaller than the previous configuration.

fprintf("Total number of rules = %d\n",numel([fisTout5.FIS.Rules]));

Total number of rules = 11

Check Performance of the Simplified FIS Tree

Evaluate the updated FIS tree using the four input attributes of the checking dataset.

orderedVldX2 = vldX(:,inputOrders2);
plotActualAndExpectedResultsWithRMSE(fisTout5,orderedVldX2,vldY)

The simplified FIS tree with four input attributes produces better results in terms of RMSE as
compared to the first configuration, which uses six input attributes. Therefore, it shows that a FIS
tree can be represented with fewer number of inputs and rules to generalize the training data.

 Tune FIS Tree for Gas Mileage Prediction

3-79

Conclusion

You can further improve the training error of the tuned FIS tree by:

• Increasing number of iterations in both the rule-learning and parameter-tuning phases. Doing so
increases the duration of the optimization process and can also increase validation error due to
overtuned system parameters with the training data.

• Using global optimization methods, such as ga and particleswarm, in both rule-learning and
parameter-tuning phases. ga and particleswarm perform better for large parameter tuning
ranges since they are global optimizers. On the other hand, patternsearch and
simulannealbnd perform better for small parameter ranges since they are local optimizers. If
rules are already added to a FIS tree using training data, then patternsearch and
simulannealbnd may produce faster convergence as compared to ga and particleswarm. For
more information on these optimization methods and their options, see ga (Global Optimization
Toolbox), particleswarm (Global Optimization Toolbox), patternsearch (Global Optimization
Toolbox), and simulannealbnd (Global Optimization Toolbox).

• Changing the FIS properties, such as the type of FIS, number of inputs, number of input/output
MFs, MF types, and number of rules. For fuzzy systems with a large number of inputs, a Sugeno
FIS generally converges faster than a Mamdani FIS since a Sugeno system has fewer output MF
parameters (if constant MFs are used) and faster defuzzification. Small numbers of MFs and
rules reduce the number of parameters to tune, producing a faster tuning process. Furthermore, a
large number of rules may overfit the training data.

• Modifying tunable parameter settings for MFs and rules. For example, you can tune the support of
a triangular MF without changing its peak location. Doing so reduces the number of tunable
parameters and can produce a faster tuning process for specific applications. For rules, you can
exclude zero MF indices by setting the AllowEmpty tunable setting to false, which reduces the
overall number of rules during the learning phase.

• Changing FIS tree properties, such as number of fuzzy systems and connections between the
fuzzy systems.

• Using different ranking and grouping of the inputs to the FIS tree.

Local Functions
function plotActualAndExpectedResultsWithRMSE(fis,x,y)

% Calculate RMSE bewteen actual and expected results
[rmse,actY] = calculateRMSE(fis,x,y);

% Plot results
figure
subplot(2,1,1)
hold on
bar(actY)
bar(y)
bar(min(actY,y),'FaceColor',[0.5 0.5 0.5])
hold off
axis([0 200 0 60])
xlabel("Validation input dataset index"),ylabel("MPG")
legend(["Actual MPG" "Expected MPG" "Minimum of actual and expected values"],...
 'Location','NorthWest')
title("RMSE = " + num2str(rmse) + " MPG")

subplot(2,1,2)
bar(actY-y)

3 Fuzzy Inference System Tuning

3-80

xlabel("Validation input dataset index"),ylabel("Error (MPG)")
title("Difference Between Actual and Expected Values")

end

function [rmse,actY] = calculateRMSE(fis,x,y)

% Evaluate FIS
actY = evaluateFIS(fis,x);

% Calculate RMSE
del = actY - y;
rmse = sqrt(mean(del.^2));

end

function y = evaluateFIS(fis,x)

% Specify options for FIS evaluation
persistent evalOptions
if isempty(evalOptions)
 evalOptions = evalfisOptions("EmptyOutputFuzzySetMessage","none", ...
 "NoRuleFiredMessage","none","OutOfRangeInputValueMessage","none");
end

% Evaluate FIS
y = evalfis(fis,x,evalOptions);

end

See Also
tunefis | sugfis | getTunableSettings | fistree

More About
• “Tuning Fuzzy Inference Systems” on page 3-2
• “Tune Fuzzy Inference System at the Command Line” on page 3-21

 Tune FIS Tree for Gas Mileage Prediction

3-81

Optimize FIS Parameters with K-Fold Cross-Validation

When tuning the parameters of a fuzzy inference system (FIS), you can use k-fold cross-validation to
prevent overfitting.

This example shows how to use k-fold cross validation at the command-line. You can also use k-fold
validation when tuning a FIS using the Fuzzy Logic Designer app. For more information on
specifying tuning options in the app, see “Configure Tuning Options in Fuzzy Logic Designer” on page
3-52.

Data Overfitting in FIS Parameter Tuning

Data overfitting is a common problem in FIS parameter optimization. When overfitting occurs, the
tuned FIS produces optimized results for the training data set but performs poorly for a test data set.
Due to overtuning, the optimized FIS parameter values pick up noise from the training data set and
lose the ability to generalize to new data sets. The difference between the training and test
performance increases with the increased bias of the training data set.

To overcome the data overfitting problem, you can stop a tuning process early based on an unbiased
evaluation of the model using a separate validation data set. However, such a validation data set can
also increase bias if it does not accurately represent the problem space. To overcome bias from the
validation data set, a k-fold cross-validation approach is commonly used. Here, the training data is
randomly shuffled and then divided into k partitions, as shown in the following figure. For each
training-validation iteration, you use a different partition for validation, and use the remaining data
for testing. Therefore, you use each data partition once for validation and k− 1 times for training.

Each training-validation iteration runs for n cycles. However, an iteration can stop early and advance
to the next iteration if an increase in the validation cost exceeds a predefined threshold value. The
optimized model at the end of the kth iteration is used as the output of the k-fold cross-validation
process.

This example shows how using k-fold cross-validation with the tunefis function prevents data
overfitting compared to parameter tuning that does not use k-fold cross-validation.

3 Fuzzy Inference System Tuning

3-82

Tune FIS Without K-Fold Validation

This example describes a data overfitting problem for automobile fuel consumption prediction. It uses
several automobile profile attributes to predict fuel consumption. The training data is available in the
University of California at Irvine Machine Learning Repository and contains data collected from
automobiles of various makes and models.

This example uses the following six input data attributes to predict the output data attribute MPG
with a FIS.

• Number of cylinders
• Displacement
• Horsepower
• Weight
• Acceleration
• Model year

Load the data using the loaddata utility function shown at the end of the example. This function
creates training and test data sets.

[data,varName,trnX,trnY,testX,testY] = loadData;

Create an initial FIS based on the input and output data attributes using the constructFIS utility
function.

fisin = constructFIS(data,varName);

Create an option set for tuning the FIS. The default option set uses GA for optimization.

options = tunefisOptions;

If you have Parallel Computing Toolbox™ software, you can improve the speed of the tuning process
by setting options.UseParallel to true. If you do not have Parallel Computing Toolbox software,
set options.UseParallel to false.

To demonstrate the data overfitting problem, this example uses a maximum of 100 generations to
tune the rules.

options.MethodOptions.MaxGenerations = 100;

Tune the FIS using the specified tuning data and options. Tuning rules using the tunefis function
takes several minutes. This example uses a flag, runtunefis, to either run the tunefis function or
load pretrained results. To load the pretrained results, set runtunefis to false.

runtunefis = false;

To demonstrate the data overfitting problem, use the following performance measures:

• Training error — Root mean squared error (RMSE) between the expected training output and the
actual training output obtained from the tuned FIS.

• Test error — RMSE between the expected test output and the actual test output obtained from the
tuned FIS.

• Function count — Total number of evaluations of the cost function for tuning the FIS.

 Optimize FIS Parameters with K-Fold Cross-Validation

3-83

https://www.ics.uci.edu/~mlearn/MLRepository.html

In this example, use only rule parameter settings to tune the FIS.

Since GA optimization uses random search, to obtain reproducible results, initialize the random
number generator to its default configuration.

if runtunefis
 % Get rule parameter settings.
 [~,~,rule] = getTunableSettings(fisin);

 % Set default random number generator.
 rng('default')

 % Tune rule parameters.
 [outputFIS,optimData] = tunefis(fisin,rule,trnX,trnY,options);

 % Get the training error.
 trnErrNoKFold = optimData.tuningOutputs.fval

 % Calculate the test error.
 evalOptions = evalfisOptions("EmptyOutputFuzzySetMessage","none", ...
 "NoRuleFiredMessage","none","OutOfRangeInputValueMessage","none");
 actY = evalfis(outputFIS,testX,evalOptions);
 del = actY - testY;
 testErrNoKFold = sqrt(mean(del.^2))

 % Get the function count.
 fcnCountNoKFold = optimData.totalFcnCount

 save tuningWithoutKFoldValidation trnErrNoKFold testErrNoKFold fcnCountNoKFold
else
 % Load the pretrained results.
 results = load('tuningWithoutKFoldValidation.mat');
 trnErrNoKFold = results.trnErrNoKFold
 testErrNoKFold = results.testErrNoKFold
 fcnCountNoKFold = results.fcnCountNoKFold
end

trnErrNoKFold = 2.4952

testErrNoKFold = 2.8412

fcnCountNoKFold = 19210

The higher value of the test error compared to the training error indicates that the trained FIS is
more biased to the training data.

Tune FIS Parameters with K-Fold Validation

You can use k-fold cross-validation in FIS parameter optimization by setting options.KFoldValue
to a value greater than or equal to 2. For this example, set the k-fold value to 4.

options.KFoldValue = 4;

To specify a tolerance value, used to stop the k-fold tuning process early, set the
options.ValidationTolerance property. For this example, set the tolerance value to 0.02. This
tolerance value configures the k-fold tuning process to stop if the current validation cost increases by
more than 2% of the minimum validation cost found up to that point in the tuning process.

options.ValidationTolerance = 0.02;

3 Fuzzy Inference System Tuning

3-84

For a noisy data set, you can compute a moving average of the validation cost by setting the
options.ValidationWindowSize property to a value greater than 1. For this example, set the
validation window size to 2.

options.ValidationWindowSize = 2;

Restrict the maximum number of generations in each tuning process to 25 so that the total number of
generations in the 4-fold tuning process is the same as the previous case.

options.MethodOptions.MaxGenerations = 25;

Tune the FIS with k-fold validation.

if runtunefis
 % Set default random number generator.
 rng('default')

 % Tune the FIS.
 [outputFIS,optimData] = tunefis(fisin,rule,trnX,trnY,options);

 % Get the training error.
 trnErrWithKFold = optimData.tuningOutputs(end).fval

 % Calculate the test error.
 actY = evalfis(outputFIS,testX,evalOptions);
 del = actY - testY;
 testErrWithKFold = sqrt(mean(del.^2))

 % Get the function count.
 fcnCountWithKFold = optimData.totalFcnCount

 save tuningWithKFoldValidation trnErrWithKFold testErrWithKFold fcnCountWithKFold
else
 % Load the pretrained results.
 results = load('tuningWithKFoldValidation.mat');
 trnErrWithKFold = results.trnErrWithKFold
 testErrWithKFold = results.testErrWithKFold
 fcnCountWithKFold = results.fcnCountWithKFold
end

trnErrWithKFold = 2.7600

testErrWithKFold = 2.9082

fcnCountWithKFold = 5590

Plot the test-to-training error differences for training both with and without k-fold cases.

figure
cats = categorical({'Without k-fold','With k-fold'});
cats = reordercats(cats,{'Without k-fold','With k-fold'});
data = [trnErrNoKFold testErrNoKFold testErrNoKFold-trnErrNoKFold; ...
 trnErrWithKFold testErrWithKFold testErrWithKFold-trnErrWithKFold];
b = bar(cats,data);
ylabel('Root mean squared error (RMSE)')
text(b(3).XEndPoints,b(3).YEndPoints,string(b(3).YData),...
 'HorizontalAlignment','center','VerticalAlignment','bottom')
legend('Training error','Test error',...
 'Test-to-training error difference','Location','northoutside')

 Optimize FIS Parameters with K-Fold Cross-Validation

3-85

The test error performance is similar in both cases. However, the difference in the training and test
errors with k-fold validation is less than without k-fold validation. Therefore, the k-fold validation
reduces the bias of the training data and produces better generalized FIS parameter values. The total
function count during k-fold validation is fewer than the count without k-fold validation.

disp(table(fcnCountNoKFold,fcnCountWithKFold, ...
 'VariableNames',["Without k-fold" "With k-fold"], ...
 'RowName',"Function counts"))

 Without k-fold With k-fold
 ______________ ___________

 Function counts 19210 5590

Therefore, k-fold validation reduces the number of generations in each GA optimization cycle,
reducing FIS parameter overfitting. The overall k-fold validation results can be further improved by
experimenting with different k-fold, tolerance, and window size values.

In general, use the following process for FIS parameter optimization with k-fold validation:

1 Start with a validation tolerance of 0 and a window size of 1, which provide the minimal k-fold
performance.

2 Increase the k-fold value to achieve your desired performance. In general, use a k-fold value less
than or equal to 10.

3 Increase the tolerance value to achieve your desired performance.

3 Fuzzy Inference System Tuning

3-86

4 Increase the window size to achieve your desired performance.
5 Repeat steps 3 and 4 in a loop as necessary.

High values of tolerance, window size, and k-fold value introduce data overfitting in the optimized FIS
parameter values. Therefore, use smaller values to achieve your desired tuning performance.

Local Functions

function [data,varName,trnX,trnY,testX,testY] = loadData

% Load the data. Each row of the dataset obtained from the repository represents
% a different automobile profile. Data contains 7 columns, where the first six
% columns contain the following input attributes.
% - Number of cylinders
% - Displacement
% - Horsepower
% - Weight
% - Acceleration
% - Model year
% The seventh column contains the output attribute, MPG.
[data,name] = loadGasData;

% Remove leading and trailing whitespace from the attribute names.
varName = strtrim(string(name));

% Create input and output data sets.
n = size(data,2);
x = data(:,1:n-1);
y = data(:,n);

% Create training and test data sets.
trnX = x(1:2:end,:);
trnY = y(1:2:end,:);
testX = x(2:2:end,:);
testY = y(2:2:end,:);

end

function fisin = constructFIS(data,varName)

% Create a Sugeno FIS.
fisin = sugfis;

% Add input and output variables to the FIS, where each variable represents
% one of the data attributes. For each variable, use the corresponding
% attribute name and range. To reduce the number of rules, use two MFs for
% each input variable, which results in 2^6=64 input MF combinations.
% Therefore, the FIS uses a maximum of 64 rules corresponding to the input
% MF combinations. Both input and output variables use default triangular
% MFs, which are uniformly distributed over the variable ranges.
dataRange = [min(data)' max(data)'];
numINputs = size(data,2)-1;
numInputMFs = 2;
numOutputMFs = numInputMFs^numINputs;
for i = 1:numINputs
 fisin = addInput(fisin,dataRange(i,:),...
 'Name',varName(i),'NumMFs',numInputMFs);

 Optimize FIS Parameters with K-Fold Cross-Validation

3-87

end

% To improve data generalization, use 64 MFs for the output variable.
% Doing so allows the FIS to use a different output MF for each rule.
fisin = addOutput(fisin,dataRange(end,:),...
 'Name',varName(end),'NumMFs',numOutputMFs);
fisin.Rules = repmat(fisrule,[1 numOutputMFs]);

end

See Also
tunefis | tunefisOptions

More About
• “Tuning Fuzzy Inference Systems” on page 3-2

3 Fuzzy Inference System Tuning

3-88

Predict Chaotic Time Series Using Type-2 FIS

This example shows chaotic time series prediction using a tuned type-2 fuzzy inference system (FIS).
This example tunes the FIS using particle swarm optimization, which requires Global Optimization
Toolbox™ software.

Time Series Data

This example simulates time-series data using the following form of the Mackey-Glass (MG) nonlinear
delay differential equation.

ẋ t = 0 . 2x t − τ
1 + x10 t − τ

− 0 . 1x t

Simulate the time series for 1200 samples using the following configuration.

• Sample time ts = 1 sec
• Initial condition x 0 = 1 . 2
• τ = 20
• x t − τ = 0 for t < τ.

ts = 1;
numSamples = 1200;
tau = 20;
x = zeros(1,numSamples+tau+1);
x(tau+1) = 1.2;
for t = 1+tau:numSamples+tau
 x_dot = 0.2*x(t-tau)/(1+(x(t-tau))^10)-0.1*x(t);
 x(t+1) = x(t) + ts*x_dot;
end

Plot the simulated MG time-series data.

figure(1)
plot(x(tau+2:end))
title('Mackey-Glass Chaotic Time Series')
xlabel('Time (sec)')
ylabel('x(t)')

 Predict Chaotic Time Series Using Type-2 FIS

3-89

Generate Training and Validation Data

Time-series prediction uses known time-series values up to time t to predict a future value at time
t + P. The standard method for this type of prediction is to create a mapping from D sample data
points, sampled every Δ units in time (x(t − (D− 1)Δ), …, x(t − Δ), x(t)) to a predicted future value
x = (t + P). For this example, set D = 4 and Δ = P = 1. Hence, for each t, the input and output
training data sets are x t − 3 , x t − 2 , x t − 1 , x t and x t + 1 , respectively. In other words, use
four successive known time-series values to predict the next value.

Create 1000 input/output data sets from samples x 100 + D− 1 to x 1100 + D− 2 .

D = 4;
inputData = zeros(1000,D);
outputData = zeros(1000,1);
for t = 100+D-1:1100+D-2
 for i = 1:D
 inputData(t-100-D+2,i) = x(t-D+i);
 end
 outputData(t-100-D+2,:) = x(t+1);
end

Use the first 500 data sets as training data (trnX and trnY) and the second 500 sets as validation
data (vldX and vldY).

trnX = inputData(1:500,:);
trnY = outputData(1:500,:);
vldX = inputData(501:end,:);
vldY = outputData(501:end,:);

3 Fuzzy Inference System Tuning

3-90

Construct FIS

This example uses a type-2 Sugeno FIS. Since a Sugeno FIS has fewer tunable parameters than a
Mamdani FIS, a Sugeno system generally converges faster during optimization.

fisin = sugfistype2;

Add three inputs, each with three default triangular membership functions (MFs). Initially, eliminate
the footprint of uncertainty (FOU) for each input MF by setting each lower MF equal to its
corresponding upper MF. To do so, set the scale and lag values of each lower MF to 1 and 0,
respectively. By eliminating the FOU for all input membership functions, you configure the type-2 FIS
to behave like a type-1 FIS.

numInputs = D;
numInputMFs = 3;
range = [min(x) max(x)];
for i = 1:numInputs
 fisin = addInput(fisin,range,'NumMFs',numInputMFs);
 for j = 1:numInputMFs
 fisin.Inputs(i).MembershipFunctions(j).LowerScale = 1;
 fisin.Inputs(i).MembershipFunctions(j).LowerLag = 0;
 end
end

For prediction, add an output to the FIS. The output contains default constant membership functions.
To provide maximum resolution for the input-output mapping, set the number of output MFs equal to
the number of input MF combinations.

numOutputMFs = numInputMFs^numInputs;
fisin = addOutput(fisin,range,'NumMFs',numOutputMFs);

View the FIS structure. Initially, the FIS has zero rules. The rules of the system are found during the
tuning process.

plotfis(fisin)

 Predict Chaotic Time Series Using Type-2 FIS

3-91

Tune FIS with Training Data

To tune the FIS, you use the following three steps.

1 Learn the rule base while keeping the input and output MF parameters constant.
2 Tune the output MF parameters and the upper MF parameters of the inputs while keeping the

rule and lower MF parameters constant.
3 Tune the lower MF parameters of the inputs while keeping the rule, output MF, and upper MF

parameters constant.

The first step is less computationally expensive due to the small number of rule parameters, and it
quickly converges to a fuzzy rule base during training. After the second step, the system is a trained
type-1 FIS. The third step produces a tuned type-2 FIS.

Learn Rules

To learn a rule base, first specify tuning options using a tunefisOptions object.

options = tunefisOptions;

Since the FIS does not contain any pretuned fuzzy rules, use a global optimization method (genetic
algorithm or particle swarm) to learn the rules. Global optimization methods perform better in large
parameter tuning ranges as compared to local optimization methods (pattern search and simulated
annealing). For this example, tune the FIS using particle swarm optimization ('particleswarm').

options.Method = 'particleswarm';

3 Fuzzy Inference System Tuning

3-92

To learn new rules, set the OptimizationType to 'learning'.

options.OptimizationType = 'learning';

Restrict the maximum number of rules to the number of input MF combinations. The number of tuned
rules can be less than this limit, since the tuning process removes duplicate rules.

options.NumMaxRules = numInputMFs^numInputs;

If you have Parallel Computing Toolbox™ software, you can improve the speed of the tuning process
by setting UseParallel to true. If you do not have Parallel Computing Toolbox software, set
UseParallel to false.

options.UseParallel = false;

Set the maximum number of iterations to 10. Increasing the number of iterations can reduce training
error. However, the larger number of iterations increases the duration of the tuning process and can
overtune the rule parameters to the training data.

options.MethodOptions.MaxIterations = 10;

Since particle swarm optimization uses random search, to obtain reproducible results, initialize the
random number generator to its default configuration.

rng('default')

Tuning a FIS using the tunefis function takes several minutes. For this example, enable tuning by
setting runtunefis to true. To load pretrained results without running tunefis, you can set
runtunefis to false.

runtunefis = false;

Tune the FIS using the specified training data and options.

if runtunefis
 fisout1 = tunefis(fisin,[],trnX,trnY,options);
else
 tunedfis = load('tunedfischaotictimeseriestype2.mat');
 fisout1 = tunedfis.fisout1;
end

View the structure of the trained FIS, which contains the new learned rules.

plotfis(fisout1)

 Predict Chaotic Time Series Using Type-2 FIS

3-93

Check the individual input-output relationships tuned by the learned rule base. For example, the
following figure shows the relationship between the second input and the output.

gensurf(fisout1,gensurfOptions('InputIndex',2))

3 Fuzzy Inference System Tuning

3-94

Evaluate the tuned FIS using the input validation data. Plot the actual generated output with the
expected validation output, and compute the root-mean-square-error (RMSE).

plotActualAndExpectedResultsWithRMSE(fisout1,vldX,vldY)

 Predict Chaotic Time Series Using Type-2 FIS

3-95

Tune Upper Membership Function Parameters

Tune the upper membership function parameters. A type-2 Sugeno FIS supports only crisp output
functions. Therefore, this step tunes input upper MFs and crisp output functions.

Obtain the input and output parameter settings using getTunableSettings. Since the FIS uses
triangular input MFs, you can tune the input MFs using asymmetric lag values.

[in,out] = getTunableSettings(fisout1,'AsymmetricLag',true);

Disable the tuning of lower MF parameters.

for i = 1:length(in)
 for j = 1:length(in(i).MembershipFunctions)
 in(i).MembershipFunctions(j).LowerScale.Free = false;
 in(i).MembershipFunctions(j).LowerLag.Free = false;
 end
end

To optimize the existing tunable MF parameters while keeping the rule base constant, set
OptimizationType to 'tuning'.

options.OptimizationType = 'tuning';

Tune the FIS using the specified tuning data and options. To load pretrained results without running
tunefis, you can set runtunefis to false.

rng('default')
if runtunefis

3 Fuzzy Inference System Tuning

3-96

 fisout2 = tunefis(fisout1,[in;out],trnX,trnY,options);
else
 tunedfis = load('tunedfischaotictimeseriestype2.mat');
 fisout2 = tunedfis.fisout2;
end

View the structure of the trained FIS, which now contains tuned upper MF parameters.

plotfis(fisout2)

Evaluate the tuned FIS using the validation data, compute the RMSE, and plot the actual generated
output with the expected validation output.

plotActualAndExpectedResultsWithRMSE(fisout2,vldX,vldY)

 Predict Chaotic Time Series Using Type-2 FIS

3-97

Tuning the upper MF parameters improves the performance of the FIS. This result is equivalent to
tuning a type-1 FIS.

Tune Lower Membership Function Parameters

Tune only the input lower MF parameters. To do so, set the lower scale and lag values tunable, and
disable tuning of the upper MF parameters.

for i = 1:length(in)
 for j = 1:length(in(i).MembershipFunctions)
 in(i).MembershipFunctions(j).UpperParameters.Free = false;
 in(i).MembershipFunctions(j).LowerScale.Free = true;
 in(i).MembershipFunctions(j).LowerLag.Free = true;
 end
end

Tune the FIS using the specified tuning data and options. To load pretrained results without running
tunefis, you can set runtunefis to false.

rng('default')
if runtunefis
 fisout3 = tunefis(fisout2,in,trnX,trnY,options);
else
 tunedfis = load('tunedfischaotictimeseriestype2.mat');
 fisout3 = tunedfis.fisout3;
end

View structure of the trained FIS, which now contains tuned lower MF parameters.

3 Fuzzy Inference System Tuning

3-98

plotfis(fisout3)

Evaluate the tuned FIS using the validation data, compute the RMSE, and plot the actual generated
output with the expected validation output.

plotActualAndExpectedResultsWithRMSE(fisout3,vldX,vldY)

 Predict Chaotic Time Series Using Type-2 FIS

3-99

Tuning both the upper and lower MF values improves the FIS performance. The RMSE improves
when the trained FIS includes both tuned upper and lower parameter values.

Conclusion

Type-2 MFs provides additional tunable parameters as compared to type-1 MFs. Therefore, with
adequate training data, a tuned type-2 FIS can fit the training data better than a tuned type-1 FIS.

Overall, you can produce different tuning results by modifying any of the following FIS properties or
tuning options:

• Number of inputs
• Number of MFs
• Type of MFs
• Optimization method
• Number of tuning iterations

Local Functions

function [rmse,actY] = calculateRMSE(fis,x,y)

% Specify options for FIS evaluation
evalOptions = evalfisOptions("EmptyOutputFuzzySetMessage","none", ...
 "NoRuleFiredMessage","none","OutOfRangeInputValueMessage","none");

3 Fuzzy Inference System Tuning

3-100

% Evaluate FIS
actY = evalfis(fis,x,evalOptions);

% Calculate RMSE
del = actY - y;
rmse = sqrt(mean(del.^2));

end

function plotActualAndExpectedResultsWithRMSE(fis,vldX,vldY)
[rmse,actY] = calculateRMSE(fis,vldX,vldY);

figure
plot([actY vldY])
axis([0 length(vldY) min(vldY)-0.01 max(vldY)+0.13])
xlabel('sample index')
ylabel('signal value')
title(['RMSE = ' num2str(rmse)])
legend(["Actual output" "Expected output"],'Location',"northeast")
end

See Also
tunefis | sugfistype2

More About
• “Type-2 Fuzzy Inference Systems” on page 2-8
• “Tuning Fuzzy Inference Systems” on page 3-2

 Predict Chaotic Time Series Using Type-2 FIS

3-101

Tune Fuzzy Robot Obstacle Avoidance System Using Custom
Cost Function

This example shows how to tune a fuzzy inference system (FIS) using a custom cost function. The
example requires Global Optimization Toolbox™ software.

Problem Description

In this example, you use a custom cost function to learn robot navigation in a simulation environment.
The goal of the navigation task is to reach a specified target while avoiding obstacles. The direction to
the target is represented as a unit force vector (Ft) directed from the robot to a target location. The

obstacle avoidance direction is represented by a unit force vector (Fo) directed towards the robot
from the closest obstacle location.

The robot, target, and obstacle are shown as circles with 0.5 m radius in the 25 m x 25 m simulation
environment. The navigation task is to combine the force vectors such that the direction θ of the
resultant force vector F provides a collision-free direction for the robot.

F = wFo + 1 −w Ft, where 0 ≤ w ≤ 1

θ = ∠F

3 Fuzzy Inference System Tuning

3-102

This example assumes a robot with differential kinematics for the simulation. In other words, the
robot can rotate on its center without any constraints. However, to avoid sharp turns, the change per
time step in the robot direction is limited to − π

4 , π
4 . Therefore, if the current robot heading direction

is θr k , the next heading direction is calculated as:

θr k + 1 = θr k + min max θ− θr k , π
4 , − π

4 .

The weight w of the force vector Fo is calculated using function fw:

w = fw α, θt, o

where

• α =
do
dt

 is the ratio of the robot-to-obstacle distance (do) and the robot-to-target-distance (dt)

• θt, o is the absolute difference between the target and obstacle directions with respect to the robot

To achieve the navigation task, the function fw must generate high w values, that is, focus on
avoiding the obstacle when:

• Both the target and obstacle directions from the robot are similar (θt, o is low)
• The obstacle is closer to the robot than the target (α is low).

Otherwise, fw must generate low w values, that is, focus on reaching the target.

The goal of this example is to design a FIS that learns fuzzy rules and optimizes the FIS parameters
to model the function fw for collision-free robot navigation in the simulation environment.

Assumptions

The following assumptions apply for the robot simulation:

• The robot can perfectly localize in the simulation environment; that is, the robot knows its current
position in the simulation environment.

• The robot is equipped with perfect sensors to identify the obstacle and determine its location.
• The robot has no dynamic constraints; that is, the robot can rotate and move as commanded

without any mechanical constraints. To avoid sharp turns, a soft constraint is imposed on rotation,
which limits the change per time step in the robot heading to − π

4 , π
4 .

• The robot runs with a fixed speed. You can include additional fuzzy systems to control the robot
speed. For simplicity, this example uses a fixed speed for the robot.

Construct Fuzzy System

To model function fw, construct a FIS as shown in the following figure. For this example, use a
Mamdani FIS.

 Tune Fuzzy Robot Obstacle Avoidance System Using Custom Cost Function

3-103

fisin = mamfis;

Add the following two inputs as shown in the previous figure.

• α — Ratio of distances, robot-to-obstacle / robot-to-target
• θt, o — Difference between target and obstacle directions

Set the range of the first input to [0,2], which indicates that α contributes to obstacle avoidance
when the obstacle distance is less than or equal to twice the target distance.

Set the range of the second input to [0,pi/2], which indicates that θt, o contributes to obstacle
avoidance when the difference between the target and obstacle directions is less than or equal to
pi/2.

fisin = addInput(fisin,[0 2],'Name','alpha');
fisin = addInput(fisin,[0 pi/2],'Name','theta_t_o');

To minimize the number of rules, which corresponds to the number of combinations of input
membership functions, add two membership functions (MFs) to each input. To generate similar
membership values beyond the input ranges, use zmf (Z-shaped curve membership function) and smf
(S-shaped curve membership function) MFs. The tuning process optimizes the input MF parameter
values.

Add membership functions to the first input.

fisin = addMF(fisin,'alpha','zmf',[0 2],'Name','low');
fisin = addMF(fisin,'alpha','smf',[0 2],'Name','high');

Add membership functions to the second input.

fisin = addMF(fisin,'theta_t_o','zmf',[0 pi/2],'Name','low');
fisin = addMF(fisin,'theta_t_o','smf',[0 pi/2],'Name','high');

Add an output to the FIS or the obstacle force vector weight, restricting the weight values to the
range [0,1].

fisin = addOutput(fisin,[0 1],'Name','w');

Add two MFs to the output. You can add more MFs to the output for finer granularity of output
values. However, doing so increases the number of tuning parameters. The output MFs also use zmf
and smf to generate similar membership values beyond the input ranges. The tuning process
optimizes the output MF parameter values.

fisin = addMF(fisin,'w','zmf',[0 1],'Name','low');
fisin = addMF(fisin,'w','smf',[0 1],'Name','high');

View the FIS structure. Initially, the FIS has zero rules. The tuning process finds rules for the fuzzy
system.

figure
plotfis(fisin)

3 Fuzzy Inference System Tuning

3-104

Learn Rules and Optimize FIS Parameters

Since you do not have training data for this example, you simulate the robot navigation using a
custom cost function. The tuning process uses this custom cost function when optimizing the FIS
parameters.

For parameter optimization, obtain the parameter settings from the FIS.

[in,out] = getTunableSettings(fisin);

Next, create tuning options with OptimizationType set to learning. This example uses the
genetic algorithm (ga) optimization method for the tuning process. To improve the speed of the
tuning process, set the UseParallel option to true, which requires Parallel Computing Toolbox™
software. If you do not have Parallel Computing Toolbox software, set UseParallel to false.

options = tunefisOptions('Method','ga','OptimizationType','learning');

Set the population size of the genetic algorithm to 200. The larger population size increases the
probability of generating a better solution in fewer generations.

options.MethodOptions.PopulationSize = 200;

Set the maximum number of generations to 25. To tune the parameters further, you can set a higher
number of generations. However, doing so increases the duration of the tuning process and can
overtune the parameter values.

 Tune Fuzzy Robot Obstacle Avoidance System Using Custom Cost Function

3-105

options.MethodOptions.MaxGenerations = 25;

Set the locations of the obstacle, target, and robot for the training environments. Set the initial
heading of the robot to pi/2 for the training environment. To learn navigation both with and without
obstacle avoidance on the way to the target location, use two training tasks with different obstacle
locations.

trnObstacle = [3 12;13 18];
trnTarget = [13 22;13 22];
trnRobot = [13 2 pi/2;13 2 pi/2;];

showSimulationEnvironmentsForTraining(trnObstacle,trnTarget,trnRobot)

Specify the custom cost function using a function handle.

costFunction = @(fis)navigationCostFcn(fis,trnObstacle,trnTarget,trnRobot);

In the cost function, the robot navigation is simulated in the training environments using each FIS
from the population. Each navigation task is run for 100 iterations, where each iteration is equivalent
to a decision cycle of length 1 s. The robot uses a fixed speed of 0.5 m/s throughout the navigation
task. For more simulation details, see the getNavigationResults function.

function cost = navigationCostFcn(fis,obstacle,target,robot)

cost = 0;

for i = 1:size(obstacle,1)

results = getNavigationResults(fis,obstacle(i,:),target(i,:),robot(i,:));

cost = cost + getNavigationCost(results);

end

end

The cost of each navigation task is the total distance traveled by the robot. If the robot does not reach
the target or collides with the obstacle, a high cost value (200) is assigned for the simulation.

function cost = getNavigationCost(results)

if results.notSafe || ~results.reachedTarget

cost = 200;

3 Fuzzy Inference System Tuning

3-106

else

cost = results.travelledDistance;

end

end

Since genetic algorithm optimization uses random search, to obtain reproducible results, initialize the
random number generator to its default configuration.

rng('default')

Learning rules using the tunefis function takes approximately 10 minutes. For this example, enable
tuning by setting runtunefis to true. To load pretrained results without running tunefis, you can
set runtunefis to false.

runtunefis = false;

Tune the FIS using the specified training environments and tuning options.

if runtunefis
 fisout = tunefis(fisin,[in;out],costFunction,options); %#ok<UNRCH>
else
 tunedfis = load('tunedfisnavigation.mat');
 fisout = tunedfis.fisout;
end

The tuned FIS produces the following robot trajectories in the simulation environments.

showNavigationTrajectories(fisout,trnObstacle,trnTarget,trnRobot)

In the first case, the robot reaches the target with minimum distance since the obstacle is not on the
path to the target. In the second case, the robot successfully avoids the obstacle and reaches the
target.

View the structure of the tuned FIS, fisout.

figure
plotfis(fisout)

 Tune Fuzzy Robot Obstacle Avoidance System Using Custom Cost Function

3-107

The tuning process produces a set of new rules for the FIS.

fisout.Rules

ans =
 1x5 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 Details:
 Description
 __

 1 "alpha==low & theta_t_o==high => w=low (1)"
 2 "alpha==low & theta_t_o==low => w=high (1)"
 3 "theta_t_o==high => w=low (1)"
 4 "alpha==high & theta_t_o==high => w=low (1)"
 5 "alpha==low => w=low (1)"

The rules are described as follows with respect to the expected behaviors of fw:

3 Fuzzy Inference System Tuning

3-108

• Rule 1 is consistent with the expected behavior of fw. When the obstacle is not located in front of
the robot on the way to the target (θt, o is high) and the obstacle is close (α is low), this rule
produces low weight values.

• Rule 4 is also consistent with the expected behavior of fw. When the obstacle is not located in
front of the robot on the way to the target (θt, o is high) and the obstacle is farther away (α is
high), this rule produces low weight values.

• Rule 3 generates low weight values when the obstacle is not located in front of the robot (θt, o is
high), irrespective of the obstacle distance. This rule covers the conditions for both rule 1 and rule
4. Therefore, rules 1 and 4 are redundant and can be removed.

• Rule 2 is also consistent with the expected behavior of fw. When the obstacle is close to the robot
(α is low) and is located in front of the robot on the way to the target (θt, o is low), this rule
produces high weight values for the obstacle avoidance task.

• Rule 5 generates low weight values when the obstacle distance is low. This rule contradicts rule 2
when θt, o is low. In this case, the output of rule 5 does not contribute to the final output due to the
high output values of rule 2. Therefore, rule 5 can also be removed.

Remove the redundant rules.

fisoutpruned = fisout;
fisoutpruned.Rules([1 4 5]) = [];
fisoutpruned.Rules

ans =
 1x2 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 Details:
 Description

 1 "alpha==low & theta_t_o==low => w=high (1)"
 2 "theta_t_o==high => w=low (1)"

fisout and fisoutpruned generate similar control surfaces. Therefore, only two rules are
necessary for obstacle avoidance in the simulation environment.

figure
subplot(1,2,1)
gensurf(fisout)
title('Output surface of fisout')
subplot(1,2,2)
gensurf(fisoutpruned)
title('Output surface of fisoutpruned')

 Tune Fuzzy Robot Obstacle Avoidance System Using Custom Cost Function

3-109

Check Performance

Validate the performance of the tuned FIS with different positions of the obstacle, robot, and target.
In the following validation cases, the robot successfully avoids the obstacle to reach the target
position using the tuned FIS.

vldObstacle = [13 5;10 10;8 8];
vldRobot = [5 12 0;5 20 -pi/2;19 19 -pi];
vldTarget = [23 12;15 4;5 5];

showNavigationTrajectories(fisoutpruned,vldObstacle,vldTarget,vldRobot)

3 Fuzzy Inference System Tuning

3-110

Conclusion

This example uses a custom cost function that simulates robot navigation in different training
environments to learn fuzzy rules and optimize the FIS parameter values for collision-free navigation.
You can Include more training environments to learn obstacle avoidance in other scenarios, for
example narrow corridor and U-shape obstacles. In these scenarios, the robot may need additional
navigation subtasks, such as wall following and subtarget (intermediate landmark) reaching, for
successful collision-free navigation to the target. Complex environments also require additional terms
in the cost calculation for safe navigation. For example, in a narrow corridor the robot should stay in
the middle; that is, the distances to the obstacles on the left and right should be the same.

Using a custom cost function with tunefis provides the flexibility of simulating a custom system
with custom cost calculation. However, the tradeoff is a lengthy tuning process due to the number of
simulations required (for each set of optimized parameter values). Therefore, if possible, to expedite
the tuning process, use training data. For instance, the tuning process in this example would run
faster if input/output decision data of a human operator was available for tuning the FIS.

Local Functions
function showSimulationEnvironment(obstacle,target,robot,navigationResults)

% Show the robot trajectory in the simulation environment.

% Radius of the robot, target, and obstacle.
radius = 1; % 1m

% Use 25mx25m simulation environment.
axis([0 25 0 25]);

% Set equal aspect ratio.
pbaspect([1 1 1])

% Temporary plots to enable legends.
hold on
plot(robot(1),robot(2)+radius,'ob','LineWidth',radius*1,'MarkerFaceColor','b')
plot(robot(1),robot(2)+radius,'or','LineWidth',radius*1,'MarkerFaceColor','r')
plot(robot(1),robot(2)+radius,'og','LineWidth',radius*1,'MarkerFaceColor','g')
hold off

% Draw obstacle.
rectangle('Position',[obstacle(1)-0.5*radius obstacle(2)+0.5*radius radius radius], ...
 'Curvature',[1 1],'FaceColor','b','EdgeColor','b')

% Draw target.
rectangle('Position',[target(1)-0.5*radius target(2)+0.5*radius radius radius], ...
 'Curvature',[1 1],'FaceColor','r','EdgeColor','r')

% Draw robot.
rectangle('Position',[robot(1)-0.5*radius robot(2)+0.5*radius radius radius], ...
 'Curvature',[1 1],'FaceColor','g','EdgeColor','g')

% Add labels, title, and legends.
xlabel('x (m)'),ylabel('y (m)')
title('Simulation Environment for Robot Navigation')
legend(["Obstacle" "Target" "Robot"])

% Plot the robot trajectory if specified.

 Tune Fuzzy Robot Obstacle Avoidance System Using Custom Cost Function

3-111

if nargin == 4
 x = navigationResults.x;
 y = navigationResults.y;
 for i = 1:numel(x)
 rectangle('Position',[x(i)-0.5*radius y(i)+0.5*radius radius radius], ...
 'Curvature',[1 1],'FaceColor','g','EdgeColor','g')
 end
end

end

function showSimulationEnvironmentsForTraining(obstacle,target,robot)

% Show simulation environments for training.
drawEnvironmentAndShowTrajectory(obstacle,target,robot,'Training Task')

end

function showNavigationTrajectories(fis,obstacle,target,robot)

% Show robot trajectories in the simulation environments.
drawEnvironmentAndShowTrajectory(obstacle,target,robot,'Navigation Task',fis)

end

function drawEnvironmentAndShowTrajectory(obstacle,target,robot,plotTitle,varargin)

% Expand figure horizontally to tile the simulation environments.
h = figure;
h.Position = [h.Position(1:2) 3*h.Position(3) h.Position(4)];
numTasks = size(target,1);

% Draw each simulation environment.
for i = 1:numTasks
 o = obstacle(i,:);
 t = target(i,:);
 r = robot(i,:);
 subplot(1,numTasks,i)
 if ~isempty(varargin)
 results = getNavigationResults(varargin{1},o,t,r);
 showSimulationEnvironment(o,t,r,results)
 else
 showSimulationEnvironment(o,t,r)
 end
 title([plotTitle ': ' num2str(i)])
end

end

See Also
tunefis | mamfis | getTunableSettings

More About
• “Tuning Fuzzy Inference Systems” on page 3-2
• “Tune Fuzzy Inference System at the Command Line” on page 3-21

3 Fuzzy Inference System Tuning

3-112

Classify Pixels Using Fuzzy Systems

This example shows how to classify image pixels using a fuzzy inference system (FIS). This example
requires Image Processing Toolbox™ software.

Pixel classification is an image processing technique that segments an image by classifying each pixel
according to specific pixel attributes. Noise and other sources of uncertainty can complicate pixel
classification. Using a FIS-based method for classification can help address such uncertainty.

This example includes the following stages.

1 Tune a FIS to classify pixels based on color.
2 Tune a FIS to classify pixels based on texture.
3 Combine the tuned FIS objects into a hierarchical fuzzy system for pixel classification.

Load the image data, which contains three visible segments: green grass, white border, and soccer
ball.

exData = load('fuzzpixclass');
cImg = exData.cImg;

figure
imshow(cImg)

This example uses fuzzy systems to segment the image into three categories by classifying each pixel
as belonging to the green grass, white border, or soccer ball.

 Classify Pixels Using Fuzzy Systems

3-113

Segment Image Using Color

The image segments include the following color attributes.

• Green field: variation of green and dark shadow pixels
• White border: white, light green, and dark shadow pixels
• Soccer ball: white and dark color pixels

Since the number of dark pixels is insignificant compared to the green and white pixels, you can
create one fuzzy classifier to distinguish between green and white pixels. You can train the classifiers
with sample green and white pixels since none of the segments include unique color attribute.

Extract representative subimages from the green field and white border segments as training data.
Each subimage includes variations in pixel color.

grnImg = exData.grnImg;
whtImg = exData.whtImg;

figure
subplot(1,2,1)
imshow(grnImg)
xlabel('Green subimage')
subplot(1,2,2)
imshow(whtImg)
xlabel('White subimage')

Construct FIS

3 Fuzzy Inference System Tuning

3-114

For color segmentation, construct a three-input, one-output Sugeno FIS without rules. For each input
and output variable, include two default membership functions (MFs).

colorFISIn = sugfis('NumInputs',3,'NumInputMFs',2, ...
 'NumOutputs',1,'NumOutputMFs',2,'AddRules','none');

The input variables correspond to the RGB values for each pixel. The output value is high if the pixel
color is green; otherwise it is low.

Train FIS

Create training data from the representative color subimages. The getColorInputData helper
function, which is shown at the end of the example, creates a three-column array of RGB values for
each pixel in a specified image.

[grnSubRow,grnSubCol,grnSubDepth] = size(grnImg); % Green subimage size
[whtSubRow,whtSubCol,whtSubDepth] = size(whtImg); % White subimage size
trnX = [...
 getColorInputData(grnImg); ...
 getColorInputData(whtImg) ...
];
trnY = [...
 ones(grnSubRow*grnSubCol,1); ... % Output is high (1) for green pixels
 zeros(whtSubRow*whtSubCol,1) ... % Output is low (1) for white pixels
];

Input data trnX has three columns for the RGB pixel values. Output data trnY is a column vector
that contains a 1 for each green pixel and a 0 for each white pixel.

Create an option set for learning rules for colorFISIn. To reduce the duration of the optimization
process, use the minimum values for cross-validation parameters.

options = tunefisOptions('OptimizationType','learning','KFoldValue',2, ...
 'ValidationTolerance',0.0,'ValidationWindowSize',1);

If you have Parallel Computing Toolbox™ software, you can improve the speed of the tuning process
by setting options.UseParallel to true. If you do not have Parallel Computing Toolbox software,
set options.UseParallel to false.

To learn rules and find FIS parameter values, this example uses genetic algorithm optimization,
which is a stochastic process. To obtain reproducible results, initialize the random number generator
to its default configuration.

rng('default')

Learn fuzzy rules for colorFISIn using the training data and options. Learning rules using the
tunefis function can take several minutes. For this example, you can enable tuning by setting
runtunefis to true. To load pretrained results without running tunefis, set runtunefis to
false.

runtunefis = false;

To learn new rules without tuning input and output MF parameters, set the parameter settings to [].
For more information, see tunefis.

if runtunefis
 colorFISOut1 = tunefis(colorFISIn,[],trnX,trnY,options); %#ok<UNRCH>

 Classify Pixels Using Fuzzy Systems

3-115

else
 colorFISOut1 = exData.colorFISOut1;
end

Calculate the root mean squared error (RMSE) for the trained FIS. The calculateRMSE helper
function, which is shown at the end of the example, classifies the training data pixels using the
trained FIS and compares the results to the expected pixel classifications.

fprintf('Training RMSE after learning rules = %.3f MPG\n',...
 calculateRMSE(colorFISOut1,trnX,trnY));

Training RMSE after learning rules = 0.283 MPG

After learning the new rules, tune the input and output MF parameters. To obtain the tunable
parameter settings of the FIS, use the getTunableSettings function.

[in,out] = getTunableSettings(colorFISOut1);

To tune the existing FIS parameter values without learning new rules, set the OptimizationType to
'tuning'.

options.OptimizationType = 'tuning';

Tune the FIS parameters using the specified tunable settings, training data, and tuning options.

if runtunefis
 rng('default')
 colorFISOut = tunefis(colorFISOut1,[in;out],trnX,trnY,options);
 colorFISOut.Name = "colorFISOut";
else
 colorFISOut = exData.colorFISOut;

end

Calculate the RMSE for the tuned FIS.

fprintf('Training RMSE after tuning MF parameters = %.3f MPG\n',...
 calculateRMSE(colorFISOut,trnX,trnY));

Training RMSE after tuning MF parameters = 0.228 MPG

Segment Image

Segment the original image using the tuned FIS. To do so, first extract the red, green, and blue pixel
values.

[imgRow,imgCol,imgDepth] = size(cImg);
red = cImg(:,:,1);
green = cImg(:,:,2);
blue = cImg(:,:,3);
colorInput = [red(:) green(:) blue(:)];

Classify each pixel using the tuned FIS.

eoptions = evalfisOptions;
eoptions.EmptyOutputFuzzySetMessage = 'none';
eoptions.NoRuleFiredMessage = 'none';
eoptions.OutOfRangeInputValueMessage = 'none';

3 Fuzzy Inference System Tuning

3-116

y = evalfis(colorFISOut,colorInput,eoptions);

Segment the image using the getSegmentedImage helper function, which is shown at the end of the
example. This function creates a binary mask from the FIS output values.

greenSegment = getSegmentedImage(reshape(y,[imgRow,imgCol]),cImg);

View the segmented image. Pixels that the FIS classified as white are shown in black. The remaining
pixels are classified as green.

figure
imshow(greenSegment)

White pixels are partially removed from the border and ball segments. The green segment also
incorrectly includes pixels from the ball. Therefore, the classification process requires another pixel
attribute that can identify the difference between the grass field and the ball.

Segment Image Using Texture

To distinguish between the field and the ball, use gray image gradient data to identify textures of the
field and the ball.

Extract a representative subimage for the ball, and convert the green, white, and ball subimages to
grayscale.

ballImg = exData.ballImg;
grayGrnImg = rgb2gray(grnImg);
grayWhtImg = rgb2gray(whtImg);
grayBallImg = rgb2gray(ballImg);

 Classify Pixels Using Fuzzy Systems

3-117

Compute the gradient for each subimage and normalize the gradient magnitude for each pixel using
the normMat helper function.

[gX,gY] = imgradientxy(grayGrnImg);
grnGrsTexture = normMat(imgradient(gX,gY));

[gX,gY] = imgradientxy(grayWhtImg);
whtGrsTexture = normMat(imgradient(gX,gY));

[gX,gY] = imgradientxy(grayBallImg);
ballTexture = normMat(imgradient(gX,gY));

View the gradients for each subimage.

figure,
subplot(2,3,1)
imshow(grnImg)
subplot(2,3,2)
imshow(whtImg)
subplot(2,3,3)
imshow(ballImg)
subplot(2,3,4)
imshow(grnGrsTexture)
subplot(2,3,5)
imshow(whtGrsTexture)
subplot(2,3,6)
imshow(ballTexture)

3 Fuzzy Inference System Tuning

3-118

Both the green and white grass segments have similar gradient values, which are different than those
of the ball segment. Therefore, use only the green and ball segment gradient data to train a fuzzy
texture classifier.

Construct FIS

The normalized gradients for the ball and grass field have different patterns. To learn these patterns,
create a three-input, one-output Sugeno FIS without rules. For each input and output variable,
include two default membership functions (MFs).

textureFISIn = sugfis('NumInputs',3,'NumInputMFs',2, ...
 'NumOutputs',1,'NumOutputMFs',2,'AddRules','none');

The input variables specify gradient values for three successive pixels. The output value is high if the
third pixel belongs to the grass field; otherwise, it is low.

Train FIS

Create training data from the gradients of the green and ball regions. The getGradientInputData
helper function, which is shown at the end of the example, creates a three-column array of successive
pixel value combinations.

[grsGradRow,grsGradCol] = size(grnGrsTexture); % Grass texture size
[ballGradRow,ballGradCol] = size(ballTexture); % Ball texture size
trnX = [...
 getGradientInputData(grnGrsTexture); ... % gradient values of 3 successive pixels
 getGradientInputData(ballTexture) ... % gradient values of 3 successive pixels
];
trnY = [...
 ones(grsGradRow*grsGradCol,1); ... % Output is high (1) for green texture
 zeros(ballGradRow*ballGradCol,1) ... % Output is low (1) for ball texture
];

Input data trnX is has three columns for the gradient values of the three successive pixels. Output
data trnY is a column vector that contains a 1 if the third pixel belongs to field texture and a 0
otherwise.

To learn fuzzy rules, set the OptimizationType to 'learning'.

options.OptimizationType = 'learning';

Train textureFISIn to learn rules using the training data.

if runtunefis
 rng('default')
 textureFISOut1 = tunefis(textureFISIn,[],trnX,trnY,options); %#ok<UNRCH>
else
 textureFISOut1 = exData.textureFISOut1;
end
fprintf('Training RMSE after learning rules = %.3f MPG\n',...
 calculateRMSE(textureFISOut1,trnX,trnY));

Training RMSE after learning rules = 0.477 MPG

After learning the new rules, tune the input and output MF parameters. To obtain the tunable
parameters of the FIS, use the getTunableSettings function.

[in,out] = getTunableSettings(textureFISOut1);

 Classify Pixels Using Fuzzy Systems

3-119

To tune the existing FIS parameters without learning new rules, set the OptimizationType to
'tuning'.

options.OptimizationType = 'tuning';

Tune the FIS parameters using the specified tunable settings, training data, and tuning options.

if runtunefis
 rng('default')
 textureFISOut = tunefis(textureFISOut1,[in;out],trnX,trnY,options);
 textureFISOut.Name = "textureFISOut";
else
 textureFISOut = exData.textureFISOut;
end
fprintf('Training RMSE after tuning MF parameters = %.3f MPG\n',...
 calculateRMSE(textureFISOut,trnX,trnY));

Training RMSE after tuning MF parameters = 0.442 MPG

Segment Image

Segment the original image using the tuned FIS. To do so, first compute the image gradient and
extract the successive pixel combinations.

[gX,gY] = imgradientxy(rgb2gray(cImg));
imgTexture = normMat(imgradient(gX,gY));
gradInput = getGradientInputData(imgTexture);

Classify each pixel using the tuned FIS.

y = evalfis(textureFISOut,gradInput,eoptions);

Segment the image using the getSegmentedImage helper function.

grassField = getSegmentedImage(reshape(y,[imgRow,imgCol]),cImg);

View the segmented image. Pixels that the FIS classified as belonging to the ball are shown in black.
The remaining pixels are classified as field pixels.

figure
imshow(grassField)

3 Fuzzy Inference System Tuning

3-120

The trained FIS segments the grass field and the ball with few incorrect pixels in the segments.

Segment Image Using Both Color and Texture

To classify pixels based on both color and texture, you can combine colorFISOut and
textureFISOut using a hierarchical fuzzy system, or FIS tree.

To do so, first create a Sugeno FIS with two inputs and three outputs. The first input variable is the
output of colorFISOut and the second input variable is the output of textureFISOut. The output
variables are the degree to which a pixels belongs to each image segment: green field, white border,
and soccer ball.

segFIS = sugfis('Name','segFIS','NumInputs',2,'NumInputMFs',2, ...
 'NumOutputs',3,'NumOutputMFs',2,'AddRules','none');

Name the input variables, output variable, and MFs.

segFIS.Inputs(1).Name = 'color';
segFIS.Inputs(1).MembershipFunctions(1).Name = 'white';
segFIS.Inputs(1).MembershipFunctions(2).Name = 'green';
segFIS.Inputs(2).Name = 'texture';
segFIS.Inputs(2).MembershipFunctions(1).Name = 'ball';
segFIS.Inputs(2).MembershipFunctions(2).Name = 'grass';
segFIS.Outputs(1).Name = 'greenField';
segFIS.Outputs(1).MembershipFunctions(1).Name = 'low';
segFIS.Outputs(1).MembershipFunctions(2).Name = 'high';
segFIS.Outputs(2).Name = 'whiteBorder';
segFIS.Outputs(2).MembershipFunctions(1).Name = 'low';
segFIS.Outputs(2).MembershipFunctions(2).Name = 'high';
segFIS.Outputs(3).Name = 'soccerBall';
segFIS.Outputs(3).MembershipFunctions(1).Name = 'low';
segFIS.Outputs(3).MembershipFunctions(2).Name = 'high';

 Classify Pixels Using Fuzzy Systems

3-121

Add the following rules to the FIS.

• If the pixel has a smooth ball texture, set the soccer ball output to high.
• If the pixel is white and has a grass texture set the white border output to high.
• If the pixel is green and has a grass texture and is green field output to high.

rules = ["texture==ball => greenField=low, whiteBorder=low, soccerBall=high";
 "color==white & texture==grass => greenField=low, whiteBorder=high, soccerBall=low";
 "color==green & texture==grass => greenField=high, whiteBorder=low, soccerBall=low"];
segFIS = addRule(segFIS,rules);

Create a FIS tree by connecting the outputs of colorFISOut and textureFISOut to the inputs of
segFIS.

fis = [colorFISOut textureFISOut segFIS];
con = [...
 "colorFISOut/output1" "segFIS/color"; ...
 "textureFISOut/output1" "segFIS/texture" ...
];
fisT = fistree(fis,con);

Classify the image pixels using the FIS tree and segment the image. For each segmented image, the
nonblack pixels are classified as part of the segment.

y = evalfis(fisT,[colorInput gradInput],eoptions);
greenField = getSegmentedImage(reshape(y(:,1),[imgRow,imgCol]),cImg);
whiteBorder = getSegmentedImage(reshape(y(:,2),[imgRow,imgCol]),cImg);
soccerBall = getSegmentedImage(reshape(y(:,3),[imgRow,imgCol]),cImg);

View the green field pixels.

figure
imshow(greenField)
xlabel('Green field')

3 Fuzzy Inference System Tuning

3-122

View the white border pixels.

figure
imshow(whiteBorder)
xlabel('White border')

 Classify Pixels Using Fuzzy Systems

3-123

View the soccer ball pixels.

figure
imshow(soccerBall)
xlabel('Soccer ball')

Conclusion

The image segments contain incorrect classifications. You can remove many of the misclassified pixels
by post-processing the results using noise reduction algorithms, such as morphological operations
(imdilate, imerode, imopen, imclose). For example, use a morphological close operation to
reduce the noise in the green field segmented image.

greenFieldLowNoise = getSegmentedImageClose(reshape(y(:,1),[imgRow,imgCol]),cImg);
figure
imshow(greenFieldLowNoise)

3 Fuzzy Inference System Tuning

3-124

To improve fuzzy classifier performance, you can:

• Use more training data.
• Learn color patterns of multiple pixels instead of learning individual pixel color.
• Increase the length of the gradient feature vector, in other words, use gradient values of more

than three successive pixels.
• Add more MFs to the FIS for pixel classification.
• Use type-2 FIS.
• Use a validation tolerance, a larger window size, and higher k-fold values for cross validation.
• Tune the parameters of the constructed FIS tree segFIS.

Local Functions

function data = getColorInputData(img)
% Create RGB input data from an image for training.

[row,col,depth] = size(img);
data = zeros(row*col,depth);
id = 0;
for i = 1:row
 for j = 1:col
 id = id + 1;
 for k = 1:depth
 data(id,k) = img(i,j,k);
 end
 end
end

end

 Classify Pixels Using Fuzzy Systems

3-125

function [rmse,actY] = calculateRMSE(fis,x,y)
% Calculate root mean squared error for FIS output.

% Specify options for FIS evaluation
persistent evalOptions
if isempty(evalOptions)
 evalOptions = evalfisOptions("EmptyOutputFuzzySetMessage","none", ...
 "NoRuleFiredMessage","none","OutOfRangeInputValueMessage","none");
end

% Evaluate FIS
actY = evalfis(fis,x,evalOptions);

% Calculate RMSE
del = actY - y;
rmse = sqrt(mean(del.^2));

end

function cImg = getSegmentedImage(y,cImg)
% Segment an image using classifier output by creating a binary image
% using a 0.5 threshold.

id = y >= 0.5;
y(id) = 1;
y(~id) = 0;

cImg(:,:,1) = cImg(:,:,1).*y;
cImg(:,:,2) = cImg(:,:,2).*y;
cImg(:,:,3) = cImg(:,:,3).*y;

end

function y = normMat(x)
% Normalize array elements to the range [0 1].

tmp = x(:);
mn = min(tmp);
mx = max(tmp);
d = (mx-mn);
y = (x-mn);
if d>0
 y = y/d;
end

end

function data = getGradientInputData(x)
% Create gradient input data for training.

x = x(:);
n = 3; % Three successive gradient values.
data = zeros(length(x),n);

% Specify complete input vectors.
for i = n:length(x)
 data(i,:) = x(i-n+1:i)';

3 Fuzzy Inference System Tuning

3-126

end

% Approximate missing elements in the incomplete input vector.
for i = n-1:-1:1
 right = x(1:i)';
 m = n - i;
 left = repmat(right(1),[1 m]);
 data(i,:) = [left right];
end

end

function cImg = getSegmentedImageClose(y,cImg)
% Segment an image using classifier output by creating a binary image
% using a 0.5 threshold.

id = y >= 0.5;
y(id) = 1;
y(~id) = 0;

se = strel('disk',1);
y = imclose(y,se);

cImg(:,:,1) = cImg(:,:,1).*y;
cImg(:,:,2) = cImg(:,:,2).*y;
cImg(:,:,3) = cImg(:,:,3).*y;

end

See Also
tunefis | getTunableSettings | sugfis | fistree

More About
• “Tuning Fuzzy Inference Systems” on page 3-2
• “Fuzzy Trees” on page 2-96

 Classify Pixels Using Fuzzy Systems

3-127

Autonomous Parking Using Fuzzy Inference System

This example shows how to tune a fuzzy inference system (FIS) for an autonomous parking
application with nonholonomic constraints.

Autonomous parking is an essential capability of intelligent vehicles (autonomous cars).
Nonholonomic kinematics impose additional constraints on autonomous parking, where a car cannot
move sideways and instead uses a curving motion.

Kinematic Model

The following figure shows the kinematics of a nonholonomic car with a standard Ackermann steering
mechanism.

The kinematic model has the following parameters.

• θ is the current orientation of the car with respect to a global reference frame.
• ϕ is the steering angle with respect to the car orientation.
• F is the front wheel center, (xf , yf).
• R is the rear wheel center, (xr, yr).
• |RF| is the length of the wheelbase.
• O is the center of curvature for the car.

3 Fuzzy Inference System Tuning

3-128

• |OR| is the radius of curvature for the car.

In this model, the rear wheel orientation is fixed and parallel to the car body. That is, the rear wheels
have the same orientation as the car, θ. The front wheels are parallel to each other and rotate with
the steering angle ϕ. The steering angle is constrained to be between −Φ and +Φ . For this example,
Φ is 30 degrees.

The front and rear wheel centers have the following relationship.

xf − xr = RF ⋅ cos θ

yf − yr = RF ⋅ sin θ

The kinematic equations for the front wheel center velocity and car orientation velocity are as
follows, where s is the speed of the car.

ẋf = s * cos θ + ϕ

ẏf = s * sin θ + ϕ

θ̇ = s * sin ϕ
RF

Autonomous Parking

The minimum radius of curvature (OR) for a car depends on the wheelbase length (RF). This
minimum radius constrains the motion of the car during parking maneuvers.

When a human driver parks, they often fail to maintain the required car speed and orientation when
approaching an empty parking space. To successfully park without a collision, they must compensate
by switching between forward and backward motion while adjusting the speed and steering angle of
the car.

Human drivers do not consciously perform geometric computations based on the kinematic model of
their car. Instead, based on their own trial-and-error experience, they use natural rules and reasoning
to understand the constraints of their car within a parking situation. You can use fuzzy systems to
model such rule-based reasoning.

This example uses the following environment to simulate head-on parking of a nonholonomic car.

 Autonomous Parking Using Fuzzy Inference System

3-129

Here:

• The simulation environment is a 45-by-15 foot parking lot.
• The hatched area shows occupied parking spots.
• The empty parking spot is of 6-by-7 feet.
• The car is 5-by-3 feet and the length of the wheelbase (|RF|) is 3 feet, providing a 1 foot offset

from the wheelbase to both the front and rear of the car.

This example assumes the following.

• The car is equipped with an intelligent system that can detect an empty parking spot and then
stop the car near the starting edge of the parking spot.

• The autonomous parking system takes control of the car after it stops. Ideally, at the starting
position, the car is almost vertically centered in the road and parallel to the road (θ = 0 deg or
θ = 180 deg).

• Due to the constantly changing nature of a parking lot, the kinematic motion constraints, and the
physical car attributes, a car does stop at the exact desired position and orientation. Therefore,
the parking system assumes that the car stops somewhere in front of the empty parking spot with
θ ≈ 0 or θ ≈ 180 deg and with unequal space on either side of the car.

• To avoid collisions, the car is equipped with range sensors to provide range data for the front,
rear, left, and right sides of the car. The following figure shows an example of the range data
obtained from the sensors in the simulation environment.

3 Fuzzy Inference System Tuning

3-130

• The maximum sensor range is assumed to be 50f t, which covers the entire simulation
environment.

Human Reasoning for Car Parking

Generally, as shown in the following figure, a human driver maintains the appropriate speed and
steering angle when approaching an empty head-on parking spot. In this case, they can park without
any forward and backward oscillating motions.

However, sometimes a driver fails to maintain the desired speed and steering angle for oscillation-
free parking. As shown in the following example, the driver must then compensate using back-and-
forth motions.

 Autonomous Parking Using Fuzzy Inference System

3-131

In this case, the driver:

1 Turns right and moves forward.
2 Fails to enter the parking spot, since the front of the car approaches the car in the occupied

space.
3 Turns left and backs up to make enough room to enter the parking spot
4 Moves forward to enter the parking spot while adjusting the car orientation to align with the

parking direction.
5 Stops when the front of the car is a safe minimal distance from the end of the parking spot and

the vehicle is aligned with the parking spot (90 deg orientation within the simulation
environment).

The following section uses these motion patterns to construct fuzzy systems for autonomous parking.

Generate Training Data

For tuning the fuzzy systems, this example artificially generates training data using the kinematic
model of the car and the motion patterns described in the previous section. The data generation
process uses the following discrete form of the kinematic model, where Δt is 0.1 seconds.

xf k + 1 = xf k + Δt ⋅ s k + 1 ⋅ cos θ k + ϕ k + 1

yf k + 1 = yf k + Δt ⋅ s k + 1 ⋅ sin θ k + ϕ k + 1

θ k + 1 = s k + 1 ⋅ sinϕ k + 1
RF

xr k + 1 = xf k + 1 − RF ⋅ cosθ k + 1

yr k + 1 = yf k + 1 − RF ⋅ sinθ k + 1

The steering angle (ϕ) and speed (s) values are generated based on the typical human driving
patterns discussed previously. The steering angle and speed are constrained to the following limits.

−Φ ≤ ϕ ≤ Φ, Φ = 30∘

3 Fuzzy Inference System Tuning

3-132

−3 . S ≤ s ≤ S, S = 5 ft
sec

In order to make space for safe turning, the backward motion uses a higher speed when the car gets
closer to the occupied space. Alternatively, the car can use the same speed for longer periods when
going backwards to make adequate space for safe turning.

Load the training data structure.

trainingData = load('trainingData');

Each training data point includes five inputs.

• Angular deviation (Δθ) between the car orientation and the parking spot orientation
• Minimum distances to the front (df ront), left (dlef t), rear (drear), and right (dright) of the car

Each training data point includes two outputs.

• Steering angle (ϕ)
• Speed (s) of the car

Since the angular deviation and distance values have different units and scales, the training data is
normalized to the range [0 1]. Doing so removes any sensitivity of the cost function to errors in the
larger magnitude inputs. The training data structure contains both the original input and output
values (x and y) and their normalized values (xn and yn).

During data generation, a successful parking condition is achieved when the car reaches a minimum
safe distance from the end of the parking spot and is aligned with the parking direction.

Construct and Train Initial Fuzzy Systems

This example uses a FIS tree as the fuzzy parking system. The first stage of the tuning process is to
construct and train the initial FISs that you later assemble into a FIS tree. You then improve
performance by fine tuning tune the parameters of the entire FIS tree.

To construct and tune the initial fuzzy systems, this example uses ANFIS, which provides faster
convergence compared to other tuning methods.

The design of the FIS tree and its component fuzzy systems addresses the following considerations.

• The FIS tree has five inputs and two outputs that match the values in the training data set.
• Since ANFIS supports a single output, construct separate fuzzy subsystems for steering angle (ϕ)

and speed (s).
• For better performance, each of these subsystems uses separate FISs for forward and backward

motion.
• Combine the forward and backward motion controllers for each subsystem using an additional

FIS.

 Autonomous Parking Using Fuzzy Inference System

3-133

Train the forward motion controller for steering, forwardPhiFIS, using the training input and
output data. To do so, first extract the normalized steering angle training data.

forwardPhi = trainingData.yn(:,1);

Then, since this system is only for forward motion, set the steering angle output values to 0 for
negative speed values.

negSpeedId = trainingData.y(:,2) < 0;
forwardPhi(negSpeedId) = 0;

Create options for ANFIS training and configure the display to show only the final training results.

aoptions = anfisOptions;
aoptions.DisplayANFISInformation = false;
aoptions.DisplayErrorValues = false;
aoptions.DisplayStepSize = false;

Use three MFs for the first input (Δθ), since it has both positive and negative values. Use two MFs for
the distance inputs.

aoptions.InitialFIS = [3 2 2 2 2];

Train forwardPhiFIS.

forwardPhiFIS = anfis([trainingData.xn forwardPhi],aoptions);

3 Fuzzy Inference System Tuning

3-134

Minimal training RMSE = 0.100129

In a similar manner, train the forward speed controller, forwardSpeedFIS.

forwardSpeed = trainingData.yn(:,2);
forwardSpeed(negSpeedId) = 0;

forwardSpeedFIS = anfis([trainingData.xn forwardSpeed],aoptions);

Minimal training RMSE = 0.161479

Next, tune the backward motion controllers for steering angle and speed, backwardPhiFIS and
backwardSpeedFIS, respectively. In this case, set the output values to 0 for positive speed values.

Train backwardPhiFIS.

backwardPhi = trainingData.yn(:,1);
backwardPhi(~negSpeedId) = 0;

backwardPhiFIS = anfis([trainingData.xn backwardPhi],aoptions);

Minimal training RMSE = 0.112362

Train backwardSpeedFIS.

backwardSpeed = trainingData.yn(:,2);
backwardSpeed(~negSpeedId) = 0;

backwardSpeedFIS = anfis([trainingData.xn backwardSpeed],aoptions);

Minimal training RMSE = 0.0642125

For each FIS, specify a corresponding FIS name.

forwardPhiFIS.Name = 'forwardPhiFIS';
forwardSpeedFIS.Name = 'forwardSpeedFIS';
backwardPhiFIS.Name = 'backwardPhiFIS';
backwardSpeedFIS.Name = 'backwardSpeedFIS';

Next, train phiFIS, which combines the forward and backward steering angle values generated by
forwardPhiFIS and backwardPhiFIS. To generate input training data for phiFIS, evaluate
forwardPhiFIS and backwardPhiFIS using the normalized input training data.

eoptions = evalfisOptions;
eoptions.EmptyOutputFuzzySetMessage ='none';
eoptions.NoRuleFiredMessage = 'none';
eoptions.OutOfRangeInputValueMessage = 'none';

forwardPhi = evalfis(forwardPhiFIS,trainingData.xn,eoptions);
backwardPhi = evalfis(backwardPhiFIS,trainingData.xn,eoptions);

Use five MFs for each input. In this case, you can use a higher number of MFs, since phiFIS has only
two inputs.

aoptions.InitialFIS = 5;

Train phiFIS using the generated input data and the normalized output training data.

phiFIS = anfis([forwardPhi backwardPhi trainingData.yn(:,1)],aoptions);

 Autonomous Parking Using Fuzzy Inference System

3-135

Minimal training RMSE = 0.120349

phiFIS.Name = 'phiFIS';

Similarly, train speedFIS, which combines the forward and backward speed values generated by
forwardSpeedFIS and backwardSpeedFIS, respectively. To generate input training data for
speedFIS, evaluate forwardSpeedFIS and backwardSpeedFIS using the normalized input
training data.

forwardSpeed = evalfis(forwardSpeedFIS,trainingData.xn,eoptions);
backwardSpeed = evalfis(backwardSpeedFIS,trainingData.xn,eoptions);

speedFIS = anfis([forwardSpeed backwardSpeed trainingData.yn(:,2)],aoptions);

Minimal training RMSE = 0.0969036

speedFIS.Name = 'speedFIS';

Construct and Tune FIS Tree

The next stage of the tuning process is to construct and tune a fuzzy tree using the previously tuned
component FISs. To create the FIS tree, first define the connections between the component FISs
according to the overall FIS tree design.

connections = [...
 "forwardPhiFIS/output" "phiFIS/input1"; ...
 "backwardPhiFIS/output" "phiFIS/input2"; ...
 "forwardSpeedFIS/output" "speedFIS/input1"; ...
 "backwardSpeedFIS/output" "speedFIS/input2"; ...
 "forwardPhiFIS/input1" "backwardPhiFIS/input1"; ...
 "forwardPhiFIS/input1" "forwardSpeedFIS/input1"; ...
 "forwardPhiFIS/input1" "backwardSpeedFIS/input1"; ...
 "forwardPhiFIS/input2" "backwardPhiFIS/input2"; ...
 "forwardPhiFIS/input2" "forwardSpeedFIS/input2"; ...
 "forwardPhiFIS/input2" "backwardSpeedFIS/input2"; ...
 "forwardPhiFIS/input3" "backwardPhiFIS/input3"; ...
 "forwardPhiFIS/input3" "forwardSpeedFIS/input3"; ...
 "forwardPhiFIS/input3" "backwardSpeedFIS/input3"; ...
 "forwardPhiFIS/input4" "backwardPhiFIS/input4"; ...
 "forwardPhiFIS/input4" "forwardSpeedFIS/input4"; ...
 "forwardPhiFIS/input4" "backwardSpeedFIS/input4"; ...
 "forwardPhiFIS/input5" "backwardPhiFIS/input5"; ...
 "forwardPhiFIS/input5" "forwardSpeedFIS/input5"; ...
 "forwardPhiFIS/input5" "backwardSpeedFIS/input5"; ...
];

Construct the FIS tree.

fuzzySystems = [...
 forwardPhiFIS backwardPhiFIS ...
 forwardSpeedFIS backwardSpeedFIS ...
 phiFIS speedFIS];
fisT = fistree(fuzzySystems,connections);

Next, fine-tune both the MF and rule parameter values of fisT. For better performance, tune the
fuzzy system parameters for individual outputs.

• First, tune the FIS parameters for steering angle.

3 Fuzzy Inference System Tuning

3-136

• Second, tune the FIS parameters for speed.

To tune FIS tree parameters for one output without considering the other output value, you can
temporarily remove the other output from the FIS tree.

To tune the FIS tree for the steering angle output, remove the second output from fisT and get
tunable settings from forwardPhiFIS, backwardPhiFIS, and phiFIS.

fisTin1 = fisT;
fisTin1.Outputs(2) = [];
[in,out,rule] = getTunableSettings(fisTin1,'FIS',...
 ["forwardPhiFIS" "backwardPhiFIS" "phiFIS"]);

Create a tuning option set.

toptions = tunefisOptions;

Use the patternsearch method for fine-tuning and set the maximum iteration number to 10. If you
have Parallel Computing Toolbox™ software, you can improve the speed of the tuning process by
setting toptions.UseParallel to true. If you do not have Parallel Computing Toolbox software,
set options.UseParallel to false, which is the default value.

toptions.Method = 'patternsearch';
toptions.MethodOptions.MaxIterations = 10;

To improve the pattern search results, set the method option UseCompletePoll to true.

toptions.MethodOptions.UseCompletePoll = true;

For reproducibility, set the random number generator seed to default.

rng('default')

Training can be computationally intensive and take several hours to complete. To save time, load a
pretrained FIS tree by setting runtunefis to false. To run the tuning, you can set runtunefis to
true.

runtunefis = false;

Tune the FIS tree.

if runtunefis
 fisTout1 = tunefis(fisTin1,[in;out;rule],...
 trainingData.xn,trainingData.yn(:,1),toptions);
else
 preTunedFIST = load('tunedFIST');
 fisTout1 = preTunedFIST.fisTout1;
end

Next, tune the other FIS tree output by first removing the speed output and adding the steering angle
output. Then, get tunable settings from forwardSpeedFIS, backwardSpeedFIS, and speedFIS.

fisTin2 = fisTout1;
fisTin2.Outputs(1) = "speedFIS/output";
[in,out,rule] = getTunableSettings(fisTin2,'FIS',...
 ["forwardSpeedFIS" "backwardSpeedFIS" "speedFIS"]);

Tune the FIS tree. After training, reset the outputs of the FIS tree.

 Autonomous Parking Using Fuzzy Inference System

3-137

if runtunefis
 rng('default')
 fisTout = tunefis(fisTin2,[in;out;rule],...
 trainingData.xn,trainingData.yn(:,2),toptions);
 fisTout.Outputs(1) = "phiFIS/output";
 fisTout.Outputs(2) = "speedFIS/output";
else
 fisTout = preTunedFIST.fisTout;
end

Check the individual training errors (root mean squared error) of the outputs.

err = trainingData.yn - evalfis(fisTout,trainingData.xn,eoptions);
err = err.*err;
rmsePhi = sqrt(mean(err(:,1)))

rmsePhi = 0.1186

rmseSpeed = sqrt(mean(err(:,2)))

rmseSpeed = 0.0967

The performance is not meaningfully better compared to the ANFIS-trained fuzzy system.

Autonomous Parking Simulation

The training data contains a limited set of initial conditions. Therefore, the tuned FIS tree is valid for
the following conditions.

• The front of the car must be initially located in front of the parking spot with 21 ≤ xf ≤ 25.
• The car must be closely aligned with the road direction, that is, the initial car orientation must be

θ ≈ 0 or θ ≈ 180 deg.
• The car must initially be at least 1 . 5 ft from either road edge. That is, dlef t > 1 . 5 ft and

dright > 1 . 5 ft.

Parking from Right Side

The tuned FIS is trained for head-on parking from the right side (θ ≈ 180 deg) of the road.

The following result shows a head-on parking simulation for xf = 24 ft, yf = 4 . 5 ft, and θ = 180 deg.

parkFromRight = true;
xf = 24;
yf = 4.5;
theta = 180;
figure
simulateParking(parkFromRight,fisTout,trainingData,xf,yf,theta)

Parked

3 Fuzzy Inference System Tuning

3-138

Simulate parking for a different initial condition where xf = 22 ft, yf = 5 ft, and θ = 170 deg.

parkFromRight = true;
xf = 22;
yf = 5;
theta = 170;
figure
simulateParking(parkFromRight,fisTout,trainingData,xf,yf,theta)

Parked

 Autonomous Parking Using Fuzzy Inference System

3-139

In both cases, the car can autonomously park using the back-and-forth motion pattern. However, the
car does not maintain equal distance values on the left and right sides of the parking space. This
behavior is common for human drivers who do not generally park in the exact middle of a parking
space. Instead, they use a safe distance from each side.

Parking from Left Side

You can use the same fuzzy system for head-on parking from the left side (θ ≈ 0 deg). To do so, set
parkFromRight to false, which causes simulateParking to change the input values as follows:

• Switch the sign of the angular deviation input Δθ.
• Switch the distance inputs for the left (dlef t) and right (dright) sides.

Simulate autonomous parking from the left side for xf = 22 ft, yf = 5.5 ft, and θ = 0 deg.

parkFromRight = false;
xf = 22;
yf = 5;
theta = 0;
figure
simulateParking(parkFromRight,fisTout,trainingData,xf,yf,theta)

Parked

3 Fuzzy Inference System Tuning

3-140

Simulate parking for another initial condition where xf = 22 ft, yf = 5.5 ft, and θ = 0 deg.

parkFromRight = false;
xf = 23.8;
yf = 5.2;
theta = 7;
figure
simulateParking(parkFromRight,fisTout,trainingData,xf,yf,theta)

Parked

 Autonomous Parking Using Fuzzy Inference System

3-141

In this case, similar to the right side parking results, the car follows a back-and-forth motion to safely
park the car.

Conclusion

The current fuzzy system design has the following shortcomings:

• The generated data considers only two motion patterns for autonomous parking. Therefore, the
autonomous parking system has limited robustness and does not represent all common skills of a
human driver. For example, the following figure shows another common scenario where the driver
moves back and turns right to make space on the right from the occupied space.

3 Fuzzy Inference System Tuning

3-142

• The generated data uses a ±30 deg limit for steering angles. The resulting high radius of
curvature increases the difficulty of parking without oscillation.

• The sensor model used in this example is a trivial occupancy detection model where the range
values are radially detected from the center of the car. Furthermore, when range data is similar
from each corner of the car, the fuzzy system can produce unexpected results and local optima
within the simulation. A better alternative is to model range data normal to each side of the car, as
shown in the following figure. In this case, the distance measurements from each side of the car
are independent from each other.

• ANFIS supports only Sugeno FISs, which might not always produce a smooth control surface.

To update the FIS tree design, you can consider the following potential changes.

• Use Mamdani FISs, which support additional tuning methods beyond ANFIS.
• Design the initial rule base of the fuzzy inference systems using human reasoning and then tune

with the training data.
• Use a custom cost function to automatically generate data and optimize the parking trajectory

using reward-based parking simulation. For an example, see “Tune Fuzzy Robot Obstacle
Avoidance System Using Custom Cost Function” on page 3-102.

See Also
tunefis | getTunableSettings | fistree

 Autonomous Parking Using Fuzzy Inference System

3-143

More About
• “Tuning Fuzzy Inference Systems” on page 3-2
• “Fuzzy Trees” on page 2-96

3 Fuzzy Inference System Tuning

3-144

Design Controller for Artificial Pancreas Using Fuzzy Logic

This example shows how to design and optimize a fuzzy inference system (FIS) tree to control an
artificial pancreas. The artificial pancreas regulates the blood glucose level of an individual with type
1 diabetes using subcutaneous infusion of insulin.

A FIS tree is a distributed, hierarchical representation of a monolithic FIS with multiple FISs, each
with a smaller rule base. Hence, a FIS tree provides easier understanding of the inference process
and allows faster performance optimization with a smaller number of tunable parameters as
compared to a monolithic FIS.

Video Walkthrough

For a visual walkthough of the example, watch the video.

Background

Type 1 diabetes is a widespread health problem that occurs when the pancreas fails to produce
enough insulin to regulate blood glucose levels. An uncontrolled high blood glucose level
(hyperglycemia) can cause significant damage to the human body. Therefore, an artificial pancreas
system that continuously monitors and regulates blood glucose level with appropriate subcutaneous
insulin infusion is a major goal in healthcare device development.

The following figure, which is adapted from [1], shows the components of an artificial pancreas
system.

 Design Controller for Artificial Pancreas Using Fuzzy Logic

3-145

The continuous glucose monitoring (CGM) system periodically measures the blood glucose level of
the diabetic patient and passes this information to a controller. The controller drives an insulin pump,
which injects an optimal insulin dosage to the patient, thus regulating the blood glucose level. The
controller provides the following two types of insulin dosage.

• Basal dosage — Long-term small amount of insulin for the fasting period of a diabetic patient
• Bolus dosage — Short-term large amount of insulin necessary for absorption of a major meal

Therefore, the task for the controller is to generate corrective insulin doses for the following cases.

• Hyperglycemia — When the blood sugar level is high, the controller provides a high insulin dose in
bolus mode. Generally, this dose is in the range of 125 to 200 mg/dL, which can vary depending on
the fasting and meal conditions for the patient.

• Hypoglycemia — When the blood glucose level is low, generally less than 50–70 mg/dL, the
controller stops providing insulin.

• Normal condition — In the normal condition, the blood glucose level is generally in the range of 80
to 100 mg/dL and the controller provides a low insulin dosage in basal mode.

Artificial Pancreas Model

The artificialPancreasWithFISTreeControl Simulink® model implements an artificial
pancreas system.

model = 'artificialPancreasWithFISTreeControl';
load_system(model)

3 Fuzzy Inference System Tuning

3-146

This model contains the following subsystems.

• Diabetic Patient — Models the kinetics of insulin and its effect on glucose in the human body for
type-1 diabetes as described in [2] and [3].

• Meal — Generates glucose absorption from meals. For this example, the meals are scheduled for
the 1st, 5th, and 12th hours of the day.

• Glucose Monitoring System — Provides noise-free samples of blood glucose levels every 5 minutes
using a perfect transducer.

• Controller — Generate corrective insulin doses using a hierarchical FIS tree.
• Insulin Pump — Infuses the exact amount of insulin recommended by the FIS controller using an

ideal pump model.

To view how the blood glucose level of a diabetic patient changes when the body absorbs glucose
without corrective insulin infusion, simulate the model with a constant zero control action. To do so,
open the control loop by setting closeLoop to 0.

closeLoop = 0;
openLoopOutput = sim(model);
plotAbsorbedAndBloodGlucose(openLoopOutput)

 Design Controller for Artificial Pancreas Using Fuzzy Logic

3-147

Without corrective insulin infusion, the patient blood glucose level increases and remains in a
hyperglycemic state.

Close the control loop for tuning and simulation.

closeLoop = 1;

Create FIS Tree Controller Structure

The controller has the following inputs, as described in [4].

• Blood glucose level (mg/dL)
• Rate of change of blood glucose level (mg/dL/min)
• Acceleration rate of blood glucose level (mg/dL/min/min).

The output of the controller is an optimal insulin infusion dosage that maintains the blood glucose
level of a diabetic patient at a normal level.

To produce an optimal insulin dosage based on the observed inputs, the fuzzy controller described in
[4] uses expert knowledge to construct a single FIS with 75 rules. However, creating a large rule base
using expert knowledge is a complicated process due to the manual construction of each fuzzy rule
for all combinations of input membership functions (MFs).

Alternatively, using a FIS tree produces a system with multiple FISs, each with a smaller rule base.
The hierarchical structure of the FIS tree and the smaller rule bases allow for a more intuitive
understanding of the inference process.

3 Fuzzy Inference System Tuning

3-148

This example uses an incremental design approach to combine the controller inputs using two
Mamdani FIS objects in an incremental tree structure. For more information on fuzzy tree structures,
see “Fuzzy Trees” on page 2-96.

The blood glucose level and its rate of change both contribute more to the control actions compared
to the acceleration rate, which is often small and can create noise in the output. Therefore, in the first
level of the FIS tree, you precalculate the insulin infusion rate Precalculated_Dose by combining
the effects of the blood glucose level BG_Level and its rate of change BG_Rate. The acceleration
rate BG_Accel is included in the second layer of the FIS tree.

Create the FIS (fis1) for the first level of the tree structure. The inputs of fis1 each use three
uniformly distributed triangular MFs. The output of fis1 uses five such MFs, named as follows:

• For the input BG_Level, L, M, and H for low, medium, and high levels, respectively
• For the input BG_Rate, N, Z, and P for negative, zero, and positive rates, respectively
• For the output Precalculated_Dose, L, M, and H, plus VL for very low and VH for very high

dosages

% Specify the maximum dose level.
maxDose = 2;

% Define membership function names for the input variables.
mfNames1 = ["L","M","H"]; % Low, Medium, High
mfNames2 = ["N","Z","P"]; % Negative, Zero, Positive

% Create first FIS.
fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1, ...
 'NumInputMFs',3,'NumOutputMFs',5);

% Configure input and output variables.
fis1 = updateInput(fis1,1,'BG_Level',[80 120],mfNames1);
fis1 = updateInput(fis1,2,'BG_Rate',[-0.5 0.5],mfNames2);
fis1 = updateOutput(fis1,1,'Precalculated_Dose',[0 maxDose]);

figure
plotfis(fis1)

 Design Controller for Artificial Pancreas Using Fuzzy Logic

3-149

Create the FIS (fis2) for the second level of the tree. Using fis2, you generate the final insulin
dosage by combining the precalculated dose from the first layer with the effect of the blood glucose
acceleration rate. In this case, the inputs and the output also use three and five uniformly distributed
triangular MFs, respectively.

% Create second FIS.
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1, ...
 'NumInputMFs',3,'NumOutputMFs',5);

% Configure input and output variables.
fis2 = updateInput(fis2,1,'Precalculated_Dose',[0 maxDose],mfNames1);
fis2 = updateInput(fis2,2,'BG_Accel',[-0.005 0.005],mfNames2);
fis2 = updateOutput(fis2,1,'Insulin_Dose',[0 maxDose]);

figure
plotfis(fis2)

3 Fuzzy Inference System Tuning

3-150

Combine fis1 and fis2 into a FIS tree structure.

connection = [fis1.Name + "/" + fis1.Outputs(1).Name ...
 fis2.Name + "/" + fis2.Inputs(1).Name];
fisTInit = fistree([fis1 fis2],connection);

figure
plotfis(fisTInit)

 Design Controller for Artificial Pancreas Using Fuzzy Logic

3-151

The initial fuzzy systems are constructed with default fuzzy rules that are not tuned to produce
optimal insulin dosages.

Tune Controller Rules

Once you have a FIS tree structure, you can optimize the controller behavior by tuning the rules and
MF parameters of the component FIS objects. To do so, you can use the tunefis function.

In general, uniformly distributed MFs provide a meaningful initial condition for tuning a fuzzy system.
Therefore, as an initial tuning step, you can learn the rules of the FIS objects while keeping their
default MF parameters.

To learn the rules, first get the tunable settings from the fuzzy systems.

[in,out,rule] = getTunableSettings(fisTInit);

Next, update the rule settings to optimize only the rule consequents. By doing so, you keep the
existing rule antecedents, which already include all possible input MF combinations for their
corresponding FIS inputs.

for rId = 1:numel(rule)
 rule(rId).Antecedent.Free = false;
end

Create an option set for the tuning process.

options = tunefisOptions;

Use the default genetic algorithm tuning method for learning the rules. Set the maximum number of
generations to 3 and use a population size of 100.

options.MethodOptions.MaxGenerations = 3;
options.MethodOptions.PopulationSize = 100;

Next, create a cost function to evaluate each candidate rule base. At the end of the optimization
process, the rule base with the minimum cost is selected for the fuzzy systems in the FIS tree.

For this example, the cost function (costFcn.m) simulates the
artificialPancreasWithFISTreeControl model using the candidate rule base. Using the
resulting simulation output, the cost function computes the cost using the following steps.

1 Calculate errors in the observed glucose level from a nominal glucose level.
2 If the error value is negative (glucose below the nominal level), set the error value to a high

value.
3 Calculate the cost as the root mean square of the error values.

Using this cost function, the tuning process selects rule bases that maintain a normal condition and
avoid high glucose levels. Also, the high error values used in step 2 help discard rule bases that
produce low blood glucose levels.

% Specify the nominal and minimum glucose levels.
refLevel = 90;
minLevel = 80;

% Calculate error from the nominal value.
err = glucose - refLevel;

3 Fuzzy Inference System Tuning

3-152

% Specify high error values for the glucose levels below the nominal level.
err(glucose<minLevel) = 100;

% Calculate cost as the root mean square of the error.
errSquare = err.^2;
meanSquare = mean(errSquare);
cost = sqrt(meanSquare);

Tuning is a time-consuming process, so for this example, load a pretuned FIS tree. To tune the FIS
tree yourself instead, set runtunefis to true.

runtunefis = false;

% Load pretuned FIS tree data
data = load('fuzzyPancreasExampleData.mat');

minData = MinCostData;
wsVars = ["fisT" "closeLoop"];
minLevel = 80;
refLevel = 90;
if runtunefis
 rng('default')
 fisTRuleTuned = tunefis(fisTInit,rule,...
 @(fis)costFcn(fis,model,minLevel,refLevel,wsVars,minData),options);
else
 fisTRuleTuned = data.fisTRuleTuned;
 minCost = costFcn(fisTRuleTuned,model,minLevel,refLevel,wsVars)
end

minCost = 26.3335

Simulate the model using the FIS tree with tuned rule bases.

fisT = fisTRuleTuned;
ruleTunedOutput = sim(model);

Plot the resulting regulated glucose levels and insulin infusion rate.

plotGlucoseAndInsulin(ruleTunedOutput,...
 'Blood Glucose and Insulin Dosage with Learned Rule Base')

 Design Controller for Artificial Pancreas Using Fuzzy Logic

3-153

With the tuned rule base, the glucose level is now maintained below 160 mg/dL, and it settles close to
90 mg/dL after the third meal. The controller generates a short-term high insulin dosage (bolus
mode) at each meal time and a long-term reduced insulin dosage (basal mode) during the fasting
periods.

Analyze and Modify Rule Base

To visualize the behavior of the tuned rule base, plot the control surface of each fuzzy system in the
FIS tree.

figure('Position',[300 300 600 300]);
subplot(1,2,1)
gensurf(fisTRuleTuned.FIS(1))
title('Control Surface - fis1')
subplot(1,2,2)
gensurf(fisTRuleTuned.FIS(2))
title('Control Surface - fis2')

3 Fuzzy Inference System Tuning

3-154

The following tables show the corresponding rule bases of fis1 and fis2.

showRuleBase(fisTRuleTuned.FIS(1))

Rule base of fis1:
 BG_Rate: N BG_Rate: Z BG_Rate: P
 ______________________ _____________________ ______________________

 BG_Level: L Precalculated_Dose: VH Precalculated_Dose: M Precalculated_Dose: M
 BG_Level: M Precalculated_Dose: VL Precalculated_Dose: M Precalculated_Dose: H
 BG_Level: H Precalculated_Dose: M Precalculated_Dose: H Precalculated_Dose: VL

showRuleBase(fisTRuleTuned.FIS(2))

Rule base of fis2:
 BG_Accel: N BG_Accel: Z BG_Accel: P
 ________________ ________________ ________________

 Precalculated_Dose: L Insulin_Dose: VH Insulin_Dose: VL Insulin_Dose: H
 Precalculated_Dose: M Insulin_Dose: VL Insulin_Dose: L Insulin_Dose: L
 Precalculated_Dose: H Insulin_Dose: L Insulin_Dose: VL Insulin_Dose: VH

These tables show that some of the control actions are nonintuitive. For example:

• For negative blood glucose rates of change, fis1 does not increase insulin dosage monotonically
with increasing blood glucose levels.

• For a high blood glucose level and a high positive blood glucose rate of change, fis1 sets the
insulin dosage to medium instead of very high.

• For negative blood glucose acceleration rates, fis2 does not monotonically increase insulin
dosage with increasing precalculated insulin dosage.

• For a low precalculated dose and a negative blood glucose acceleration rate, fis2 sets the insulin
dosage to very high instead of low.

• For a high precalculated dose and zero blood glucose acceleration rate, fis2 sets the insulin
dosage to very low instead of medium.

 Design Controller for Artificial Pancreas Using Fuzzy Logic

3-155

Update the rules by modifying their consequent values.

% Update fis1 rules.
fisTRuleUpdate = fisTRuleTuned;
fisTRuleUpdate.FIS(1).Rules(1).Description = ...
 "BG_Level==L & BG_Rate==N => Precalculated_Dose=VL";
fisTRuleUpdate.FIS(1).Rules(2).Description = ...
 "BG_Level==M & BG_Rate==N => Precalculated_Dose=M";
fisTRuleUpdate.FIS(1).Rules(3).Description = ...
 "BG_Level==H & BG_Rate==N => Precalculated_Dose=H";
fisTRuleUpdate.FIS(1).Rules(9).Description = ...
 "BG_Level==H & BG_Rate==P => Precalculated_Dose=VH";

% Update fis2 rules.
fisTRuleUpdate.FIS(2).Rules(1).Description = ...
 "Precalculated_Dose==L & BG_Accel==N => Insulin_Dose=VL";
fisTRuleUpdate.FIS(2).Rules(3).Description = ...
 "Precalculated_Dose==H & BG_Accel==N => Insulin_Dose=M";
fisTRuleUpdate.FIS(2).Rules(6).Description = ...
 "Precalculated_Dose==H & BG_Accel==Z => Insulin_Dose=M";
fisTRuleUpdate.FIS(2).Rules(7).Description = ...
 "Precalculated_Dose==L & BG_Accel==P => Insulin_Dose=L";

View the modified rule bases.

showRuleBase(fisTRuleUpdate.FIS(1))

Rule base of fis1:
 BG_Rate: N BG_Rate: Z BG_Rate: P
 ______________________ _____________________ ______________________

 BG_Level: L Precalculated_Dose: VL Precalculated_Dose: M Precalculated_Dose: M
 BG_Level: M Precalculated_Dose: M Precalculated_Dose: M Precalculated_Dose: H
 BG_Level: H Precalculated_Dose: H Precalculated_Dose: H Precalculated_Dose: VH

showRuleBase(fisTRuleUpdate.FIS(2))

Rule base of fis2:
 BG_Accel: N BG_Accel: Z BG_Accel: P
 ________________ ________________ ________________

 Precalculated_Dose: L Insulin_Dose: VL Insulin_Dose: VL Insulin_Dose: L
 Precalculated_Dose: M Insulin_Dose: VL Insulin_Dose: L Insulin_Dose: L
 Precalculated_Dose: H Insulin_Dose: M Insulin_Dose: M Insulin_Dose: VH

Visualize the resulting FIS control surfaces.

figure('Position',[300 300 600 300]);
subplot(1,2,1)
gensurf(fisTRuleUpdate.FIS(1))
title('Control Surface - fis1')
subplot(1,2,2)
gensurf(fisTRuleUpdate.FIS(2))
title('Control Surface - fis2')

3 Fuzzy Inference System Tuning

3-156

The control surfaces correspond to a more intuitive controller behavior.

To check if the updated rules improve the controller performance, simulate the model and plot the
results. Compare the results with those of the controller with tuned MF parameters.

fisT = fisTRuleUpdate;
ruleUpdatedOutput = sim(model);

plotGlucoseAndInsulin([ruleTunedOutput ruleUpdatedOutput],...
 'Blood Glucose and Insulin Dosage with Updated Rule Base',...
 {'Learned rules','Updated rules'})

 Design Controller for Artificial Pancreas Using Fuzzy Logic

3-157

The controller with updated rules reduces the blood glucose levels compared to the tuned FIS tree
controller.

Updating the rules reduces the value of the cost function.

minCost = costFcn(fisTRuleUpdate,model,minLevel,refLevel,wsVars)

minCost = 23.2702

Tune Membership Function Parameters

To further improve the controller performance, you can tune the MF parameters of the FIS tree.

To do so, use a local optimization method, such as pattern search. For this example, set the maximum
number of optimization iterations to 10.

options.Method = 'patternsearch';
options.MethodOptions.MaxIterations = 10;

By default, each input variable has three uniformly distributed triangular MFs. For example, view the
MFs for the first input of fis1.

figure
plotmf(fisTRuleUpdate.FIS(1),'input',1)

3 Fuzzy Inference System Tuning

3-158

Configure the tunable settings for the input variables such that the leftmost and rightmost peaks
remain unchanged during tuning.

for i = 1:4
 in(i).MembershipFunctions(1).Parameters.Free = [0 0 1];
 in(i).MembershipFunctions(end).Parameters.Free = [1 0 0];
end

Similarly, configure the tunable settings for the output variables. Each output variable has five
triangular membership functions.

for i = 1:2
 out(i).MembershipFunctions(1).Parameters.Free = [0 0 1];
 out(i).MembershipFunctions(end).Parameters.Free = [1 0 0];
end

Tune the MF parameter values using the updated tunable settings.

if runtunefis
 figure
 reset(minData)
 rng('default')
 fisTMFTuned = tunefis(fisTRuleUpdate,[in;out],...
 @(fis)costFcn(fis,model,minLevel,refLevel,wsVars,minData),options);
else
 fisTMFTuned = data.fisTMFTuned;
 minCost = costFcn(fisTMFTuned,model,minLevel,refLevel,wsVars)
end

 Design Controller for Artificial Pancreas Using Fuzzy Logic

3-159

minCost = 22.0627

The MF tuning process reduces the value of the cost function further.

Simulate the model using the controller with tuned MF parameters.

fisT = fisTMFTuned;
mfTunedOutput = sim(model);

Plot the resulting regulated glucose levels and insulin infusion rate. Compare the results with those
for the controller with tuned rule bases.

plotGlucoseAndInsulin([ruleUpdatedOutput mfTunedOutput],...
 'Blood Glucose and Insulin Dosage with Tuned MFs',...
 {'Updated rules','Tuned MFs'})

The tuned MF parameters improve the performance and reduce the minimum cost value.

To further improve controller performance you can implement the following modifications.

• Incrementally add additional inputs to the FIS tree controller, such as the patient weight and age,
to provide a personalized insulin dosage.

• Use different numbers of MFs to balance performance and inference complexities.
• Use different tuning methods and iteration numbers to optimize the fuzzy system parameters.
• Use real world training data to tune the controller parameters.

3 Fuzzy Inference System Tuning

3-160

% Close model.
close_system(model)

References

[1] Grant, Paul. “A New Approach to Diabetic Control: Fuzzy Logic and Insulin Pump Technology.”
Medical Engineering & Physics 29, no. 7 (September 2007): 824–27. https://doi.org/10.1016/
j.medengphy.2006.08.014.

[2] Wilinska, M.E., L.J. Chassin, H.C. Schaller, L. Schaupp, T.R. Pieber, and R. Hovorka. “Insulin
Kinetics in Type-1 Diabetes: Continuous and Bolus Delivery of Rapid Acting Insulin.” IEEE
Transactions on Biomedical Engineering 52, no. 1 (January 2005): 3–12. https://doi.org/10.1109/
TBME.2004.839639.

[3] Hovorka, Roman, Valentina Canonico, Ludovic J Chassin, Ulrich Haueter, Massimo Massi-
Benedetti, Marco Orsini Federici, Thomas R Pieber, et al. “Nonlinear Model Predictive Control of
Glucose Concentration in Subjects with Type 1 Diabetes.” Physiological Measurement 25, no. 4
(August 1, 2004): 905–20. https://doi.org/10.1088/0967-3334/25/4/010.

[4] Mauseth, Richard, Youqing Wang, Eyal Dassau, Robert Kircher, Donald Matheson, Howard Zisser,
Lois Jovanovič, and Francis J. Doyle. “Proposed Clinical Application for Tuning Fuzzy Logic Controller
of Artificial Pancreas Utilizing a Personalization Factor.” Journal of Diabetes Science and
Technology 4, no. 4 (July 2010): 913–22. https://doi.org/10.1177/193229681000400422.

Helper Functions

function fis = updateInput(fis,id,name,range,mfNames)
% Update FIS input with the specified parameter values.

fis.Inputs(id).Name = name;
fis.Inputs(id).Range = range;

for mfId = 1:length(mfNames)
 fis.Inputs(id).MembershipFunctions(mfId).Name = mfNames(mfId);
 params = range(1) + ...
 diff(range)*fis.Inputs(id).MembershipFunctions(mfId).Parameters;
 fis.Inputs(id).MembershipFunctions(mfId).Parameters = params;
end

end

function fis = updateOutput(fis,id,name,range)
% Update FIS output with the specified parameter values.

rangeDiff = diff(range);
fis.Outputs(id).Name = name;

% MF names - Very Low, Low, Medium, High, Very High
mfNames = [...
 "VL","L","M","H","VH"];

for mfId = 1:length(mfNames)
 fis.Outputs(id).MembershipFunctions(mfId).Name = mfNames(mfId);
 params = range(1) + ...
 rangeDiff*fis.Outputs(id).MembershipFunctions(mfId).Parameters;
 fis.Outputs(id).MembershipFunctions(mfId).Parameters = params;
end

 Design Controller for Artificial Pancreas Using Fuzzy Logic

3-161

https://doi.org/10.1016/j.medengphy.2006.08.014
https://doi.org/10.1016/j.medengphy.2006.08.014
https://doi.org/10.1109/TBME.2004.839639
https://doi.org/10.1109/TBME.2004.839639
https://doi.org/10.1088/0967-3334/25/4/010
https://doi.org/10.1177/193229681000400422

% Extend output range values to fit the output MFs.
left = fis.Outputs(id).MembershipFunctions(1).Parameters(1);
right = fis.Outputs(id).MembershipFunctions(end).Parameters(end);
fis.Outputs(id).Range = [left right];

end

See Also
tunefis | getTunableSettings | fistree

More About
• “Tuning Fuzzy Inference Systems” on page 3-2
• “Fuzzy Trees” on page 2-96

3 Fuzzy Inference System Tuning

3-162

Explain Black-Box Model Using Fuzzy Support System

This example shows how to develop a fuzzy inference support system that explains the behavior of a
black-box model.

Using nondeterministic machine learning methods, such as deep learning, you can design a black-box
model to estimate the input-output mapping for a given set of experimental or simulation data.
However, the input-output relationship defined by such a black-box model is difficult to understand.

In such cases, a common approach is to create a transparent support system to explain the input-
output relationships modeled by the a black box system.

A fuzzy inference system (FIS) is a transparent model that represents system knowledge using an
explainable rule base. Since the rule base of a fuzzy system is easier for a user to intuitively
understand, a FIS is often used as a support system to explain an existing black box model.

The following figure shows the general steps for developing a fuzzy support system from an existing
black box with the assumption that the original training data of the black box is available.

• Tune a support FIS using the original training data for the black box.
• Compare the behavior of the black-box system and the FIS using test data.
• Examine the FIS rules to explain the behavior of the black-box system.

In general, you can uses a fuzzy support system to explain different types of black-box models. For
this example, the black-box model is implemented using a deep neural network (DNN), which
requires Deep Learning Toolbox™ software.

Black-Box Model

The DNN model for this example imitates an automotive lane keeping assist (LKA) system
implemented using model predictive control (MPC). A vehicle (ego car) equipped with an LKA system

 Explain Black-Box Model Using Fuzzy Support System

3-163

has a sensor, such as camera, that measures the lateral deviation and relative yaw angle between the
centerline of a lane and the ego car. The sensor also measures the current lane curvature and
curvature derivative. Depending on the curve length that the sensor can view, the curvature in front
of the ego car can be calculated from the current curvature and curvature derivative. The LKA system
keeps the ego car travelling along the centerline of the lane by adjusting the front steering angle of
the ego car. The goal for lane keeping control is to drive both lateral deviation and relative yaw angle
close to zero. For more information on lane keeping using MPC, see “Lane Keeping Assist System
Using Model Predictive Control” (Model Predictive Control Toolbox).

The DNN-based LKA system uses the following inputs to generate the output steering angle u*.

1 Lateral velocity Vy m/s
2 Yaw angle rate r rad/s
3 Lateral deviation e1 m
4 Relative yaw angle e2 rad
5 Previous steering angle (control variable) u rad
6 Measured disturbance (road yaw rate: longitudinal velocity * curvature (ρ))

For more information on creating and training the DNN, see “Imitate MPC Controller for Lane
Keeping Assist” (Reinforcement Learning Toolbox).

Download and unzip the data for this example.

dataFile = matlab.internal.examples.downloadSupportFile("fuzzy","FuzzyLKAData.zip");
unzip(dataFile)
data = load('dataExplainDNN.mat');

Obtain the saved DNN model of an LKA system.

dnnLKA = data.trainedDNN;

The trained DNN predicts a steering angle based on the current input values to keep the car along
the centerline of a lane. to make a prediction, use the predict function. For example, the following
command predicts the steering angle when all input signals are zero.

steeringAngle = predict(dnnLKA,zeros(1,6))

steeringAngle = single
 -0.0195

However, the DNN model does not provide any explanation about how it derives the steering angle.
The DNN model parameters are the steering angle generation algorithm in terms of hidden units and
their associated parameters. Therefore, input-output relations cannot be described using the DNN
structure alone.

figure
plot(layerGraph(dnnLKA))

3 Fuzzy Inference System Tuning

3-164

To explain the DNN model behavior, you can create and tune a fuzzy support system.

Create Initial Fuzzy Inference System

For an LKA controller with six inputs, a single monolithic FIS contains a large complex rule base that
is difficult to interpret. As an alternative. you can create a FIS tree that incrementally combines input
values using multiple FISs, each with a smaller rule base.

Create a FIS tree with four layers and five FISs. Each FIS has two inputs and one output. To create
each component FIS, use the constructFIS helper function, which is shown at the end of this
example.

numMFs = 2;
fis1 = constructFIS('fis1',numMFs, ...
 data.vRange,data.e1Range,data.uRange,'Vy','e1','u1');
fis2 = constructFIS('fis2',numMFs, ...
 data.rRange,data.e2Range,data.uRange,'r','e2','u2');
fis3 = constructFIS('fis3',numMFs, ...
 data.uRange,data.uRange,data.uRange,'u1','u2','u3');
fis4 = constructFIS('fis4',numMFs, ...
 data.uRange,data.uRange,data.uRange,'u3','u','u4');
fis5 = constructFIS('fis5',numMFs, ...
 data.uRange,data.dRange,data.uRange,'u4','d','u*');

fis = [fis1 fis2 fis3 fis4 fis5];
connections = [...
 fis1.Name+"/"+fis1.Outputs(1).Name fis3.Name+"/"+fis3.Inputs(1).Name; ...

 Explain Black-Box Model Using Fuzzy Support System

3-165

 fis2.Name+"/"+fis2.Outputs(1).Name fis3.Name+"/"+fis3.Inputs(2).Name; ...
 fis3.Name+"/"+fis3.Outputs(1).Name fis4.Name+"/"+fis4.Inputs(1).Name; ...
 fis4.Name+"/"+fis4.Outputs(1).Name fis5.Name+"/"+fis5.Inputs(1).Name ...
];

fisTin = fistree(fis,connections);

View the FIS tree structure.

showFISTree(fisTin)

In this FIS tree:

• The first layer uses two FISs: fis1 and fis2, where fis1 combines lateral velocity (Vy) and
lateral deviation (e1), and fis2 combines yaw angle (r) and relative yaw angle (e2) to predict
expected steering angles u1 and u2 for the respective input values.

• The second layer uses fis3 to combine the outputs of fis1 and fis2, that is, fis3 combines the
effects of lateral displacement and yaw angle to produce a desired steering angle (u3) for the LKA
system.

• The third layer uses fis4 to combine the effect of the previous steering angle (u) with the output
of second layer to generate u4.

• The fourth layer combines the effect of the measured disturbance (d) with the desired steering
angle predicted by the previous layers using fis5.

Each input of a FIS includes two membership functions (MFs) and each output includes four MFs. As
a result, each FIS has four rules and the overall FIS tree has 20 rules.

3 Fuzzy Inference System Tuning

3-166

Tune Fuzzy Inference System

For this example, you tune the FIS in two stages.

1 Establish the input-output relations for each FIS by learning the output membership functions for
each possible input combination.

2 Tune the MF parameters for the input and output variables of each FIS.

To learn the output membership functions for each rule, first obtain the rule parameter settings from
the initial FIS fisTin.

[~,~,rule] = getTunableSettings(fisTin);

Then, specify that the antecedent membership functions are fixed during the tuning process.

for ct = 1:length(rule)
 rule(ct).Antecedent.Free = 0;
end

Create an option set for tuning. Use the default genetic algorithm (ga) tuning method. Set maximum
stall generations to 5.

options = tunefisOptions;
options.MethodOptions.MaxStallGenerations = 5;

To visualize the convergence process, set the PlotFcn tuning method option to gaplotbestf.

options.MethodOptions.PlotFcn = @gaplotbestf;

To prevent overfitting, use k-fold cross validation with two partitions.

options.KFoldValue = 2;

Tuning is a time-consuming process, so for this example, load a pretuned FIS tree. To tune the FIS
tree yourself instead, set runtunefis to true.

runtunefis = false;

Since the FIS tree input order is different than that of the black-box model, reorder the training data.

trainInputData = [data.Vy data.e1 data.r data.e2 data.uprev data.d];

Tune the fuzzy rules. For reproducibility, reset the random number generator using the default seed.

if runtunefis
 rng('default')
 fisToutR = tunefis(fisTin,rule,trainInputData,data.trainOutputData,options);
else
 fisToutR = data.fisToutR;
end

Evaluate the performance of the FIS using the training data. The calculateRMS helper function
evaluates the input data using the specified FIS and computes the RMS error for the result.

rms = calculateRMS(fisToutR,trainInputData,data.trainOutputData)

rms = 0.3507

Display the tuned rule base of each FIS in the tree using the showRules helper function.

 Explain Black-Box Model Using Fuzzy Support System

3-167

showRules(fisToutR)

 fis1Rules fis2Rules
 _________________________________ ________________________________

 "Vy==mf1 & e1==mf1 => u1=mf4 (1)" "r==mf1 & e2==mf1 => u2=mf1 (1)"
 "Vy==mf2 & e1==mf1 => u1=mf3 (1)" "r==mf2 & e2==mf1 => u2=mf2 (1)"
 "Vy==mf1 & e1==mf2 => u1=mf2 (1)" "r==mf1 & e2==mf2 => u2=mf4 (1)"
 "Vy==mf2 & e1==mf2 => u1=mf1 (1)" "r==mf2 & e2==mf2 => u2=mf3 (1)"

 fis3Rules fis4Rules
 _________________________________ ________________________________

 "u1==mf1 & u2==mf1 => u3=mf3 (1)" "u3==mf1 & u==mf1 => u4=mf1 (1)"
 "u1==mf2 & u2==mf1 => u3=mf4 (1)" "u3==mf2 & u==mf1 => u4=mf4 (1)"
 "u1==mf1 & u2==mf2 => u3=mf1 (1)" "u3==mf1 & u==mf2 => u4=mf1 (1)"
 "u1==mf2 & u2==mf2 => u3=mf2 (1)" "u3==mf2 & u==mf2 => u4=mf4 (1)"

 fis5Rules

 "u4==mf1 & d==mf1 => u*=mf1 (1)"
 "u4==mf2 & d==mf1 => u*=mf4 (1)"
 "u4==mf1 & d==mf2 => u*=mf1 (1)"
 "u4==mf2 & d==mf2 => u*=mf4 (1)"

fis1, fis3, fis4, and fis5 do not use all of the output MFs. Hence, you can remove these unused
output membership functions.

fisToutR2 = fisToutR;
for ct = 1:length(fisToutR2.FIS)
 numOutputMFs = length(fisToutR2.FIS(ct).Outputs(1).MembershipFunctions);
 numOutputMFUsed = unique([fisToutR2.FIS(ct).Rules.Consequent]);
 numOutputMFNotUsed = setdiff(1:numOutputMFs,numOutputMFUsed);
 if ~isempty(numOutputMFNotUsed)
 fisToutR2.FIS(ct).Outputs(1).MembershipFunctions(numOutputMFNotUsed) = [];
 end
end

Next, tune the input and output MF parameters. To do so, first get the input and output variable
tunable settings for the FIS tree.

[in,out] = getTunableSettings(fisToutR2);

To improve the optimization results, increase the MF parameter ranges.

for fisId = 1:numel(fisToutR2.FIS)
 id = (fisId-1)*2;
 for inId = 1:numel(fisToutR2.FIS(fisId).Inputs)
 d = diff(fisToutR2.FIS(fisId).Inputs(inId).Range);
 l = fisToutR2.FIS(fisId).Inputs(inId).Range(1)-0.5*d;
 u = fisToutR2.FIS(fisId).Inputs(inId).Range(2)+0.5*d;
 for mfId = 1:numel(fisToutR2.FIS(fisId).Inputs(inId).MembershipFunctions)
 in(id+inId).MembershipFunctions(mfId).Parameters.Minimum = l;
 in(id+inId).MembershipFunctions(mfId).Parameters.Maximum = u;
 end
 end
end

3 Fuzzy Inference System Tuning

3-168

Use the patternsearch algorithm for tuning the MF parameters.

options.Method = 'patternsearch';

To visualize the convergence process, set the PlotFcn tuning method option to psplotbestf.

options.MethodOptions.PlotFcn = @psplotbestf;

Tune the MF parameters.

if runtunefis
 rng('default')
 options.MethodOptions.MaxIterations = 10;
 fisToutMF = tunefis(fisToutR2,[in;out],trainInputData,data.trainOutputData,options);
else
 fisToutMF = data.fisToutMF;
end

The lower RMS error indicates that the fuzzy system performance improves after tuning the MF
parameters.

rms = calculateRMS(fisToutMF,trainInputData,data.trainOutputData)

rms = 0.0506

Compare FIS to Black-Box Model

Before you can explain the behavior of the black-box model, first verify that the tuned FIS properly
reproduces the behavior of the black-box model.

Evaluate the test data using the black-box DNN model and compute the RMS error for the result.

yDNN = predict(dnnLKA,data.testInputData);
d = yDNN - data.testOutputData;
rmseDNN = sqrt(mean(d.^2))

rmseDNN = single
 0.0320

Evaluate the test data using the FIS and compute the RMS error for the result. Also, return the
computed steering angles in yFIS.

testInputData = [data.testInputData(:,1) data.testInputData(:,3) ...
 data.testInputData(:,2) data.testInputData(:,4:6)];
[rmseFIS,yFIS] = calculateRMS(fisToutMF,testInputData,data.testOutputData);
rmseFIS

rmseFIS = 0.0518

The low RMS error values indicate that both the DNN and FIS closely reproduce the steering angles
in the output training data. To further validate this result, plot the calculated steering angles for both
systems over a subset of the training data.

start = 1;
stop = 50;
x = 1:length(data.testOutputData);
plot(x(start:stop),data.testOutputData(start:stop), ...
 x(start:stop),yDNN(start:stop), ...
 x(start:stop),yFIS(start:stop))

 Explain Black-Box Model Using Fuzzy Support System

3-169

xlabel("Test Data Point")
ylabel("Steering Angle (radians)")
legend("Test Data","DNN","FIS")

The DNN and FIS both reproduce the expected steering angles from the training data.

Explain Black-Box Model Using FIS

To explain the black-box model, first specify meaningful names for the MFs of each FIS. Doing so
improves the interpretability of the FIS behavior.

mfNames = {...
 ["negative" "positive"], ...
 ["negative" "zero" "positive"], ...
 ["negativeLow" "negative" "positive" "positiveHigh"] ...
 };

for fisId = 1:numel(fisToutMF.FIS)
 for inId = 1:numel(fisToutMF.FIS(fisId).Inputs)
 numInputMFs = numel(fisToutMF.FIS(fisId).Inputs(inId).MembershipFunctions);
 names = mfNames{numInputMFs-1};
 for mfId = 1:numel(fisToutMF.FIS(fisId).Inputs(inId).MembershipFunctions)
 fisToutMF.FIS(fisId).Inputs(inId).MembershipFunctions(mfId).Name = names(mfId);
 end
 end

 numOutputMFs = numel(fisToutMF.FIS(fisId).Outputs(1).MembershipFunctions);
 names = mfNames{numOutputMFs-1};
 for mfId = 1:numOutputMFs
 fisToutMF.FIS(fisId).Outputs(1).MembershipFunctions(mfId).Name = names(mfId);
 end

3 Fuzzy Inference System Tuning

3-170

end

View the FIS rules.

showRules(fisToutMF)

 fis1Rules fis2Rules
 __ ___

 "Vy==negative & e1==negative => u1=positiveHigh (1)" "r==negative & e2==negative => u2=negativeLow (1)"
 "Vy==positive & e1==negative => u1=positive (1)" "r==positive & e2==negative => u2=negative (1)"
 "Vy==negative & e1==positive => u1=negative (1)" "r==negative & e2==positive => u2=positiveHigh (1)"
 "Vy==positive & e1==positive => u1=negativeLow (1)" "r==positive & e2==positive => u2=positive (1)"

 fis3Rules fis4Rules
 __ ___

 "u1==negative & u2==negative => u3=positive (1)" "u3==negative & u==negative => u4=negative (1)"
 "u1==positive & u2==negative => u3=positiveHigh (1)" "u3==positive & u==negative => u4=positive (1)"
 "u1==negative & u2==positive => u3=negativeLow (1)" "u3==negative & u==positive => u4=negative (1)"
 "u1==positive & u2==positive => u3=negative (1)" "u3==positive & u==positive => u4=positive (1)"

 fis5Rules

 "u4==negative & d==negative => u*=negative (1)"
 "u4==positive & d==negative => u*=positive (1)"
 "u4==negative & d==positive => u*=negative (1)"
 "u4==positive & d==positive => u*=positive (1)"

You can make the following observations from the rule bases.

• Steering angle u1 (output of fis1) is inversely proportional to lateral velocity (Vy) and deviation
(e1). For example, the first rule of fis1 describes that the steering angle u1 is positiveHigh
(high positive value) when the lateral velocity (Vy) and deviation (e1) are both negative.

• Steering angle u2 (output of fis2) is proportional to yaw angle rate (r) and relative yaw angle
(e2). For example, the first rule of fis2 describes that the steering angle u2 is negativeLow (low
negative value) when the yaw angle rate (r) and relative yaw angle (e2) are both negative.

• Steering angles u1 (output of fis1) and u2 (output of fis2) have a negative correlation, that is,
fis3 output u3 increases when u1 increases, whereas u3 decreases when u2 increases. Hence, the
lateral deviation and yaw angle have opposite effects on the steering angle.

• The rule base of fis4 shows that the previous steering input u has insignificant effect on the
steering angle calculation. The output u4 of fis4 uses similar linguistic variables as does the
output of fis3.

• The measured disturbance d also has insignificant effect on the steering angle calculation since
the output u5 of fis5 uses similar linguistic variables as does the output of fis4.

Hence, the rule bases of the FISs in the FIS tree describe the effects and relations between the input
variables for steering calculation in the LKA system.

You can visualize each rule base using its control surface, which describes numerical mappings from
the inputs to output according to the rule base.

 Explain Black-Box Model Using Fuzzy Support System

3-171

figure
subplot(3,2,1)
gensurf(fisToutMF.FIS(1))
subplot(3,2,2)
gensurf(fisToutMF.FIS(2))
subplot(3,2,3)
gensurf(fisToutMF.FIS(3))
subplot(3,2,4)
gensurf(fisToutMF.FIS(4))
subplot(3,2,5)
gensurf(fisToutMF.FIS(5))

A fuzzy rule base provides linguistic relation between the inputs and output. The control surface
augments this linguistic relation by adding numeric detail for input to output mapping.

Explain Run-Time Black-Box Predictions

The previous explanation of the black-box behavior describes the general relationships between the
input observations and the resulting steering angle by interpreting the rule base of the fuzzy support
system itself.

You can also use the support system to explain black-box outcomes generated in each control interval.
The following diagram explains the parallel execution settings of the black-box model and the support
system for run-time explanation of the black-box predictions.

3 Fuzzy Inference System Tuning

3-172

The black-box model and the support system run in parallel and use the same input values
(observations) for output prediction. The prediction from black-box model drives environment
changes, while the support system only explains the black-box predictions. For this example, the
fuzzy support system includes the following components in the explanation for each control interval.

1 Current simulation time
2 Current input values
3 Steering angle outputs generated by the DNN black-box model and fuzzy support system
4 Fuzzy rules having the maximum firing strength from each FIS of the FIS tree.

The output data format for each control interval is as follows.

================ Simulation time: <t> sec ================
inputs: [v r e1 e2 u d], outputs: [u*(DNN) u*(fuzzy)] rad
Max strength rules:
 fis1: <rule description>
 fis2: <rule description>
 fis3: <rule description>
 fis4: <rule description>
 fis5: <rule description>

 Explain Black-Box Model Using Fuzzy Support System

3-173

The following simulation results explain the DNN model outputs in each control cycle using the fuzzy
support system.

Initialize the vehicle state using the input from a test data point.

id = round(median(1:size(data.testInputData,1)));
x0 = data.testInputData(id,:);

Simulate the DNN and FIS with the same input data using the compareDNNWithFIS helper function.

[dnnOutputs,fisOutput] = compareDNNWithFIS(dnnLKA,fisToutMF,data,x0);

================ Simulation time: 0 sec ================
inputs: [0.0737824 -0.726656 -0.0161284 0.0484033 0.569496 -0.00256057],
outputs: [1.01041 1.0472] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==positive => u2=positive (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==positive & u==negative => u4=positive (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 0.1 sec ================
inputs: [1.2579 -0.532934 1.33827 0.119282 1.01041 -0.00256057],
outputs: [-0.0654638 -0.114224] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==positive => u2=positive (1)
 fis3: u1==positive & u2==positive => u3=negative (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==negative & d==negative => u*=negative (1)
================ Simulation time: 0.2 sec ================
inputs: [-0.338464 -0.23482 0.745212 0.222974 -0.0654638 -0.00256057],
outputs: [-0.933683 -0.982878] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==positive => u2=positive (1)
 fis3: u1==positive & u2==positive => u3=negative (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==negative & d==negative => u*=negative (1)
================ Simulation time: 0.3 sec ================
inputs: [-1.86933 -0.0209625 -0.862648 0.212142 -0.933683 -0.00256057],
outputs: [-0.817988 -0.751812] rad
Max strength rules:
 fis1: Vy==negative & e1==negative => u1=positiveHigh (1)
 fis2: r==negative & e2==positive => u2=positiveHigh (1)
 fis3: u1==positive & u2==positive => u3=negative (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==negative & d==negative => u*=negative (1)
================ Simulation time: 0.4 sec ================
inputs: [-1.43016 0.0363023 -1.71046 0.0795596 -0.817988 -0.00256057],
outputs: [0.067486 0.285178] rad
Max strength rules:
 fis1: Vy==negative & e1==negative => u1=positiveHigh (1)
 fis2: r==negative & e2==positive => u2=positiveHigh (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==positive & u==negative => u4=positive (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 0.5 sec ================

3 Fuzzy Inference System Tuning

3-174

inputs: [0.518155 0.0163838 -0.959078 -0.0526409 0.067486 -0.00256057],
outputs: [0.341617 0.307694] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==negative & e2==negative => u2=negativeLow (1)
 fis3: u1==negative & u2==negative => u3=positive (1)
 fis4: u3==positive & u==negative => u4=positive (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 0.6 sec ================
inputs: [1.43122 0.00176658 -0.0241615 -0.0985401 0.341617 -0.00256057],
outputs: [0.2509 0.266469] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==negative & u2==negative => u3=positive (1)
 fis4: u3==positive & u==negative => u4=positive (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 0.7 sec ================
inputs: [1.16149 -0.000896733 0.439618 -0.075189 0.2509 -0.00256057],
outputs: [0.0708356 0.0913793] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==negative & u2==negative => u3=positive (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 0.8 sec ================
inputs: [0.440393 -0.00281434 0.429965 -0.0306668 0.0708356 -0.00256057],
outputs: [-0.018147 0.00702747] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 0.9 sec ================
inputs: [-0.0839109 -0.00710326 0.246288 0.00320765 -0.018147 -0.00256057],
outputs: [-0.0571112 -0.0431572] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==negative & d==negative => u*=negative (1)
================ Simulation time: 1 sec ================
inputs: [-0.302092 -0.0110731 0.0509452 0.0177286 -0.0571112 -0.00256057],
outputs: [-0.0356867 -0.00903791] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==positive => u2=positive (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==negative & d==negative => u*=negative (1)
================ Simulation time: 1.1 sec ================
inputs: [-0.258972 -0.012099 -0.0449731 0.0178176 -0.0356867 -0.00256057],
outputs: [-0.0338398 -0.00862586] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)

 Explain Black-Box Model Using Fuzzy Support System

3-175

 fis2: r==positive & e2==positive => u2=positive (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==negative & d==negative => u*=negative (1)
================ Simulation time: 1.2 sec ================
inputs: [-0.159425 -0.01097 -0.091006 0.0109606 -0.0338398 -0.00256057],
outputs: [-0.0138319 0.000404072] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==positive => u2=positive (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 1.3 sec ================
inputs: [-0.0423529 -0.0105425 -0.0811233 0.00251846 -0.0138319 -0.00256057],
outputs: [0.000331631 0.0269576] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 1.4 sec ================
inputs: [0.0361998 -0.0114349 -0.0471621 -0.00358271 0.000331631 -0.00256057],
outputs: [0.0304953 0.0473974] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 1.5 sec ================
inputs: [0.0930044 -0.0110261 0.0178849 -0.0045736 0.0304953 -0.00256057],
outputs: [0.00543881 0.0263823] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 1.6 sec ================
inputs: [0.0479659 -0.00916726 0.0247146 -0.00210616 0.00543881 -0.00256057],
outputs: [-0.00489218 0.013721] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 1.7 sec ================
inputs: [0.00396816 -0.00833844 0.0109447 -7.63103e-05 -0.00489218 -0.00256057],
outputs: [-0.0103413 0.0106303] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)

3 Fuzzy Inference System Tuning

3-176

================ Simulation time: 1.8 sec ================
inputs: [-0.018166 -0.0089212 -0.00744726 0.000300261 -0.0103413 -0.00256057],
outputs: [-0.00482928 0.0185661] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 1.9 sec ================
inputs: [-0.0108874 -0.0104442 -0.0119736 -0.00044273 -0.00482928 -0.00256057],
outputs: [0.00649286 0.0270567] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 2 sec ================
inputs: [0.0102737 -0.0112775 0.00120233 -0.000692395 0.00649286 -0.00256057],
outputs: [0.00606815 0.023241] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 2.1 sec ================
inputs: [0.0123836 -0.0105726 0.00956554 0.000135917 0.00606815 -0.00256057],
outputs: [-0.00548606 0.0132276] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 2.2 sec ================
inputs: [-0.00638756 -0.00962136 -0.00104885 0.000793332 -0.00548606 -0.00256057],
outputs: [-0.0101493 0.0127077] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 2.3 sec ================
inputs: [-0.0150607 -0.00993626 -0.0145728 0.000219598 -0.0101493 -0.00256057],
outputs: [-0.000622749 0.0224691] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 2.4 sec ================
inputs: [0.00129175 -0.0109741 -0.0100013 -0.000752014 -0.000622749 -0.00256057],
outputs: [0.00826702 0.0272876] rad
Max strength rules:

 Explain Black-Box Model Using Fuzzy Support System

3-177

 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 2.5 sec ================
inputs: [0.0180957 -0.0110403 0.00564719 -0.000665084 0.00826702 -0.00256057],
outputs: [0.00268267 0.0195868] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 2.6 sec ================
inputs: [0.00964099 -0.00996295 0.00814148 0.000300946 0.00268267 -0.00256057],
outputs: [-0.00864567 0.0113769] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 2.7 sec ================
inputs: [-0.0106986 -0.00937355 -0.00624473 0.000612801 -0.00864567 -0.00256057],
outputs: [-0.00803808 0.0154329] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 2.8 sec ================
inputs: [-0.0111989 -0.0101628 -0.0149538 -0.000228281 -0.00803808 -0.00256057],
outputs: [0.00356137 0.0254181] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)
================ Simulation time: 2.9 sec ================
inputs: [0.00883551 -0.0110872 -0.00433248 -0.000913484 0.00356137 -0.00256057],
outputs: [0.00806062 0.0257676] rad
Max strength rules:
 fis1: Vy==positive & e1==negative => u1=positive (1)
 fis2: r==positive & e2==negative => u2=negative (1)
 fis3: u1==positive & u2==negative => u3=positiveHigh (1)
 fis4: u3==negative & u==negative => u4=negative (1)
 fis5: u4==positive & d==negative => u*=positive (1)

Plot the DNN and FIS outputs.

plotValidationResults(data.Ts,dnnOutputs,fisOutput)

3 Fuzzy Inference System Tuning

3-178

As expected, the fuzzy support system produces similar steering angle outputs as compared to the
DNN black-box model.

Explanation Using Fuzzy Rule Inference

You can further explore the decision-making process of a FIS in the tree using its rule inference
viewer. For example, the following simulation shows rule inference process of fis1 of the FIS tree.

fisIndex = 1;
showRuleInference(data,fisToutMF,fisIndex,x0)

 Explain Black-Box Model Using Fuzzy Support System

3-179

The left plot shows the output pattern of fis1 as compared to the overall FIS tree output. The right
plot shows individual rule activations of fis1 in each control cycle.

FIS Tree Data Propagation

Finally, you can also visualize how each FIS contributes to the decision-making process for a given set
of input values. The following example shows output propagation in the FIS tree for a test input
vector.

[~,~,fisIns,fisOuts] = evaluateFISTree(fisToutMF,[x0(1) x0(3) x0(2) x0(4:6)]);
fisTwithIOValues = updateLabelsWithIOValues(fisToutMF,fisIns,fisOuts);

showFISTree(fisTwithIOValues,0.85)

3 Fuzzy Inference System Tuning

3-180

For this combination of input values, the output of fis1 dominates over the fis2 output, which
indicates that lateral displacement and its rate contribute more to the overall output value.

Conclusion

You can further improve the performance of the support fuzzy system by using:

• Additional input MFs
• Continuous MFs for smooth variations in outputs
• More training data, and
• Different configurations of the FIS tree, as shown in the following figure

showOtherBlackBoxFISTrees(data)

Example 1

Example 2

 Explain Black-Box Model Using Fuzzy Support System

3-181

Different tuning methods with different random number generation seeds may also improve the
optimization of the support system.

You can also intuitively update each individual FIS rule base to check possible variations in output
generation to further improve the performance of the support system.

Helper Functions

function fis = constructFIS(name,numMFs,in1range,in2range,outrange,in1,in2,out)
% Construct a Sugeno FIS.

fis = sugfis('Name',name);
numOutputMFs = numMFs^2;
fis = addInput(fis,in1range,'Name',in1,'NumMFs',numMFs);
fis = addInput(fis,in2range,'Name',in2,'NumMFs',numMFs);
for ct = 1:2
 fis.Inputs(ct).MembershipFunctions(1).Type = 'linzmf';
 fis.Inputs(ct).MembershipFunctions(end).Type = 'linsmf';
 numMFs = length(fis.Inputs(ct).MembershipFunctions);
end
fis = addOutput(fis,outrange,'Name',out,'NumMFs',numOutputMFs);
range = 1:numMFs;
[in1,in2] = ndgrid(range,range);
rules = [in1(:) in2(:) ones(numOutputMFs,3)];
fis = addRule(fis,rules);
end

function [rms,yFIS] = calculateRMS(fis,x,y)
% Evaluate the FIS using the specified input data and calculate the RMS error
% the simulated and reference outputs.

3 Fuzzy Inference System Tuning

3-182

options = evalfisOptions;
options.EmptyOutputFuzzySetMessage = 'none';
options.NoRuleFiredMessage = 'none';
options.OutOfRangeInputValueMessage = 'none';

yFIS = evalfis(fis,x,options);
e = yFIS - y;
rms = sqrt(mean(e.*e));
end

function showRules(fisT)
% Display rule bases of the FISs in a FIS tree as tables.

fis1Rules = [fisT.FIS(1).Rules.Description]';
fis2Rules = [fisT.FIS(2).Rules.Description]';
fis3Rules = [fisT.FIS(3).Rules.Description]';
fis4Rules = [fisT.FIS(4).Rules.Description]';
fis5Rules = [fisT.FIS(5).Rules.Description]';

disp(table(fis1Rules,fis2Rules))
disp(table(fis3Rules,fis4Rules))
disp(table(fis5Rules))
end

function [uHistoryDNN,uHistoryFIS] = compareDNNWithFIS(dnnLKA,fisToutMF,data,x0)
% Compares DNN and FIS tree model.

xHistoryDNN = repmat(x0(1:4),data.Tsteps+1,1);
uHistoryDNN = zeros(data.Tsteps,1);
uHistoryFIS = zeros(data.Tsteps,1);

lastMV = x0(5);
d = x0(6);
for k = 1:data.Tsteps
 % Obtain plant output measurements, which correspond to the plant outputs.
 xk = xHistoryDNN(k,:)';
 % Predict the next move using the trained deep neural network.
 in = [xk',lastMV,d];
 ukDNN = predict(dnnLKA,in);
 % Predict the next move using the trained fuzzy system.
 tmp = in(2); in(2) = in(3); in(3) = tmp; % config 1
 [ukFIS,maxRules] = evaluateFISTree(fisToutMF,in);
 % Store the control action and update the last MV for the next step.
 uHistoryDNN(k,:) = ukDNN;
 uHistoryFIS(k,:) = ukFIS;
 lastMV = ukDNN;
 % Update the state using the control action.
 xHistoryDNN(k+1,:) = (data.A*xk + data.B*[ukDNN;d])';

 % Explanations/diagnostics
 fprintf('\n================ Simulation time: %g sec ================',...
 (k-1)*data.Ts);
 fprintf('\ninputs: [%g %g %g %g %g %g], \noutputs: [%g %g] rad', ...
 in(1),in(2),in(3),in(4),in(5),in(6),ukDNN,ukFIS);
 fprintf('\nMax strength rules:');
 fprintf('\n\tfis1: %s\n\tfis2: %s\n\tfis3: %s\n\tfis4: %s\n\tfis5: %s', ...
 maxRules(1),maxRules(2),maxRules(3),maxRules(4),maxRules(5));
end

 Explain Black-Box Model Using Fuzzy Support System

3-183

end

function [y,maxRules,fisIns,fisOuts] = evaluateFISTree(fisT,x)
% Evaluates FIS tree with the specified input values.

options = evalfisOptions;
options.OutOfRangeInputValueMessage = 'none';
options.NoRuleFiredMessage = 'none';
options.EmptyOutputFuzzySetMessage = 'none';

numFIS = numel(fisT.FIS);
fisIns = zeros(numFIS,2);

fisIns(1,:) = x(1:2);
[y1,~,~,~,rfs1] = evalfis(fisT.FIS(1),x(1:2),options);
fisIns(2,:) = x(3:4);
[y2,~,~,~,rfs2] = evalfis(fisT.FIS(2),x(3:4),options);
fisIns(3,:) = [y1 y2];
[y3,~,~,~,rfs3] = evalfis(fisT.FIS(3),[y1 y2],options);
fisIns(4,:) = [y3 x(5)];
[y4,~,~,~,rfs4] = evalfis(fisT.FIS(4),[y3 x(5)],options);
fisIns(5,:) = [y4 x(6)];
[y,~,~,~,rfs5] = evalfis(fisT.FIS(5),[y4 x(6)],options);

fisOuts = [y1 y2 y3 y4 y];

[~,id1] = sort(rfs1,'descend');
[~,id2] = sort(rfs2,'descend');
[~,id3] = sort(rfs3,'descend');
[~,id4] = sort(rfs4,'descend');
[~,id5] = sort(rfs5,'descend');

maxRules = [...
 fisT.FIS(1).Rules(id1(1)).Description; ...
 fisT.FIS(2).Rules(id2(1)).Description; ...
 fisT.FIS(3).Rules(id3(1)).Description; ...
 fisT.FIS(4).Rules(id4(1)).Description; ...
 fisT.FIS(5).Rules(id5(1)).Description ...
];
end

function plotValidationResults(Ts,uDNN,uFIS)
% Plot validation results of the DNN and FIS tree model.
figure

% Plot output steering angles of DNN and FIS.
Tu = ((0:(size(uDNN,1))-1)*Ts)';
stairs(Tu,uDNN);
title('DNN and FIS output comparison')
xlabel('Time (s)')
ylabel('Steering angle (rad)')
axis([0 Tu(end) -1.1 1.1]);
hold on
stairs(Tu,uFIS);
legend('DNN','FIS')
grid on;
hold off

3 Fuzzy Inference System Tuning

3-184

pause(0.1)
end

See Also
tunefis | getTunableSettings | fistree

More About
• “Tuning Fuzzy Inference Systems” on page 3-2
• “Fuzzy Trees” on page 2-96
• “Explainable Fuzzy Support System for Black-Box Model of Robot Obstacle Avoidance” on page

3-186

 Explain Black-Box Model Using Fuzzy Support System

3-185

Explainable Fuzzy Support System for Black-Box Model of
Robot Obstacle Avoidance

This example shows how to develop a support fuzzy inference system to explain the behavior of a
black-box model when the original data used to train the black-box model is not available.

Using nondeterministic machine learning methods, such as reinforcement learning, you can design a
black-box model to estimate the input-output mapping for a given set of experimental or simulation
data. However, the input-output relationship defined by such a black-box model is difficult to
understand.

In general, users are unable to explain the causal relations from the inputs to the outputs. Also, they
are unable to change the system behavior using the implicit input-output models. To resolve these
problems, a common approach is to create a transparent support system for the black-box model. The
goal of such a support system is to help users understand and explain the input-output relationships
developed in a black box model.

A fuzzy inference system (FIS) is a transparent model that represents system knowledge using an
explainable rule base. Since the rule base of a fuzzy system is easier for a user to intuitively
understand, a FIS is often used as a support system to explain an existing black-box model.

The following figure shows the general steps for developing a fuzzy support system from an existing
black-box model when the original training data for the black-box model is not available.

1 Generate black-box model outputs for a given set of test data.
2 Tune a FIS using the test input data and generated output data.
3 Finally, compare the performance of the models and explain the black-box predictions using the

FIS.

3 Fuzzy Inference System Tuning

3-186

In general, you can use a fuzzy support system to explain different types of black-box models. For this
example, the black-box model is implemented using a reinforcement learning (RL) agent, which
requires Reinforcement Learning Toolbox™ software.

Navigation Environment

The RL agent in this example is trained to navigate a robot in a simulation environment while
avoiding obstacles. The navigation environment is described in “Tune Fuzzy Robot Obstacle
Avoidance System Using Custom Cost Function” on page 3-102.

The environment describes a navigation task to reach a specified target while avoiding obstacles. The
direction to the target is represented as a unit force vector (Ft) directed from the robot to a target

location. The obstacle avoidance direction is represented by a unit force vector (Fo) directed towards
the robot from the closest obstacle location. The robot, target, and obstacle are shown as circles with
0.5 m radius in the 25 m x 25 m simulation environment. The navigation task is to combine the force
vectors such that the direction θ of the resultant force vector F provides a collision-free direction for
the robot.

F = wFo + 1 −w Ft, where 0 ≤ w ≤ 1

θ = ∠F

The weight w of the force vector Fo is calculated using function fw.

 Explainable Fuzzy Support System for Black-Box Model of Robot Obstacle Avoidance

3-187

w = fw α, θt, o

Here:

• α =
do
dt

 is the ratio of the robot-to-obstacle distance (do) and the robot-to-target-distance (dt)

• θt, o is the absolute difference between the target and obstacle directions with respect to the robot

The RL agent learns a policy to model fw for collision-free robot navigation in the environment using
(α, θt, o) as the observation and w as the action.

Policy Simulation

To simulate the learned policy, first load the trained RL agent.

rlmodel = load("rlNavModel.mat");
trainedAgent = rlmodel.trainedAgent;

Create the simulation environment using an RL environment object as defined in the
NavigationEnvironment.m helper file. This environment definition also includes several helper
functions used in this example.

env = NavigationEnvironment;

Simulate the agent in the navigation environment.

sim(trainedAgent,env)

3 Fuzzy Inference System Tuning

3-188

The trained RL agent successfully avoids obstacles using a learned policy.

However, the agent does not provide an explanation about how it avoids the obstacle. The actor of the
agent uses a deep neural network (DNN) model, which encapsulates the navigation policy in terms of
hidden units and their associated parameters. As an example, you can directly simulate the actor of
the agent to generate an action for a specific observation as follows.

alpha = 0.1;
theta = 0;
obstacleWeight = trainedAgent.getAction([alpha;theta])

obstacleWeight = 1x1 cell array
 {[0.9253]}

The actor produces a high weight for obstacle avoidance. However, it does not provide any tools to
explain how the knowledge is represented in the model and how it has been used to generate the
action in this case.

Generate Test Data

To explain the agent actions, you can develop a fuzzy support system using a data-driven approach.
To do so, you must first generate input-output training data using different test cases, where each
case represents different direction of the robot. For n test cases, the robot direction is specified as
± 2π

n rad. In each case, the target, obstacle, and the robot are located along the same line. However,
their relative distances are varied randomly.

Generate four test cases using the createTestCases helper function. You can visualize the test
cases using the showTestCases helper function.

numTestCases = 4;
rng("default")
testCases = createTestCases(env,numTestCases);
showTestCases(env,testCases)

 Explainable Fuzzy Support System for Black-Box Model of Robot Obstacle Avoidance

3-189

Use the test cases to generate input-output training data for the fuzzy system using the
generateData helper function.

[X,Y] = generateData(env,trainedAgent,testCases);

3 Fuzzy Inference System Tuning

3-190

Create and Tune Support System

To define the fuzzy support system, you must create and tune a FIS.

Create Initial FIS

Create a Mamdani fuzzy inference system.

fisin = mamfis;

Add two input variables for the observations. Each input includes two linear saturation membership
functions (MFs).

numMFs = 2;
% Input 1
fisin = addInput(fisin,[0 2],"Name","alpha","NumMFs",numMFs);
fisin.Inputs(1).MembershipFunctions(1).Type = "linzmf";
fisin.Inputs(1).MembershipFunctions(end).Type = "linsmf";

% Input 2
fisin = addInput(fisin,[0 pi/2],"Name","theta_t_o","NumMFs",numMFs);
fisin.Inputs(2).MembershipFunctions(1).Type = "linzmf";
fisin.Inputs(2).MembershipFunctions(end).Type = "linsmf";

Add an output variable for the action, which represents the weight (priority) of obstacle avoidance.
Add output MFs for all possible combinations of input MFs.

 Explainable Fuzzy Support System for Black-Box Model of Robot Obstacle Avoidance

3-191

numOutMFs = numMFs^2;
fisin = addOutput(fisin,[0 1],"Name","w","NumMFs",numOutMFs);

Next, add default rules for all combinations of input MFs. The default rules always produce a low
weight for obstacle avoidance.

[in1,in2] = ndgrid(1:numMFs,1:numMFs);
rules = [in1(:) in2(:) ones(numOutMFs,3)];
fisin = addRule(fisin,rules);

Show the initial FIS.

figure
plotfis(fisin)

Tune FIS

To train the FIS, use the following two stages.

• Learn the rule base to establish the input-output relationships.
• Tune the membership function parameters for the input and output variables.

To tune the rules, first obtain the rule parameter settings from the FIS.

[~,~,rule] = getTunableSettings(fisin);

Since you have a rule for each possible input combination, configure the training settings to keep the
rule antecedents fixed. As a result, tuning will only modify the rule consequents.

3 Fuzzy Inference System Tuning

3-192

for ct = 1:length(rule)
 rule(ct).Antecedent.Free = 0;
end

Create an option set for tuning and specify particleswarm as the tuning method. Set maximum
number of tuning iterations to 50.

options = tunefisOptions("Method","particleswarm");
options.MethodOptions.MaxIterations = 50;

Tuning is a time-consuming process. For this example, load a pretrained FIS by setting runtunefis
to false. To tune the FIS yourself instead, set runtunefis to true.

runtunefis = false;

Tune the fuzzy rules. For reproducibility, reset the random number generator using the default seed.

if runtunefis
 rng("default")
 fisR = tunefis(fisin,rule,X,Y,options);
else
 data = load("flNavModel.mat");
 fisR = data.fisR;
end

Display the tuned rules.

disp([fisR.Rules.Description]')

 "alpha==mf1 & theta_t_o==mf1 => w=mf2 (1)"
 "alpha==mf2 & theta_t_o==mf1 => w=mf1 (1)"
 "alpha==mf1 & theta_t_o==mf2 => w=mf1 (1)"
 "alpha==mf2 & theta_t_o==mf2 => w=mf1 (1)"

Output membership functions 3 and 4 are not used in the rule base. Remove these membership
functions from the output variable.

fisR.Outputs(1).MembershipFunctions(3:4) = [];

Next, tune the input and output MF parameters. To do so, first obtain the corresponding tunable
settings from the FIS.

[in,out] = getTunableSettings(fisR);

For this tuning step, use the patternsearch algorithm fine tuning of the MF parameters and set
maximum number of iterations number to 100.

options.Method = "patternsearch";
options.MethodOptions.MaxIterations = 100;

Tune the MF parameters.

if runtunefis
 rng("default")
 fisMF = tunefis(fisR,[in;out],X,Y,options);
else
 fisMF = data.fisMF;
end

 Explainable Fuzzy Support System for Black-Box Model of Robot Obstacle Avoidance

3-193

Show the tuned fuzzy system.

fisout = fisMF;
figure
plotfis(fisout)

Simulate Fuzzy System

Validate the tuned FIS for the test cases using the simTestCasesWithFIS helper function.

simTestCasesWithFIS(env,fisout,testCases)

3 Fuzzy Inference System Tuning

3-194

The tuned fuzzy system generates similar reward values for the test cases as compared to the RL
agent.

Explain Black-Box Model

With a trained support system, you can now explain the behavior of the black-box model.

Explainable Rule Base with Meaningful MF Names

For interpretability, first, specify names of the MFs for each input and output variable as low and
high.

fisout.Inputs(1).MembershipFunctions(1).Name = "low";
fisout.Inputs(1).MembershipFunctions(2).Name = "high";
fisout.Inputs(2).MembershipFunctions(1).Name = "low";
fisout.Inputs(2).MembershipFunctions(2).Name = "high";
fisout.Outputs(1).MembershipFunctions(1).Name = "low";
fisout.Outputs(1).MembershipFunctions(2).Name = "high";

View the tuned rules with the updated names.

disp([fisout.Rules.Description]')

 "alpha==low & theta_t_o==low => w=high (1)"
 "alpha==high & theta_t_o==low => w=low (1)"
 "alpha==low & theta_t_o==high => w=low (1)"
 "alpha==high & theta_t_o==high => w=low (1)"

 Explainable Fuzzy Support System for Black-Box Model of Robot Obstacle Avoidance

3-195

Using these rules, you can explain the behavior of the RL agent.

• In the first rule, when α is low (the obstacle is located closer to the robot as compared to the
target) and θt, o is low (the obstacle and target are located in the same direction), the robot should
actively avoid the obstacle. In this case, collision avoidance has a higher priority than reaching the
target.

• In the second rule, when α is high (both the obstacle and the target are located away from the
robot) and θt, o is low (the obstacle and target are located in the same direction), the robot can
still move towards the target to optimize the travel distance. In this case, reaching the target has
a higher priority than collision avoidance.

• In the third and fourth rules, θt, o is high (the obstacle and target are located in different
directions). In this case, the robot can always safely navigate towards the target. Therefore,
reaching the target has a higher priority than collision avoidance.

Overall, the black-box action (collision avoidance weight) is explainable using the rule base of the
fuzzy support system.

Visualization of Observation-to-Action Mapping

The control surface of the fuzzy system describes observations (input) to actions (output) mapping
according to the rule base.

figure
gensurf(fisMF)

3 Fuzzy Inference System Tuning

3-196

The fuzzy rule base provides a linguistic relation between the observations and actions; whereas the
control surface augments this linguistic relation by adding numeric details for observation-to-action
mapping.

Explanation of Runtime Action Selection

You can also use the support system to explain each black-box action generated in a control cycle.
The following diagram explains the parallel execution settings of both the black-box model and the
support system for run-time explanation of an action.

The black-box model and the support system run in parallel and use the same environment
observations. The black-box model drives environment changes. The support system observes the
environment and explains the black-box action. For this example, the support system explanation
includes the following information.

1 Index of the control cycle
2 Current observation
3 Action (obstacle weight) generated by the black-box model and the fuzzy support system
4 Fuzzy rule that is most is most suitable based on the current observation

The output data format for each control interval is as follows.

========== Control cycle: 1 ==========
Observations = [0.466667 0], agent output (weight) = 0.582038, FIS output (weight) = 0.545197
Max strength rule: alpha==low & theta_t_o==low => w=high (1)

Simulate the agent and FIS using the compareAgentWithFIS helper function. The results show
explanations for each action and the overall navigation trajectory using the black-box model.

setDefaultPositions(env);
[agentActions,fisActions] = compareAgentWithFIS(env,trainedAgent,fisout);

 Explainable Fuzzy Support System for Black-Box Model of Robot Obstacle Avoidance

3-197

========== Control cycle: 1 ==========
Observations = [0.8 0], agent output (weight) = 0.000371873, FIS output (weight) = 0.0097047
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 2 ==========
Observations = [0.794872 0], agent output (weight) = 0.000371873, FIS output (weight) = 0.00974128
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 3 ==========
Observations = [0.789474 0], agent output (weight) = 0.000409514, FIS output (weight) = 0.0097804
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 4 ==========
Observations = [0.783784 0], agent output (weight) = 0.000453234, FIS output (weight) = 0.00982234
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 5 ==========
Observations = [0.777778 0], agent output (weight) = 0.000504375, FIS output (weight) = 0.00986741
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 6 ==========
Observations = [0.771429 0], agent output (weight) = 0.000564635, FIS output (weight) = 0.00991599
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 7 ==========
Observations = [0.764706 0], agent output (weight) = 0.00063616, FIS output (weight) = 0.0099685
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 8 ==========
Observations = [0.757576 0], agent output (weight) = 0.000721812, FIS output (weight) = 0.01
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 9 ==========
Observations = [0.75 0], agent output (weight) = 0.000842512, FIS output (weight) = 0.01
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 10 ==========
Observations = [0.741935 0], agent output (weight) = 0.000993103, FIS output (weight) = 0.01
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 11 ==========
Observations = [0.733333 0], agent output (weight) = 0.00118306, FIS output (weight) = 0.01
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 12 ==========
Observations = [0.724138 0], agent output (weight) = 0.00142586, FIS output (weight) = 0.01
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 13 ==========
Observations = [0.714286 0], agent output (weight) = 0.00174063, FIS output (weight) = 0.01
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 14 ==========
Observations = [0.703704 0], agent output (weight) = 0.00215521, FIS output (weight) = 0.01
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 15 ==========
Observations = [0.692308 0], agent output (weight) = 0.00271079, FIS output (weight) = 0.01
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 16 ==========
Observations = [0.68 0], agent output (weight) = 0.00346974, FIS output (weight) = 0.01
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 17 ==========
Observations = [0.666667 0], agent output (weight) = 0.00452864, FIS output (weight) = 0.01
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 18 ==========
Observations = [0.652174 0], agent output (weight) = 0.00657335, FIS output (weight) = 0.01
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 19 ==========
Observations = [0.636364 0], agent output (weight) = 0.00989613, FIS output (weight) = 0.01
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 20 ==========

3 Fuzzy Inference System Tuning

3-198

Observations = [0.619048 0], agent output (weight) = 0.0154329, FIS output (weight) = 0.01
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 21 ==========
Observations = [0.6 0], agent output (weight) = 0.0238907, FIS output (weight) = 0.01
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 22 ==========
Observations = [0.578947 0], agent output (weight) = 0.0415951, FIS output (weight) = 0.01
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 23 ==========
Observations = [0.555556 0], agent output (weight) = 0.0757059, FIS output (weight) = 0.01
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 24 ==========
Observations = [0.529412 0], agent output (weight) = 0.158672, FIS output (weight) = 0.01
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 25 ==========
Observations = [0.5 0], agent output (weight) = 0.325787, FIS output (weight) = 0.01
Max strength rule: alpha==high & theta_t_o==low => w=low (1)
========== Control cycle: 26 ==========
Observations = [0.466667 0], agent output (weight) = 0.582038, FIS output (weight) = 0.545197
Max strength rule: alpha==low & theta_t_o==low => w=high (1)
========== Control cycle: 27 ==========
Observations = [0.428571 0], agent output (weight) = 0.770591, FIS output (weight) = 0.703252
Max strength rule: alpha==low & theta_t_o==low => w=high (1)
========== Control cycle: 28 ==========
Observations = [0.401145 0.0796649], agent output (weight) = 0.81328, FIS output (weight) = 0.760163
Max strength rule: alpha==low & theta_t_o==low => w=high (1)
========== Control cycle: 29 ==========
Observations = [0.414964 0.184271], agent output (weight) = 0.729063, FIS output (weight) = 0.734112
Max strength rule: alpha==low & theta_t_o==low => w=high (1)
========== Control cycle: 30 ==========
Observations = [0.447487 0.249775], agent output (weight) = 0.381589, FIS output (weight) = 0.5
Max strength rule: alpha==low & theta_t_o==low => w=high (1)
========== Control cycle: 31 ==========
Observations = [0.459347 0.339489], agent output (weight) = 0.0742273, FIS output (weight) = 0.01
Max strength rule: alpha==low & theta_t_o==high => w=low (1)
========== Control cycle: 32 ==========
Observations = [0.446 0.436475], agent output (weight) = 0.00935188, FIS output (weight) = 0.01
Max strength rule: alpha==low & theta_t_o==high => w=low (1)
========== Control cycle: 33 ==========
Observations = [0.40865 0.524433], agent output (weight) = 0.00226036, FIS output (weight) = 0.01
Max strength rule: alpha==low & theta_t_o==high => w=low (1)
========== Control cycle: 34 ==========
Observations = [0.369292 0.650354], agent output (weight) = 0.00163391, FIS output (weight) = 0.00946582
Max strength rule: alpha==low & theta_t_o==high => w=low (1)
========== Control cycle: 35 ==========
Observations = [0.331602 0.837792], agent output (weight) = 0.000674069, FIS output (weight) = 0.00871378
Max strength rule: alpha==low & theta_t_o==high => w=low (1)
========== Control cycle: 36 ==========
Observations = [0.305187 1.11815], agent output (weight) = 0.00017646, FIS output (weight) = 0.00832172
Max strength rule: alpha==low & theta_t_o==high => w=low (1)
========== Control cycle: 37 ==========
Observations = [0.310447 1.49858], agent output (weight) = 3.00407e-05, FIS output (weight) = 0.00839306
Max strength rule: alpha==low & theta_t_o==high => w=low (1)
========== Control cycle: 38 ==========
Observations = [0.37532 1.9], agent output (weight) = 8.04663e-07, FIS output (weight) = 0.00961531
Max strength rule: alpha==low & theta_t_o==high => w=low (1)
========== Control cycle: 39 ==========
Observations = [0.521888 2.21788], agent output (weight) = 0, FIS output (weight) = 0.01

 Explainable Fuzzy Support System for Black-Box Model of Robot Obstacle Avoidance

3-199

Max strength rule: alpha==high & theta_t_o==high => w=low (1)
========== Control cycle: 40 ==========
Observations = [0.774188 2.4342], agent output (weight) = 0, FIS output (weight) = 0.00989476
Max strength rule: alpha==high & theta_t_o==high => w=low (1)
========== Control cycle: 41 ==========
Observations = [1.19014 2.57834], agent output (weight) = 0, FIS output (weight) = 0.00796472
Max strength rule: alpha==high & theta_t_o==high => w=low (1)
========== Control cycle: 42 ==========
Observations = [1.92626 2.67745], agent output (weight) = 0, FIS output (weight) = 0.00625
Max strength rule: alpha==high & theta_t_o==high => w=low (1)
========== Control cycle: 43 ==========
Observations = [3.50085 2.7485], agent output (weight) = 0, FIS output (weight) = 0.00625
Max strength rule: alpha==high & theta_t_o==high => w=low (1)

The support system produces similar obstacle weights compared to the black-box model. This result
is more evident from the following figure, which shows the difference between agent and fuzzy
support system actions for the same observations.

figure
plot(agentActions)
hold on
plot(fisActions)
hold off
xlabel("Decision cycle")
ylabel("Weight for obstacle avoidance")
legend(["Agent actions" "FIS actions"])

3 Fuzzy Inference System Tuning

3-200

The fuzzy support system generates similar actions. However, it requires further optimizations to
better match the agent actions.

Explanation Using Fuzzy Rule Inference

You can further explore the decision-making process of a FIS using its rule inference viewer. To do so,
use the simFISWithInferenceViewer helper function. In this case, the fuzzy system drives the
changes in the environment.

simFISWithInferenceViewer(env,fisout)

 Explainable Fuzzy Support System for Black-Box Model of Robot Obstacle Avoidance

3-201

In each step, the rule inference process shows the fuzzification of the observation values, calculation
of rule activation strengths, individual rule contributions in the output, and calculation of the final
action value. Therefore, it shows an explainable visualization of the fuzzy rule applicability based on
each observation of the environment.

Conclusion

You can further improve the performance of the fuzzy support system by using:

• More test cases
• Additional input MFs
• Continuous MFs for smooth variations in the actions.

You can also intuitively update the fuzzy rule base to check possible variations of the current policy of
the black-box model and, if possible, integrate the desired variations with existing black-box model.

See Also
tunefis | getTunableSettings

More About
• “Tuning Fuzzy Inference Systems” on page 3-2
• “Explain Black-Box Model Using Fuzzy Support System” on page 3-163

3 Fuzzy Inference System Tuning

3-202

Neuro-Adaptive Learning and ANFIS
Suppose that you want to apply fuzzy inference to a system for which you already have a collection of
input/output data that you would like to use for modeling, model-following, or some similar scenario.
Also, assume that you do not necessarily have a predetermined model structure based on the
characteristics of variables in your system. In some modeling situations, discerning membership
functions parameters by looking at data can be difficult or impossible. In these cases, rather than
choosing the parameters associated with a given membership function arbitrarily, you can tailor the
membership function parameters to the input/output data. Using Fuzzy Logic Toolbox software, you
can tune Sugeno fuzzy inference systems using neuro-adaptive learning techniques similar to those
used for training neural networks.

Using Fuzzy Logic Toolbox software you can train an adaptive neuro-fuzzy inference system (ANFIS):

• At the command line, using the anfis function.
• At the command line, using the tunefis function.
• In the Fuzzy Logic Designer app. For an example, see “Tune Fuzzy Inference System Using

Fuzzy Logic Designer” on page 3-6.

FIS Structure
Using ANFIS training methods, you can train Sugeno systems with the following properties:

• Single output
• Weighted average defuzzification
• First or zeroth order system; that is, all output membership functions must be the same type,

either 'linear' or 'constant'.
• No rule sharing. Different rules cannot use the same output membership function; that is, the

number of output membership functions must equal the number of rules.
• Unity weight for each rule.
• No custom membership functions or defuzzification methods.

To create such a fuzzy system in the MATLAB workspace, you can:

• Use the genfis function. When using this method, you can create your system using either grid
partitioning or subtractive clustering. Grid partitioning can produce a large number of rules when
the number of inputs reaches four or five. To reduce the number of rules, consider using the
subtractive clustering method.

• Use the sugfis function.
• Load a system from a file using the readfis function.
• Using Fuzzy Logic Designer. For an example, see “Build Fuzzy Systems Using Fuzzy Logic

Designer” on page 2-15.

Training Data
To train a fuzzy system using neuro-adaptive methods, you must collect input/output training data
using experiments or simulations of the system you want to model and define it in the MATLAB
workspace. In general, ANFIS training works well if the training data is fully representative of the
features of the data that the trained FIS is intended to model.

 Neuro-Adaptive Learning and ANFIS

3-203

When you define training data for the anfis function, specify it as a single array. Each row contains
a data point, with the final column containing the output value and the remaining columns containing
input values.

When you define training data for tuning with tunefis or Fuzzy Logic Designer app, create and
import separate input and output arrays. Each array contains the corresponding input or output data
for a data point.

Training Options
To configure the training process, you can adjust the ANFIS tuning settings. For more information on
configuring options for the:

• Fuzzy Logic Designer app, see “Configure Tuning Options in Fuzzy Logic Designer” on page 3-
52.

• tunefis function, see tunefisOptions.
• anfis function, see anfisOptions.

Using all of the tuning methods, you can configure the following tuning options.

Option Description
Optimization Method Optimization method used in membership function parameter

training.
Number of training epochs Maximum number of training epochs, specified as a positive

integer.
Training error goal Training error goal, specified as a scalar. The training process

stops when the training error is less than or equal to the training
error goal.

Initial step size Initial training step size, specified as a positive scalar.
Step-size decrease rate Step-size decrease rate, specified as a positive scalar less than 1.
Step-size increase rate Step-size increase rate, specified as a scalar greater than 1.

Optimization Method

To train a fuzzy system using ANFIS tuning, the Fuzzy Logic Toolbox software uses one of the
following methods:

• A steepest-decent backpropagation approach for all parameters.
• Hybrid method consisting of backpropagation for the parameters associated with the input

membership functions, and least squares estimation for the parameters associated with the output
membership functions.

Step Size

When training an ANFIS system, you can adjust the training step size options. During training, the
software updates the step size according to the following rules:

• If the error undergoes four consecutive reductions, increase the step size by multiplying it by the
step-size increase rate.

3 Fuzzy Inference System Tuning

3-204

• If the error undergoes two consecutive combinations of one increase and one reduction, decrease
the step size by multiplying it by the step-size decrease rate.

Ideally, the step size increases at the start of training, reaches a maximum, and then decreases for
the remainder of the training. To achieve this step size profile, adjust the initial step size, step-size
increase rate, and step-size decrease rate.

Training Validation
Validation data lets you check the generalization capability of your trained fuzzy inference system.
The validation data should fully represent the features of the data the FIS is intended to model, while
also being sufficiently different from the training data to test training generalization. The software
uses this data set to cross-validate the fuzzy inference model by applying the validation data to the
model and seeing how well the model responds to this data.

Model validation is useful in the following situations:

• Noisy data — In some cases, data is collected using noisy measurements, and the training data is
unable to represent all the features of the data the FIS is intended to model.

• Overfitting — Since the model structure used for ANFIS is fixed with a large number of
parameters, there is a tendency for the model to overfit the data on which it is trained, especially
when using a large number of training epochs. If overfitting does occur, the trained FIS may not
generalize well to other independent data sets.

The idea behind using a validation data set for model validation is that, after a certain point in the
training process, the model begins overfitting the training data set. In principle, the model error for
the validation data set decreases up to the point that overfitting begins. After this point, the model
error for the validation data increases. Overfitting is accounted for by testing the trained FIS against
the validation data, and choosing the membership function parameters to be those associated with
the minimum validation error if these errors indicate model overfitting.

Usually, the training and validation data sets are collected based on observations of the target system
and are then stored in separate files.

The array and file formats for the validation data are the same as those for the training data.

References
[1] Jang, J.-S. R. "Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter Algorithm."

Proceedings of the Ninth National Conference on Artificial Intelligence (AAAI-91), (July 1991):
762–767.

[2] Jang, J.-S. R. "ANFIS: Adaptive-Network-based Fuzzy Inference Systems." IEEE Transactions on
Systems, Man, and Cybernetics 23, no. 3 (May 1993): 665–685.

[3] Jang, J.-S.R., and N. Gulley. "Gain Scheduling Based Fuzzy Controller Design." In NAFIPS/IFIS/
NASA ’94. Proceedings of the First International Joint Conference of The North American
Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and
Intelligent Systems Conference, and the NASA Joint Technology Wo, 101–5. San Antonio, TX,
USA: IEEE, 1994. https://doi.org/10.1109/IJCF.1994.375142.

[4] Jang, J.-S.R. and Chuen-Tsai Sun. ‘Neuro-Fuzzy Modeling and Control’. Proceedings of the IEEE
83, no. 3 (March 1995): 378–406.

 Neuro-Adaptive Learning and ANFIS

3-205

https://doi.org/10.1109/IJCF.1994.375142

[5] Jang, Jyh-Shing Roger, Chuen-Tsai Sun, and Eiji Mizutani. Neuro-Fuzzy and Soft Computing: A
Computational Approach to Learning and Machine Intelligence. MATLAB Curriculum Series.
Upper Saddle River, NJ: Prentice Hall, 1997.

[6] Wang, Li-Xin. Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Englewood
Cliffs, NJ: PTR Prentice Hall, 1994.

[7] Widrow, B. and D. Stearns, Adaptive Signal Processing, Prentice Hall, 1985.

See Also
Apps
Fuzzy Logic Designer

Functions
anfis

More About
• “Train Adaptive Neuro-Fuzzy Inference Systems” on page 3-207
• “Predict Chaotic Time-Series Using ANFIS” on page 3-219

3 Fuzzy Inference System Tuning

3-206

Train Adaptive Neuro-Fuzzy Inference Systems
This example shows how to create, train, and test a Sugeno-type fuzzy inference system (FIS) using
the Fuzzy Logic Designer app. For more information on:

• Neuro-adaptive fuzzy systems, see “Neuro-Adaptive Learning and ANFIS” on page 3-203.
• Training neuro-adaptive fuzzy systems at the command line, see anfis.

Import Example Data

Training and validating systems using the Fuzzy Logic Designer app requires existing data.

Import the training data sets to the MATLAB® workspace. Each data set has one input and one
output.

load anfisTrainingData

The data for this example includes two training data sets and two validation data sets.

• Training data set 1 with input data trnInput1 and output data trnOutput1
• Training data set 2 with input data trnInput2 and output data trnOutput2
• Validation data set 1 with input data valInput1 and output data valOutput1
• Validation data set 2 with input data valInput2 and output data valOutput1

Generate Initial FIS
Open Fuzzy Logic Designer.

fuzzyLogicDesigner

To create an initial FIS structure based on your training data, in the Getting Started window, select
Generate rules automatically, and click FIS from Data.

 Train Adaptive Neuro-Fuzzy Inference Systems

3-207

In the Create System from Data dialog box:

• In the Input data drop-down list, select the training input data trnInput1.
• In the Output data drop-down list, select the training output data trnOutput1.
• In the Clustering method drop-down list, select Grid partition.
• In the Input membership function type drop-down list, select Generalized bell.
• To set the number of input membership functions, in the Number field, enter 4.
• In the Output membership function type drop-down list, select Linear.

To create a FIS with the specified structure, click OK.

3 Fuzzy Inference System Tuning

3-208

Interactively Specify FIS Structure

Alternatively, you can interactively specify your own FIS structure with specified membership
functions and rules. The system you define must be a Sugeno system with the following properties:

• Single output
• Weighted average defuzzification
• First or zeroth order system; that is, all output membership functions must be the same type,

either linear or constant.
• No rule sharing. Different rules cannot use the same output membership function; that is, the

number of output membership functions must equal the number of rules.
• Unity weight for each rule.
• No custom membership functions or defuzzification methods.

For more information on building a FIS structure in the app, see “Build Fuzzy Systems Using Fuzzy
Logic Designer” on page 2-15.

Select Data for Training
To select data for tuning, on the Tuning tab:

• In the Input Data drop-down list, under Imported Data Sets, select trnInput1.
• In the Output Data drop-down list, under Imported Data Sets, select trnOutput1.

Train FIS
To train your FIS using the selected data, first specify the tuning options. Click Tuning Options.

In the Tuning Options dialog box, in the Method drop-down list, select Adaptive neuro-fuzzy
inference system.

To modify the default training options, clear the Use default method options parameter.

 Train Adaptive Neuro-Fuzzy Inference Systems

3-209

Under Method Options: Adaptive neuro-fuzzy inference system, specify the following options.

• To specify the maximum number of training epochs, set Epoch number 40.
• Set the error stopping condition Error goal to 0. Doing so indicates that the training will not stop

until the maximum number of training epochs complete.
• Use the default training method by setting Optimization method to Least squares

estimation with backpropagation. This method tunes the FIS parameters using a
combination of backpropagation and least-squares regression.

• Specify validation data for training. During training, the ANFIS algorithm uses the validation data
to prevent overfitting.

• In the Input validation data drop-down list, under Workspace Data Sets, select
valInput1.

• In the Output validation data drop-down list, under Workspace Data Sets, select
valOutput1.

• Keep the remaining training options at their default values.

3 Fuzzy Inference System Tuning

3-210

Click OK.

To train the FIS, on the Tuning tab, click Tune.

The Tune tab shows the training progress.

• The Convergence Plot document, plots the optimization cost (training error) after each epoch for
both the training and validation data.

• The Convergence Results document shows the ANFIS system properties, the training error and
minimum root mean-squared error results for the training and validation data sets.

 Train Adaptive Neuro-Fuzzy Inference Systems

3-211

The validation error decreases up to a certain point in the training, and then it increases. This
increase occurs at the point where the training starts overfitting the training data. The app selects
the FIS associated with this overfitting point as the trained ANFIS model.

To accept the training results, click Accept.

The app adds the tuned FIS fis_tuned to the Design Browser section and sets this FIS as the
active design.

3 Fuzzy Inference System Tuning

3-212

Validate Trained FIS
Once you have trained your FIS, you can validate its performance against the training validation data.

To validate only the tuned FIS, in the Design Browser section, clear the Compare column entry for
the initial system fis.

Next select the input/output data to use for system validation. On the Design tab, in the Simulation
section:

• In the Input Data drop-down list, under Imported Data Sets, select valInput1.
• In the Output Data drop-down list, under Imported Data Sets, select valOutput1.

 Train Adaptive Neuro-Fuzzy Inference Systems

3-213

Then, click System Validation.

The System Validation document plots the selected simulation data along with the output of the
trained FIS. To get a better view of the output data plot, in the Reference Inputs table, clear the
entry in the Select column. For this example the plot legend interferes with viewing the data. To hide
the legend, clear the Show Legends parameter.

3 Fuzzy Inference System Tuning

3-214

In the validation plot, the reference output is blue and the tuned FIS output is red. The FIS output
correlates well with the reference output.

Once you have trained and validated your FIS, you can export the FIS and your simulation results to
the MATLAB workspace. For more information, see “Export FIS and Simulation Data from Fuzzy
Logic Designer” on page 2-71.

Importance of Checking Data
It is important to have validation data that fully represents the features of the data the FIS is
intended to model. If your checking data is significantly different from your training data and does
not cover the same data features to model as the training data, then the training results will be poor.

For example, load new training and validation data into Fuzzy Logic Designer. This data has
significantly different training and validation sets. On the Tuning tab:

 Train Adaptive Neuro-Fuzzy Inference Systems

3-215

• In the Input Data drop-down list, under Workspace Data Sets select trnInput2.
• In the Output Data drop-down list, under Workspace Data Sets, select trnOutput2.

Click Tuning Options. In the Tuning Options dialog box:

• In the Input validation data drop-down list, under Workspace Data Sets, select valInput2.
• In the Output validation data drop-down list, under Workspace Data Sets, select valOutput2.

Click OK.

Before tuning, set the active system to the original initial FIS structure. In the Design Browser
section, select the fis entry in the table and click Set Active Design.

On the Tuning tab, click Tune.

3 Fuzzy Inference System Tuning

3-216

In this case, the validation error is large, with the minimum occurring in the first epoch. Since the
app chooses the trained FIS parameters associated with the minimum validation error, the trained
FIS does not sufficiently capture the features of this data set. It is important to know the features of
your data set well when you select your training and validation data. When you do not know the
features of your data, you can analyze the validation error plots to see whether or not the validation
data performed sufficiently well with the trained model.

To verify the poor training results, test the trained FIS model against the validation data.

Click Accept. Then, on the Design tab:

• In the Input Data drop-down list, under Imported Data Sets select valInput2.
• In the Output Data drop-down list, under Imported Data Sets, select valOutput2.

Click System Validation.

 Train Adaptive Neuro-Fuzzy Inference Systems

3-217

As expected, there are significant differences between the validation data output values and the FIS
output.

See Also
Fuzzy Logic Designer

More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-203

3 Fuzzy Inference System Tuning

3-218

Predict Chaotic Time-Series Using ANFIS

This example shows how to do chaotic time-series prediction using ANFIS.

Time Series Data

This example uses anfis to predict a time series generated by the following Mackey-Glass (MG)
time-delay differential equation.

ẋ(t) = 0 . 2x(t − τ)
1 + x10(t − τ)

− 0 . 1x(t)

This time series is chaotic with no clearly defined period. The series does not converge or diverge,
and the trajectory is highly sensitive to initial conditions. This benchmark problem is used in the
neural network and fuzzy modeling research communities.

To obtain the time series value at integer points, the fourth-order Runge-Kutta method was used to
find the numerical solution to the previous MG equation. It was assumed that x(0) = 1 . 2, τ = 17, and
x(t) = 0 for t < 0. The result was saved in the file mgdata.dat.

Load and plot the MG time series.

load mgdata.dat
time = mgdata(:,1);
x = mgdata(:, 2);
figure(1)
plot(time,x)
title('Mackey-Glass Chaotic Time Series')
xlabel('Time (sec)')
ylabel('x(t)')

 Predict Chaotic Time-Series Using ANFIS

3-219

Preprocess Data

In time-series prediction, you use known values of the time series up to point in time, t, to predict the
value at some point in the future, t + P. The standard method for this type of prediction is to create a
mapping from D sample data points, sampled every Δ units in time (x(t − (D− 1)Δ), …, x(t − Δ), x(t)) to
a predicted future value x = (t + P). Following the conventional settings for predicting the MG time
series, set D = 4 and Δ = P = 6. For each t, the input training data for anfis is a four-column vector
of the following form.

w(t) = [x(t − 19), x(t − 12), x(t − 6), x(t)]

The output training data corresponds to the trajectory prediction.

s(t) = x(t + 6)

For each t, ranging in values from 118 to 1117, there are 1000 input/output training samples. For this
example, use the first 500 samples as training data (trnData) and the second 500 values as checking
data for validation (chkData). Each row of the training and checking data arrays contains one sample
point where the first four columns contain the four-dimensional input w and the fifth column contains
the output s.

Construct the training and checking data arrays.

for t = 118:1117
 Data(t-117,:) = [x(t-18) x(t-12) x(t-6) x(t) x(t+6)];
end

3 Fuzzy Inference System Tuning

3-220

trnData = Data(1:500,:);
chkData = Data(501:end,:);

Build Initial Fuzzy System

Create an initial Sugeno FIS object for training using the genfis function with grid partitioning.

fis = genfis(trnData(:,1:end-1),trnData(:,end),...
 genfisOptions('GridPartition'));

The number of FIS inputs and outputs corresponds to the number of columns in the input and output
training data, four and one, respectively.

By default, genfis creates two generalized bell membership functions for each of the four inputs.
The initial membership functions for each variable are equally spaced and cover the whole input
space.

figure
subplot(2,2,1)
plotmf(fis,'input',1)
subplot(2,2,2)
plotmf(fis,'input',2)
subplot(2,2,3)
plotmf(fis,'input',3)
subplot(2,2,4)
plotmf(fis,'input',4)

 Predict Chaotic Time-Series Using ANFIS

3-221

The generated FIS object contains 24 = 16 fuzzy rules with 104 parameters (24 nonlinear parameters
and 80 linear parameters). To achieve good generalization capability, it is important that the number
of training data points be several times larger than the number parameters being estimated. In this
case, the ratio between data and parameters is approximately five (500/104), which is a good balance
between fitting parameters and training sample points.

Train ANFIS Model

To configure training options, create an anfisOptions option set, specifying the initial FIS and
validation data.

options = anfisOptions('InitialFIS',fis,'ValidationData',chkData);

Train the FIS using the specified training data and options.

[fis1,error1,ss,fis2,error2] = anfis(trnData,options);

ANFIS info:
 Number of nodes: 55
 Number of linear parameters: 80
 Number of nonlinear parameters: 24
 Total number of parameters: 104
 Number of training data pairs: 500
 Number of checking data pairs: 500
 Number of fuzzy rules: 16

Start training ANFIS ...

1 0.00296046 0.00292488
2 0.00290346 0.0028684
3 0.00285048 0.00281544
4 0.00280117 0.00276566
Step size increases to 0.011000 after epoch 5.
5 0.00275517 0.00271874
6 0.00271214 0.00267438
7 0.00266783 0.00262818
8 0.00262626 0.00258435
Step size increases to 0.012100 after epoch 9.
9 0.00258702 0.00254254
10 0.00254972 0.00250247

Designated epoch number reached. ANFIS training completed at epoch 10.

Minimal training RMSE = 0.00254972
Minimal checking RMSE = 0.00250247

fis1 is the trained fuzzy inference system for the training epoch where the training error is smallest.
Since you specified validation data, the fuzzy system with the minimum checking error, fis2, is also
returned. The FIS with the smallest checking error shows the best generalization beyond the training
data.

Plots the membership functions for the trained system.

figure
subplot(2,2,1)
plotmf(fis2,'input',1)

3 Fuzzy Inference System Tuning

3-222

subplot(2,2,2)
plotmf(fis2,'input',2)
subplot(2,2,3)
plotmf(fis2,'input',3)
subplot(2,2,4)
plotmf(fis2,'input',4)

Plot Errors Curves

Plot the training and checking error signals.

figure
plot([error1 error2])
hold on
plot([error1 error2],'o')
legend('Training error','Checking error')
xlabel('Epochs')
ylabel('Root Mean Squared Error')
title('Error Curves')

 Predict Chaotic Time-Series Using ANFIS

3-223

The training error is higher than the checking error in all epochs. This phenomenon is not uncommon
in ANFIS learning or nonlinear regression in general; it could indicate that additional training could
produce better training results.

Compare Original and Predicted Series

To check prediction capability of the trained system, evaluate the fuzzy system using the training and
checking data, and plot the result alongside the original

anfis_output = evalfis(fis2,[trnData(:,1:4); chkData(:,1:4)]);

figure
index = 125:1124;
plot(time(index),[x(index) anfis_output])
xlabel('Time (sec)')
title('MG Time Series and ANFIS Prediction')

3 Fuzzy Inference System Tuning

3-224

The predicted series is similar to the original series.

Calculate and plot the prediction error.

diff = x(index) - anfis_output;
plot(time(index),diff)
xlabel('Time (sec)')
title('Prediction Errors')

 Predict Chaotic Time-Series Using ANFIS

3-225

The scale of the prediction error plot is about one-hundredth of the scale of the time-series plot. In
this example, you trained the system for only 10 epoch. Training for additional epochs can improve
the training results.

See Also
anfis | genfis | evalfis

More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-203

3 Fuzzy Inference System Tuning

3-226

Modeling Inverse Kinematics in a Robotic Arm

This example shows how to use a fuzzy system to model the inverse kinematics in a two-joint robotic
arm.

What Is Inverse Kinematics?

Kinematics is the science of motion. In a two-joint robotic arm, given the angles of the joints, the
kinematics equations give the location of the tip of the arm. Inverse kinematics refers to the reverse
process. Given a desired location for the tip of the robotic arm, what should the angles of the joints be
so as to locate the tip of the arm at the desired location. There is usually more than one solution and
can at times be a difficult problem to solve.

This is a typical problem in robotics that needs to be solved to control a robotic arm to perform tasks
it is designated to do. In a 2-dimensional input space, with a two-joint robotic arm and given the
desired coordinate, the problem reduces to finding the two angles involved. The first angle is between
the first arm and the ground (or whatever it is attached to). The second angle is between the first arm
and the second arm.

Figure 1: Illustration showing the two-joint robotic arm with the two angles, theta1 and theta2

Why Use Fuzzy Logic?

For simple structures like the two-joint robotic arm, it is possible to mathematically deduce the
angles at the joints given the desired location of the tip of the arm. However with more complex
structures (for example: n-joint robotic arms operating in a 3-dimensional input space) deducing a
mathematical solution for the inverse kinematics may prove challenging.

Using fuzzy logic, we can construct a fuzzy inference system that deduces the inverse kinematics if
the forward kinematics of the problem is known, hence sidestepping the need to develop an analytical
solution. Also, the fuzzy solution is easily understandable and does not require special background
knowledge to comprehend and evaluate it.

 Modeling Inverse Kinematics in a Robotic Arm

3-227

In the following section, a broad outline for developing such a solution is described, and later, the
detailed steps are elaborated.

Overview of Fuzzy Solution

Since the forward kinematics formulae for the two-joint robotic arm are known, x and y coordinates
of the tip of the arm are deduced for the entire range of angles of rotation of the two joints. The
coordinates and the angles are saved to be used as training data to train an ANFIS (adaptive neuro-
fuzzy inference system) network.

During training, the ANFIS network learns to map the coordinates (x, y) to the angles (theta1,
theta2). The trained ANFIS network is then used as a part of a larger control system to control the
robotic arm. Knowing the desired location of the robotic arm, the control system uses the trained
ANFIS network to deduce the angular positions of the joints and applies force to the joints of the
robotic arm accordingly to move it to the desired location.

What Is ANFIS?

ANFIS stands for adaptive neuro-fuzzy inference system. It is a hybrid neuro-fuzzy technique that
brings learning capabilities of neural networks to fuzzy inference systems. The learning algorithm
tunes the membership functions of a Sugeno-type fuzzy inference system using the training input/
output data.

In this case, the input/output data refers to the "coordinates/angles" dataset. The coordinates act as
input to the ANFIS and the angles act as the output. The learning algorithm teaches the ANFIS to
map the coordinates to the angles through a process called training. At the end of training, the
trained ANFIS network would have learned the input-output map and be ready to be deployed into
the larger control system solution.

Data Generation

Let theta1 be the angle between the first arm and the ground. Let theta2 be the angle between the
second arm and the first arm (Refer to Figure 1 for illustration). Let the length of the first arm be l1
and that of the second arm be l2.

Assume that the first joint has limited freedom to rotate and it can rotate between 0 and 90 degrees.
Similarly, assume that the second joint has limited freedom to rotate and can rotate between 0 and
180 degrees. (This assumption takes away the need to handle some special cases which will confuse
the discourse.) Hence, 0<=theta1<=pi/2 and 0<=theta2<=pi.

3 Fuzzy Inference System Tuning

3-228

Figure 2: Illustration showing all possible theta1 and theta2 values.

Now, for every combination of theta1 and theta2 values the x and y coordinates are deduced using
forward kinematics formulae.

The following code snippet shows how data is generated for all combination of theta1 and theta2
values and saved into a matrix to be used as training data. The reason for saving the data in two
matrices is explained in the following section.

l1 = 10; % length of first arm
l2 = 7; % length of second arm

theta1 = 0:0.1:pi/2; % all possible theta1 values
theta2 = 0:0.1:pi; % all possible theta2 values

[THETA1,THETA2] = meshgrid(theta1,theta2); % generate grid of angle values

X = l1 * cos(THETA1) + l2 * cos(THETA1 + THETA2); % compute x coordinates
Y = l1 * sin(THETA1) + l2 * sin(THETA1 + THETA2); % compute y coordinates

data1 = [X(:) Y(:) THETA1(:)]; % create x-y-theta1 dataset
data2 = [X(:) Y(:) THETA2(:)]; % create x-y-theta2 dataset

 Modeling Inverse Kinematics in a Robotic Arm

3-229

The following plot shows all the X-Y data points generated by cycling through different combinations
of theta1 and theta2 and deducing x and y coordinates for each. The plot can be generated by
using the following code. The plot is annotated further for easier understanding.

 plot(X(:),Y(:),'r.');
 axis equal;
 xlabel('X','fontsize',10)
 ylabel('Y','fontsize',10)
 title('X-Y coordinates for all theta1 and theta2 combinations','fontsize',10)

Figure 3: X-Y coordinates generated for all theta1 and theta2 combinations using forward
kinematics formulae

Building ANFIS Networks

One approach to building an ANFIS solution for this problem, is to build two ANFIS networks, one to
predict theta1 and the other to predict theta2.

In order for the ANFIS networks to be able to predict the angles they have to be trained with sample
input-output data. The first ANFIS network will be trained with X and Y coordinates as input and
corresponding theta1 values as output. The matrix data1 contains the x-y-theta1 dataset
required to train the first ANFIS network. Therefore data1 will be used as the dataset to train the
first ANFIS network.

3 Fuzzy Inference System Tuning

3-230

Similarly, the second ANFIS network will be trained with X and Y coordinates as input and
corresponding theta2 values as output. The matrix data2 contains the x-y-theta2 dataset
required to train the second ANFIS network. Therefore data2 will be used as the dataset to train the
second ANFIS network.

To train an ANFIS network, first specify the training options using the anfisOptions command. For
this example, specify an FIS object with 7 membership functions for each input variable. Train the
system for 150 epochs and suppress the Command Window display of training information.

opt = anfisOptions;
opt.InitialFIS = 7;
opt.EpochNumber = 150;
opt.DisplayANFISInformation = 0;
opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;
opt.DisplayFinalResults = 0;

Train an ANFIS system using the first set of training data, data1.

disp('--> Training first ANFIS network.')

--> Training first ANFIS network.

anfis1 = anfis(data1,opt);

Change the number of input membership functions and train an ANFIS system using the second set
of training data, data2.

disp('--> Training second ANFIS network.')

--> Training second ANFIS network.

opt.InitialFIS = 6;
anfis2 = anfis(data2,opt);

For this example, the number of input membership functions and training epochs were selected based
on experimentation with different potential values.

anfis1 and anfis2 represent the two trained ANFIS networks that will be deployed in the larger
control system.

Once the training is complete, the two ANFIS networks have learned to approximate the angles
(theta1, theta2) as a function of the coordinates (x, y). One advantage of using the fuzzy approach
is that the ANFIS network can now approximate the angles for coordinates that are similar but not
exactly the same as it was trained with. For example, the trained ANFIS networks are now capable of
approximating the angles for coordinates that lie between two points that were included in the
training dataset. This will allow the final controller to move the arm smoothly in the input space.

We now have two trained ANFIS networks which are ready to be deployed into the larger system that
will utilize these networks to control the robotic arms.

Validating ANFIS Networks

Having trained the networks, an important follow up step is to validate the networks to determine
how well the ANFIS networks would perform inside the larger control system.

 Modeling Inverse Kinematics in a Robotic Arm

3-231

Since this example problem deals with a two-joint robotic arm whose inverse kinematics formulae can
be derived, it is possible to test the answers that the ANFIS networks produce with the answers from
the derived formulae.

Assume that it is important for the ANFIS networks to have low errors within the operating range
0<x<2 and 8<y<10.

x = 0:0.1:2; % x coordinates for validation
y = 8:0.1:10; % y coordinates for validation

The theta1 and theta2 values are deduced mathematically from the x and y coordinates using
inverse kinematics formulae.

[X,Y] = meshgrid(x,y);

c2 = (X.^2 + Y.^2 - l1^2 - l2^2)/(2*l1*l2);
s2 = sqrt(1 - c2.^2);
THETA2D = atan2(s2,c2); % theta2 is deduced

k1 = l1 + l2.*c2;
k2 = l2*s2;
THETA1D = atan2(Y,X) - atan2(k2,k1); % theta1 is deduced

THETA1D and THETA2D are the variables that hold the values of theta1 and theta2 deduced using
the inverse kinematics formulae.

theta1 and theta2 values predicted by the trained ANFIS networks are obtained by using the
command evalfis which evaluates a FIS for the given inputs.

Here, evalfis is used to find out the FIS outputs for the same x-y values used earlier in the inverse
kinematics formulae.

XY = [X(:) Y(:)];
THETA1P = evalfis(anfis1,XY); % theta1 predicted by anfis1
THETA2P = evalfis(anfis2,XY); % theta2 predicted by anfis2

Now, we can see how close the FIS outputs are with respect to the deduced values.

theta1diff = THETA1D(:) - THETA1P;
theta2diff = THETA2D(:) - THETA2P;

subplot(2,1,1)
plot(theta1diff)
ylabel('THETA1D - THETA1P')
title('Deduced theta1 - Predicted theta1')

subplot(2,1,2)
plot(theta2diff)
ylabel('THETA2D - THETA2P')
title('Deduced theta2 - Predicted theta2')

3 Fuzzy Inference System Tuning

3-232

The errors are in the 1e-3 range which is a fairly good number for the application it is being used in.
However this may not be acceptable for another application, in which case the parameters to the
anfis function may be tweaked until an acceptable solution is arrived at. Also, other techniques like
input selection and alternate ways to model the problem may be explored.

Building a Solution Around the Trained ANFIS Networks

Now given a specific task, such as robots picking up an object in an assembly line, the larger control
system will use the trained ANFIS networks as a reference, much like a lookup table, to determine
what the angles of the arms must be, given a desired location for the tip of the arm. Knowing the
desired angles and the current angles of the joints, the system will apply force appropriately on the
joints of the arms to move them towards the desired location.

The invkine command launches a GUI that shows how the two trained ANFIS networks perform
when asked to trace an ellipse.

 Modeling Inverse Kinematics in a Robotic Arm

3-233

Figure 4: GUI for Inverse Kinematics Modeling.

The two ANFIS networks used in the example have been pretrained and are deployed into a larger
system that controls the tip of the two-joint robot arm to trace an ellipse in the input space.

The ellipse to be traced can be moved around. Move the ellipse to a slightly different location and
observe how the system responds by moving the tip of the robotic arm from its current location to the
closest point on the new location of the ellipse. Also observe that the system responds smoothly as
long as the ellipse to be traced lies within the 'x' marked spots which represent the data grid that was
used to train the networks. Once the ellipse is moved outside the range of data it was trained with,
the ANFIS networks respond unpredictably. This emphasizes the importance of having relevant and
representative data for training. Data must be generated based on the expected range of operation to
avoid such unpredictability and instability issues.

See Also
anfis | evalfis

More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-203

3 Fuzzy Inference System Tuning

3-234

Adaptive Noise Cancellation Using ANFIS

This example shows how to do adaptive nonlinear noise cancellation by constructing and tuning an
ANFIS model.

Signal and Noise

Define a hypothetical information signal, x, sampled at 100 Hz over 6 seconds.

time = (0:0.01:6)';
x = sin(40./(time+0.01));
plot(time,x)
title('Information Signal x')
xlabel('time')
ylabel('x')

Assume that x cannot be measured without an interference signal, n2, which is generated from
another noise source, n1, by a certain unknown nonlinear process.

Generate and plot the noise source n1.

n1 = randn(size(time));
plot(time,n1)
title('Noise Source n_1')
xlabel('time')
ylabel('n_1')

 Adaptive Noise Cancellation Using ANFIS

3-235

Assume that the interference signal, n2, that appears in the measured signal is generated via an
unknown nonlinear equation:

n2 k =
4sin n1 k ⋅ n1 k− 1

1 + n1 k− 1 2

Plot this nonlinear function as a surface.

domain = linspace(min(n1),max(n1),20);
[xx,yy] = meshgrid(domain,domain);
zz = 4*sin(xx).*yy./(1+yy.^2);

surf(xx,yy,zz)
xlabel('n_1(k)')
ylabel('n_1(k-1)')
zlabel('n_2(k)')
title('Unknown Interference Channel Characteristics')

3 Fuzzy Inference System Tuning

3-236

Compute the interference signal, n2, from the noise source, n1, and plot both signals.

n1d0 = n1; % n1 with delay 0
n1d1 = [0; n1d0(1:length(n1d0)-1)]; % n1 with delay 1
n2 = 4*sin(n1d0).*n1d1./(1+n1d1.^2); % interference

subplot(2,1,1)
plot(time,n1)
ylabel('n_1')
xlabel('time')
title('Noise Source')
subplot(2,1,2)
plot(time,n2)
ylabel('n_2')
title('Interference Signal')
xlabel('time')

 Adaptive Noise Cancellation Using ANFIS

3-237

n2 is related to n1 by the highly nonlinear process shown previously. However, from the plots, these
two signals do not appear to correlate with each other in any way.

The measured signal, m, is the sum of the original information signal, x, and the interference, n2.
However, n2 is unknown. The only available signals are the noise signal, n1, and the measured signal
m.

m = x + n2;
subplot(1,1,1)
plot(time, m)
title('Measured Signal')
xlabel('time')
ylabel('m')

3 Fuzzy Inference System Tuning

3-238

You can recover the original information signal, x, using adaptive noise cancellation via ANFIS
training.

Build the ANFIS Model

Use the anfis command to identify the nonlinear relationship between n1 and n2. While n2 is not
directly available, you can assume that m is a noisy version of n2 for training. This assumption treats x
as "noise" in this kind of nonlinear fitting.

Assume the order of the nonlinear channel is known (in this case, 2). You can use a two-input ANFIS
model for training.

Define the training data. The first two columns of data are the inputs to the ANFIS model, n1 and a
delayed version of n1. The final column of data is the measured signal, m.

delayed_n1 = [0; n1(1:length(n1)-1)];
data = [delayed_n1 n1 m];

Generate the initial FIS object. By default, the grid partitioning algorithm uses two membership
functions for each input variable, which produces four fuzzy rules for learning.

genOpt = genfisOptions('GridPartition');
inFIS = genfis(data(:,1:end-1),data(:,end),genOpt);

Tune the FIS using the anfis command with an initial training step size of 0.2.

 Adaptive Noise Cancellation Using ANFIS

3-239

trainOpt = anfisOptions('InitialFIS',inFIS,'InitialStepSize',0.2);
outFIS = anfis(data,trainOpt);

ANFIS info:
 Number of nodes: 21
 Number of linear parameters: 12
 Number of nonlinear parameters: 12
 Total number of parameters: 24
 Number of training data pairs: 601
 Number of checking data pairs: 0
 Number of fuzzy rules: 4

Start training ANFIS ...

1 0.761817
2 0.748426
3 0.739315
4 0.733993
Step size increases to 0.220000 after epoch 5.
5 0.729492
6 0.725382
7 0.721269
8 0.717621
Step size increases to 0.242000 after epoch 9.
9 0.714474
10 0.71207

Designated epoch number reached. ANFIS training completed at epoch 10.

Minimal training RMSE = 0.71207

The tuned FIS, outFIS, models the second-order relationship between n1 and n2.

Evaluate Model

Calculate the estimated interference signal, estimated_n2, by evaluating the tuned FIS using the
original training data.

estimated_n2 = evalfis(outFIS,data(:,1:2));

Plot the actual n2 signal and the estimated version from the ANFIS output.

subplot(2,1,1)
plot(time, n2)
ylabel('n_2')
xlabel('time')
title('Unknown Interference Signal')
subplot(2,1,2)
plot(time, estimated_n2)
ylabel('n_2')
xlabel('time')
title('Estimated Interference Signal')

3 Fuzzy Inference System Tuning

3-240

The estimated information signal is equal to the difference between the measured signal, m, and the
estimated interference (ANFIS output).

estimated_x = m - estimated_n2;

Compare the original information signal, x, and the estimate, estimated_x.

figure
plot(time,estimated_x,'b',time,x,'r')
xlabel('time')
ylabel('x')
title('Comparison of Actual and Estimated Signals')
legend('Estimated x','Actual x (unknown)','Location','SouthEast')

 Adaptive Noise Cancellation Using ANFIS

3-241

Without extensive training, the ANFIS model produces a relatively accurate estimate of the
information signal.

See Also
anfis | genfis | evalfis

More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-203

3 Fuzzy Inference System Tuning

3-242

Nonlinear System Identification

This example shows how to perform dynamic system identification by using a linear ARX and a
nonlinear ANFIS model.

Load Data

The data set used in this example for ANFIS and ARX modeling is from a "Feedback's Process Trainer
PT 326" laboratory device [1]. The device functions like a hair dryer: air is fanned through a tube and
heated at the inlet. A thermocouple measures the air temperature. The input u k is the voltage over a
mesh of resistor wires to heat incoming air and the output y k is the outlet air temperature.

Load the test data and plot the input and output.

load dryerdata
data_n = length(y);
output = y;
input = [[0; y(1:data_n-1)] ...
 [0; 0; y(1:data_n-2)] ...
 [0; 0; 0; y(1:data_n-3)] ...
 [0; 0; 0; 0; y(1:data_n-4)] ...
 [0; u(1:data_n-1)] ...
 [0; 0; u(1:data_n-2)] ...
 [0; 0; 0; u(1:data_n-3)] ...
 [0; 0; 0; 0; u(1:data_n-4)] ...
 [0; 0; 0; 0; 0; u(1:data_n-5)] ...
 [0; 0; 0; 0; 0; 0; u(1:data_n-6)]];
data = [input output];
data(1:6,:) = [];
input_name = ["y(k-1)","y(k-2)","y(k-3)","y(k-4)",...
 "u(k-1)","u(k-2)","u(k-3)","u(k-4)","u(k-5)","u(k-6)"];
index = 1:100;

figure
subplot(2,1,1)
plot(index,y(index),"-",index,y(index),"o")
title("Output Data")
ylabel("y(k)")
subplot(2,1,2)
plot(index,u(index),"-",index,u(index),"o")
title("Input Data")
ylabel("u(k)")

 Nonlinear System Identification

3-243

The data points reflect a sample time of 0.08 seconds. The input u k is a binary random signal
shifting between 3.41 and 6.41. The probability of shifting the input at each sample is 0.2. The data
set contains 1000 input/output data points. These plots show the output temperature y k and input
voltage u k for the first 100 time steps.

Identify ARX Model

An ARX model is a linear model of the following form:

y k + a1 ⋅ y k− 1 + . . . + am ⋅ y k−m = b1 ⋅ u k− d + . . . + bn ⋅ u k− d− n + 1

Here:

• y k and u k are mean-subtracted versions of the original data.
• ai and b j are linear parameters.
• m, n, and d are three integers that exactly specify the ARX model.

To find an ARX model for the dryer device, first divide the data set into a training (k = 1 to 300) and a
validation (k = 301 to 600) set.

trn_data_n = 300;
total_data_n = 600;
z = [y u];
z = dtrend(z);
ave = mean(y);
ze = z(1:trn_data_n,:);

3 Fuzzy Inference System Tuning

3-244

zv = z(trn_data_n+1:total_data_n,:);
T = 0.08;

Perform an exhaustive search to find the best combination of m, n, and d, allowing each integer to
change from 1 to 10 independently. To perform the search and select the ARX parameters, use the
arxstruc (System Identification Toolbox) and selstruc (System Identification Toolbox) functions.

% Run through all different models.
V = arxstruc(ze,zv,struc(1:10,1:10,1:10));
% Find the best model.
nn = selstruc(V,0);
% Display model parameters
disp("[m n d] = " + num2str(nn))

[m n d] = 5 10 2

The best ARX model has m = 5, n = 10, and d = 2. Create with a training root mean squared error
(RMSE) of 0.1122 and a validation RMSE of 0.0749. Plot the original y k along with this ARX model.

Create and simulate an ARX model with these parameters.

th = arx(ze,nn);
th.Ts = 0.08;
u = z(:,2);
y = z(:,1) + ave;
yp = sim(u,th) + ave;

Plot the ARX model output against the training and validation data. The training root mean squared
error (RMSE) is 0.1121 and the validation RMSE is 0.0748.

figure
subplot(2,1,1)
index = 1:trn_data_n;
plot(index,y(index),index,yp(index), '.')
rmse = norm(y(index)-yp(index))/sqrt(length(index));
title("Training Data (solid), ARX Prediction (dots)" ...
 + newline + "RMSE = " + num2str(rmse))
xlabel("Time Steps")

subplot(2,1,2)
index = (trn_data_n+1):(total_data_n);
plot(index,y(index),index,yp(index),'.')
rmse = norm(y(index)-yp(index))/sqrt(length(index));
title("Validation Data (solid), ARX Prediction (dots)" ...
 + newline + "RMSE = " + num2str(rmse))
xlabel("Time Steps")

 Nonlinear System Identification

3-245

Identify ANFIS Model

The ARX model is linear and can perform model structure and parameter identification rapidly. The
performance in the previous plots appears to be satisfactory. However, if you want better
performance, you can try a nonlinear model such as an adaptive neuro-fuzzy inference system
(ANFIS).

To use an ANFIS for system identification, first determine which variables to use for the input
arguments. For simplicity, use 10 input candidates (y k− 1 , y k− 2 , y k− 3 , y k− 4 , u k− 1 ,
u k− 2 , u k− 3 , u k− 4 , u k− 5 , and u k− 6). Use y k as the output.

Perform a sequential forward search of the inputs using the function sequentialSearch. This
function selects each input variable sequentially to optimize the RMSE.

trn_data_n = 300;
trn_data = data(1:trn_data_n,:);
val_data = data(trn_data_n+1:trn_data_n+300,:);
[~,elapsed_time] = sequentialSearch(3,trn_data,val_data,input_name);

Selecting input 1 ...
Model 1: y(k-1), Error: trn = 0.2043, val = 0.1888
Model 2: y(k-2), Error: trn = 0.3819, val = 0.3541
Model 3: y(k-3), Error: trn = 0.5245, val = 0.4903
Model 4: y(k-4), Error: trn = 0.6308, val = 0.5977
Model 5: u(k-1), Error: trn = 0.8271, val = 0.8434
Model 6: u(k-2), Error: trn = 0.7976, val = 0.8087
Model 7: u(k-3), Error: trn = 0.7266, val = 0.7349

3 Fuzzy Inference System Tuning

3-246

Model 8: u(k-4), Error: trn = 0.6215, val = 0.6346
Model 9: u(k-5), Error: trn = 0.5419, val = 0.5650
Model 10: u(k-6), Error: trn = 0.5304, val = 0.5601
Currently selected inputs: y(k-1)

Selecting input 2 ...
Model 11: y(k-1) y(k-2), Error: trn = 0.1085, val = 0.1024
Model 12: y(k-1) y(k-3), Error: trn = 0.1339, val = 0.1283
Model 13: y(k-1) y(k-4), Error: trn = 0.1542, val = 0.1461
Model 14: y(k-1) u(k-1), Error: trn = 0.1892, val = 0.1734
Model 15: y(k-1) u(k-2), Error: trn = 0.1663, val = 0.1574
Model 16: y(k-1) u(k-3), Error: trn = 0.1082, val = 0.1077
Model 17: y(k-1) u(k-4), Error: trn = 0.0925, val = 0.0948
Model 18: y(k-1) u(k-5), Error: trn = 0.1533, val = 0.1531
Model 19: y(k-1) u(k-6), Error: trn = 0.1952, val = 0.1853
Currently selected inputs: y(k-1) u(k-4)

Selecting input 3 ...
Model 20: y(k-1) u(k-4) y(k-2), Error: trn = 0.0808, val = 0.0822
Model 21: y(k-1) u(k-4) y(k-3), Error: trn = 0.0806, val = 0.0836
Model 22: y(k-1) u(k-4) y(k-4), Error: trn = 0.0817, val = 0.0855
Model 23: y(k-1) u(k-4) u(k-1), Error: trn = 0.0886, val = 0.0912
Model 24: y(k-1) u(k-4) u(k-2), Error: trn = 0.0835, val = 0.0843
Model 25: y(k-1) u(k-4) u(k-3), Error: trn = 0.0609, val = 0.0604
Model 26: y(k-1) u(k-4) u(k-5), Error: trn = 0.0848, val = 0.0867
Model 27: y(k-1) u(k-4) u(k-6), Error: trn = 0.0890, val = 0.0894
Currently selected inputs: y(k-1) u(k-3) u(k-4)

 Nonlinear System Identification

3-247

This plot shows all combinations of inputs tried by sequentialSearch. The search selects y k− 1 ,
u k− 3 , and u k− 4 as inputs since the model with these inputs has the lowest training RMSE and
validation RMSE.

Alternatively, you can use an exhaustive search on all possible combinations of the input candidates.
As before, search for three inputs out of the 10 candidates. You can use the function
exhaustiveSearch for such a search; however, this function tries all possible combinations of
candidates, 10

3 = 120 in this case.

Instead of exhaustiveSearch, use custom code to search through a subset of these combinations.
For this example, do not select any input combination exclusively from the inputs or exclusively from
the outputs.

As a reasonable guess, select input combinations with two output values and one input value, which
produces 36 possible input combinations. Define groups for selecting input indices: two groups for
selecting an output and one group for selecting an input.

group1 = [1 2 3 4]; % y(k-1), y(k-2), y(k-3), y(k-4)
group2 = [1 2 3 4]; % y(k-1), y(k-2), y(k-3), y(k-4)
group3 = [5 6 7 8 9 10]; % u(k-1) through u(k-6)

Specify parameters and options for training.

anfis_n = 6*length(group3);
index = zeros(anfis_n,3);
trn_error = zeros(anfis_n,1);
val_error = zeros(anfis_n,1);

% Create option set for generating initial FIS.
genOpt = genfisOptions("GridPartition","NumMembershipFunctions",2, ...
 "InputMembershipFunctionType","gbellmf");
% Create option set for anfis function and set options that remain
% constant for different training scenarios.
anfisOpt = anfisOptions("EpochNumber",1,...
 "InitialStepSize",0.1,...
 "StepSizeDecreaseRate",0.5,...
 "StepSizeIncreaseRate",1.5,...
 "DisplayANFISInformation",0,...
 "DisplayErrorValues",0,...
 "DisplayStepSize",0,...
 "DisplayFinalResults",0);

Train ANFIS model for each input combination.

model = 1;
for i = 1:length(group1)
 for j = i+1:length(group2)
 for k = 1:length(group3)
 % Create input combinations.
 in1 = input_name(group1(i));
 in2 = input_name(group2(j));
 in3 = input_name(group3(k));
 index(model, :) = [group1(i) group2(j) group3(k)];
 trn_data = data(1:trn_data_n, ...
 [group1(i) group2(j) group3(k) size(data,2)]);
 val_data = data(trn_data_n+1:trn_data_n+300, ...

3 Fuzzy Inference System Tuning

3-248

 [group1(i) group2(j) group3(k) size(data,2)]);

 % Create the initial FIS structure.
 in_fis = genfis(trn_data(:,1:end-1),trn_data(:,end),genOpt);

 % Set the initial FIS and validation data for ANFIS training.
 anfisOpt.InitialFIS = in_fis;
 anfisOpt.ValidationData = val_data;

 % Train the ANFIS system.
 [~,t_err,~,~,c_err] = anfis(trn_data,anfisOpt);
 trn_error(model) = min(t_err);
 val_error(model) = min(c_err);
 model = model+1;
 end
 end
end

Plot the training and validation errors for each input combination in decreasing order.

% Reorder according to training error.
[~, b] = sort(trn_error);
b = flipud(b);
trn_error = trn_error(b);
val_error = val_error(b);
index = index(b,:);

% Plot training and validation error.
x = (1:anfis_n)';
tmp = x(:, ones(1,3))';
X = tmp(:);
tmp = [zeros(anfis_n,1) max(trn_error,val_error) nan*ones(anfis_n,1)]';
Y = tmp(:);
figure
plot(x,trn_error,"-o",x,val_error,"-*",X,Y,"g")
title("Error for Corresponding Inputs")
ylabel("RMSE")
legend("Training","Validation","Location","northeast")

% Add ticks and labels.
labels = string(zeros(anfis_n,1));
for k = 1:anfis_n
 labels(k) = input_name(index(k,1))+ " & " + ...
 input_name(index(k,2))+ " & " + ...
 input_name(index(k,3));
end
xticks(x)
xticklabels(labels)
xtickangle(90)

 Nonlinear System Identification

3-249

The algorithm selects the inputs y k− 1 , y k− 2 , and u k− 3 with a training RMSE of 0.0474 and a
validation RMSE of 0.0485. These RMSE values improve on those of the ARX models and that of the
ANFIS model found by sequential forward search.

Compute and plot the ANFIS predictions for both the training and validation data sets using the
selected input combination.

To do so, first generate the data set.

[~,b] = min(trn_error);
input_index = index(b,:);
trn_data = data(1:trn_data_n,[input_index, size(data,2)]);
val_data = data(trn_data_n+1:600,[input_index, size(data,2)]);

Create and train the ANFIS.

in_fis = genfis(trn_data(:,1:end-1),trn_data(:,end));
anfisOpt = anfisOptions("InitialFIS",in_fis,...
 "EpochNumber",1,...
 "InitialStepSize",0.01,...
 "StepSizeDecreaseRate",0.5,...
 "StepSizeIncreaseRate",1.5,...
 "ValidationData",val_data);
[trn_out_fis,trn_error,step_size,val_out_fis,val_error] = ...
 anfis(trn_data,anfisOpt);

ANFIS info:
 Number of nodes: 34

3 Fuzzy Inference System Tuning

3-250

 Number of linear parameters: 32
 Number of nonlinear parameters: 18
 Total number of parameters: 50
 Number of training data pairs: 300
 Number of checking data pairs: 300
 Number of fuzzy rules: 8

Start training ANFIS ...

1 0.0474113 0.0485325

Designated epoch number reached. ANFIS training completed at epoch 1.

Minimal training RMSE = 0.0474113
Minimal checking RMSE = 0.0485325

Evaluate the FIS for which the validation error is minimum.

y_hat = evalfis(val_out_fis,data(1:600,input_index));

figure
subplot(2,1,1)
index = 1:trn_data_n;
plot(index,data(index,size(data,2)),'-', ...
 index,y_hat(index),'.')
rmse = norm(y_hat(index)-data(index,size(data,2)))/sqrt(length(index));
title("Training Data (solid), ANFIS Prediction (dots)" ...
 + newline + "RMSE = " + num2str(rmse))
xlabel("Time Steps")

subplot(2,1,2)
index = trn_data_n+1:600;
plot(index,data(index,size(data,2)),'-',index,y_hat(index),'.')
rmse = norm(y_hat(index)-data(index,size(data,2)))/sqrt(length(index));
title("Validation Data (solid), ANFIS Prediction (dots)" ...
 + newline + "RMSE = " + num2str(rmse))
xlabel("Time Steps")

 Nonlinear System Identification

3-251

The ANFIS model predictions fit the data much more closely than the ARX model predictions.

Reference

[1] Ljung, Lennart. System Identification: Theory for the User. Prentice-Hall Information and System
Sciences Series. Englewood Cliffs, NJ: Prentice-Hall, 1987.

See Also
anfis | genfis | evalfis

More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-203

3 Fuzzy Inference System Tuning

3-252

Gas Mileage Prediction

This example shows how to predict fuel consumption for automobiles using data from previously
recorded observations.

Automobile miles per gallon (MPG) prediction is a typical nonlinear regression problem, in which
several automobile features are used to predict fuel consumption in MPG. The training data for this
example is available in the University of California, Irvine Machine Learning Repository and contains
data collected from automobiles of various makes and models.

In this data set, the six input variables are number of cylinders, displacement, horsepower, weight,
acceleration, and model year. The output variable to predict is the fuel consumption in MPG. In this
example, you do not use the make and model information from the data set.

Partition Data

Obtain the data set from the original data file autoGas.dat using the loadGasData function.

[data,input_name] = loadGasData;

Partition the dataset into a training set (odd-indexed samples) and a validation set (even-indexed
samples).

trn_data = data(1:2:end,:);
val_data = data(2:2:end,:);

Select Inputs

Use the exhaustiveSearch function to perform an exhaustive search within the available inputs to
select the set of inputs that most influence the fuel consumption. Use the first argument of
exhaustiveSearch to specify the number of inputs per combination (1 for this example).
exhaustiveSearch builds an ANFIS model for each combination, trains it for one epoch, and
reports the performance achieved. First, use exhaustiveSearch to determine which variable by
itself can best predict the output.

exhaustiveSearch(1,trn_data,val_data,input_name);

Train 6 ANFIS models, each with 1 inputs selected from 6 candidates...

Model 1: Cylinder, Error: trn = 4.6400, val = 4.7255
Model 2: Disp, Error: trn = 4.3106, val = 4.4316
Model 3: Power, Error: trn = 4.5399, val = 4.1713
Model 4: Weight, Error: trn = 4.2577, val = 4.0863
Model 5: Acceler, Error: trn = 6.9789, val = 6.9317
Model 6: Year, Error: trn = 6.2255, val = 6.1693

 Gas Mileage Prediction

3-253

https://www.ics.uci.edu/~mlearn/MLRepository.html,

The graph indicates that the Weight variable has the least root mean squared error. In other words,
it can best predict MPG.

For Weight, the training and validation errors are comparable, indicating little overfitting. Therefore,
you can likely use more than one input variable in your ANFIS model.

Although models using Weight and Disp individually have the lowest errors, a combination of these
two variables does not necessarily produce the minimal training error. To identify which combination
of two input variables results in the lowest error, use exhaustiveSearch to search every
combination.

input_index = exhaustiveSearch(2,trn_data,val_data,input_name);

Train 15 ANFIS models, each with 2 inputs selected from 6 candidates...

ANFIS model 1: Cylinder Disp, Error: trn = 3.9320, val = 4.7920
ANFIS model 2: Cylinder Power, Error: trn = 3.7364, val = 4.8683
ANFIS model 3: Cylinder Weight, Error: trn = 3.8741, val = 4.6763
ANFIS model 4: Cylinder Acceler, Error: trn = 4.3287, val = 5.9625
ANFIS model 5: Cylinder Year, Error: trn = 3.7129, val = 4.5946
ANFIS model 6: Disp Power, Error: trn = 3.8087, val = 3.8594
ANFIS model 7: Disp Weight, Error: trn = 4.0271, val = 4.6351
ANFIS model 8: Disp Acceler, Error: trn = 4.0782, val = 4.4890
ANFIS model 9: Disp Year, Error: trn = 2.9565, val = 3.3905
ANFIS model 10: Power Weight, Error: trn = 3.9310, val = 4.2983
ANFIS model 11: Power Acceler, Error: trn = 4.2740, val = 3.8738
ANFIS model 12: Power Year, Error: trn = 3.3796, val = 3.3505

3 Fuzzy Inference System Tuning

3-254

ANFIS model 13: Weight Acceler, Error: trn = 4.0875, val = 4.0095
ANFIS model 14: Weight Year, Error: trn = 2.7657, val = 2.9954
ANFIS model 15: Acceler Year, Error: trn = 5.6242, val = 5.6481

The results from exhaustiveSearch indicate that Weight and Year form the optimal combination
of two input variables. However, the difference between the training and validation errors is larger
than the difference for either variable alone, indicating that including more variables increases
overfitting. Run exhaustiveSearch with combinations of three input variables to see whether these
differences increase further with greater model complexity.

exhaustiveSearch(3,trn_data,val_data,input_name);

Train 20 ANFIS models, each with 3 inputs selected from 6 candidates...

ANFIS model 1: Cylinder Disp Power, Error: trn = 3.4446, val = 11.5329
ANFIS model 2: Cylinder Disp Weight, Error: trn = 3.6686, val = 4.8923
ANFIS model 3: Cylinder Disp Acceler, Error: trn = 3.6610, val = 5.2384
ANFIS model 4: Cylinder Disp Year, Error: trn = 2.5463, val = 4.9001
ANFIS model 5: Cylinder Power Weight, Error: trn = 3.4797, val = 9.3759
ANFIS model 6: Cylinder Power Acceler, Error: trn = 3.5432, val = 4.4804
ANFIS model 7: Cylinder Power Year, Error: trn = 2.6300, val = 3.6300
ANFIS model 8: Cylinder Weight Acceler, Error: trn = 3.5708, val = 4.8380
ANFIS model 9: Cylinder Weight Year, Error: trn = 2.4951, val = 4.0433
ANFIS model 10: Cylinder Acceler Year, Error: trn = 3.2698, val = 6.2616
ANFIS model 11: Disp Power Weight, Error: trn = 3.5879, val = 7.4978
ANFIS model 12: Disp Power Acceler, Error: trn = 3.5395, val = 3.9953
ANFIS model 13: Disp Power Year, Error: trn = 2.4607, val = 3.3563

 Gas Mileage Prediction

3-255

ANFIS model 14: Disp Weight Acceler, Error: trn = 3.6075, val = 4.2326
ANFIS model 15: Disp Weight Year, Error: trn = 2.5617, val = 3.7855
ANFIS model 16: Disp Acceler Year, Error: trn = 2.4149, val = 3.2480
ANFIS model 17: Power Weight Acceler, Error: trn = 3.7884, val = 4.0476
ANFIS model 18: Power Weight Year, Error: trn = 2.4371, val = 3.2866
ANFIS model 19: Power Acceler Year, Error: trn = 2.7276, val = 3.2580
ANFIS model 20: Weight Acceler Year, Error: trn = 2.3603, val = 2.9152

This plot shows the result of selecting three inputs. Here, the combination of Weight, Year, and
Acceler produces the lowest training error. However, the training and validation errors are not
substantially lower than that of the best two-input model, which indicates that the newly added
variable Acceler does not improve the prediction much. As simpler models usually generalize better,
use the two-input ANFIS for further exploration.

Extract the selected input variables from the original training and validation data sets.

new_trn_data = trn_data(:,[input_index, size(trn_data,2)]);
new_val_data = val_data(:,[input_index, size(val_data,2)]);

Train ANFIS Model

The function exhaustiveSearch trains each ANFIS for only a single epoch to quickly find the right
inputs. Now that the inputs are fixed, you can train the ANFIS model for more epochs.

Use the genfis function to generate an initial FIS from the training data, then use anfis to fine-
tune it.

3 Fuzzy Inference System Tuning

3-256

in_fis = genfis(new_trn_data(:,1:end-1),new_trn_data(:,end));
anfisOpt = anfisOptions('InitialFIS',in_fis,'EpochNumber',100,...
 'StepSizeDecreaseRate',0.5,...
 'StepSizeIncreaseRate',1.5,...
 'ValidationData',new_val_data,...
 'DisplayANFISInformation',0,...
 'DisplayErrorValues',0,...
 'DisplayStepSize',0,...
 'DisplayFinalResults',0);
[trn_out_fis,trn_error,step_size,val_out_fis,val_error] = ...
 anfis(new_trn_data,anfisOpt);

anfis returns the training and validation errors. Plot the training and validation errors over the
course of the training process.

[a,b] = min(val_error);
plot(1:100,trn_error,'g-',1:100,val_error,'r-',b,a,'ko')
title('Training (green) and validation (red) error curve')
xlabel('Epoch number')
ylabel('RMSE')

This plot shows the error curves for 100 epochs of ANFIS training. The green curve gives the training
errors and the red curve gives the validation errors. The minimal validation error occurs at about
epoch 45, which is indicated by a circle. Notice that the validation error curve goes up after 50
epochs, indicating that further training overfits the data and produces increasingly worse
generalization.

 Gas Mileage Prediction

3-257

Analyze ANFIS Model

First, compare the performance of the ANFIS model with that of a linear model using their respective
validation RMSE values.

The ANFIS prediction can be compared against a linear regression model by comparing their
respective RMSE (Root mean square) values against validation data.

% Perform linear regression
N = size(trn_data,1);
A = [trn_data(:,1:6) ones(N,1)];
B = trn_data(:,7);
coef = A\B; % Solve for regression parameters from training data

Nc = size(val_data,1);
A_ck = [val_data(:,1:6) ones(Nc,1)];
B_ck = val_data(:,7);
lr_rmse = norm(A_ck*coef-B_ck)/sqrt(Nc);

fprintf('\nRMSE against validation data\nANFIS : %1.3f\tLinear Regression : %1.3f\n',...
 a,lr_rmse);

RMSE against validation data
ANFIS : 2.978 Linear Regression : 3.444

The ANFIS model has a lower validation RMSE and therefore outperforms the linear regression
model.

The variable val_out_fis is a snapshot of the ANFIS model at the minimal validation error during
the training process. Plot an output surface of the model.

val_out_fis.Inputs(1).Name = "Weight";
val_out_fis.Inputs(2).Name = "Year";
val_out_fis.Outputs(1).Name = "MPG";

gensurf(val_out_fis)

3 Fuzzy Inference System Tuning

3-258

The output surface is nonlinear and monotonic and illustrates how the ANFIS model responds to
varying values of Weight and Year.

The surface indicates that, for vehicles manufactured in or after 1978, heavier automobiles are more
efficient. Plot the data distribution to see any potential gaps in the input data that might cause this
counterintuitive result.

plot(new_trn_data(:,1),new_trn_data(:,2),'bo', ...
 new_val_data(:,1),new_val_data(:,2),'rx')
xlabel('Weight')
ylabel('Year')
title('Training (o) and Validation (x) Data')

 Gas Mileage Prediction

3-259

The lack of training data for heavier vehicles manufactured in later years causes the anomalous
results. Because data distribution strongly affects prediction accuracy, take the data distribution into
account when you interpret the ANFIS model.

See Also
anfis | genfis | evalfis

More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-203

3 Fuzzy Inference System Tuning

3-260

Data Clustering

• “Fuzzy Clustering” on page 4-2
• “Cluster Quasi-Random Data Using Fuzzy C-Means Clustering” on page 4-6
• “Adjust Fuzzy Overlap in Fuzzy C-Means Clustering” on page 4-9
• “Fuzzy C-Means Clustering” on page 4-12
• “Fuzzy C-Means Clustering for Iris Data” on page 4-16
• “Brain Tumor Segmentation Using Fuzzy C-Means Clustering” on page 4-20
• “Model Suburban Commuting Using Subtractive Clustering and ANFIS” on page 4-30
• “Cluster Data Using Clustering Tool” on page 4-41

4

Fuzzy Clustering
Clustering of numerical data forms the basis of many classification and system modeling algorithms.
The purpose of clustering is to identify natural groupings of data from a large data set to produce a
concise representation of system behavior. Fuzzy Logic Toolbox tools allow you to find clusters in
input-output training data using:

• Fuzzy c-means clustering — Each data point belongs to each cluster to a degree that is specified
by a fuzzy membership grade.

• Subtractive clustering — A fast nonfuzzy algorithm for estimating the number of clusters in a data
set.

Fuzzy C-Means Clustering
Fuzzy c-means (FCM) is a data clustering technique where each data point belongs to a cluster to a
degree that is specified by a membership grade.

The FCM algorithm starts with an initial guess for the cluster centers, which represent the mean
location of each cluster. The initial guess for these cluster centers is most likely incorrect.
Additionally, FCM assigns every data point a membership grade for each cluster. By iteratively
updating the cluster centers and the membership grades for each data point, the algorithm iteratively
moves the cluster centers to the optimal location within a data set. This iteration is based on
minimizing an objective function that represents the distance from any given data point to a cluster
center weighted by the data point membership grade.

To cluster data using FCM clustering, use the fcm function. To specify the clustering algorithm
options, use an fcmOptions object. The fcm function outputs a list of cluster centers and cluster
membership grades for each data point.

You can use cluster information to generate a fuzzy inference system that best models the data
behavior using a minimum number of rules. The rules partition themselves according to the fuzzy
qualities associated with each of the data clusters. To automatically generate this type of FIS, use the
genfis function. You can generate an initial fuzzy system using clustering results from either FCM
or subtractive clustering.

To cluster data, specify an array of data points, xi, with N rows. The number of columns for each data
point is equal to the data dimensionality.

x j = x j1 x j2 ⋯ x jn
⊤, 1 ≤ j ≤ N

The FCM algorithm computes the cluster centers, ci. This array contains one row for each cluster
center and the number of columns matches the number of columns in xi.

ci = ci1 ci2 ⋯ cin
⊤, 1 ≤ i ≤ C

To specify the number of clusters C, use the NumClusters option.

The FCM algorithm minimizes the following objective function.

Jm = ∑
i = 1

C
∑

j = 1

N
μi j

mDi j
2

4 Data Clustering

4-2

Here:

• m is the fuzzy partition matrix exponent for controlling the degree of fuzzy overlap, with m > 1.
Fuzzy overlap refers to how fuzzy the boundaries between clusters are, that is, the number of data
points that have significant membership in more than one cluster. To specify fuzzy partition matrix
exponent, use the Exponent option.

• Dij is the distance from the jth data point to the ith cluster.
• μij is the degree of membership of the jth data point in the ith cluster. For a given data point, the

sum of the membership values for all clusters is one.

The fcm function supports two types of FCM clustering. These methods differ based on the distance
metric used for computing Dij. To select an FCM algorithm, set the DistanceMetric option.

FCM Algorithm DistanceMetric Value Description
Classical FCM "euclidean" Compute distances using the Euclidean

distance norm, which assumes a spherical
shape for all clusters.

Gustafson-Kessel FCM "mahalanobis" Compute distances using a Mahalanobis
distance norm where cluster covariance is
weighted by cluster membership values.

Classical FCM

The classical FCM algorithm performs the following steps.

1 Randomly initialize the cluster membership values μij.
2 Calculate the cluster centers.

ci =
∑

j = 1

N
μi j

mxi

∑
j = 1

N
μi j

m
, 1 ≤ i ≤ C

3 Compute the Euclidean distance from each data point to each cluster center.

Di j = x j− ci
⊤ x j− ci , 1 ≤ i ≤ C, 1 ≤ j ≤ N

4 Update the membership values for each data point.

μi j = 1

∑
k = 1

N Di j
Dik

2
m− 1

, 1 ≤ i ≤ C, 1 ≤ j ≤ N

5 Calculate the objective function Jm.
6 Repeat steps 2–4 until one of the following conditions is met.

• Jm improves by less than a specified minimum threshold, which you specify using the
MinImprovement option.

• The algorithm performs the specified maximum number of iterations, which you specify using
the MaxNumIteration option.

 Fuzzy Clustering

4-3

Gustafson-Kessel FCM

The Gustafson-Kessel (GK) FCM algorithm performs the following steps.

1 Randomly initialize the cluster membership values μij.
2 Calculate the cluster centers.

ci =
∑

j = 1

N
μi j

mxi

∑
j = 1

N
μi j

m
, 1 ≤ i ≤ C

3 Compute the cluster covariance matrices Fi.

Fi =
∑

j = 1

N
μi j

m x j− ci x j− ci
⊤

∑
j = 1

N
μi j

m
, 1 ≤ i ≤ C, 1 ≤ j ≤ N

4 Compute the Mahalanobis distance from each data point to each cluster based on the covariance
matrices.

Di j = x j− ci
⊤ det Fi

1/NFi
−1 x j− ci , 1 ≤ i ≤ C, 1 ≤ j ≤ N

5 Update the membership values for each data point.

μi j = 1

∑
k = 1

N Di j
Dik

2
m− 1

, 1 ≤ i ≤ C, 1 ≤ j ≤ N

6 Calculate the objective function Jm.
7 Repeat steps 2–6 until one of the following conditions is met.

• Jm improves by less than a specified minimum threshold, which you specify using the
MinImprovement option.

• The algorithm performs the specified maximum number of iterations, which you specify using
the MaxNumIteration option.

Subtractive Clustering
If you do not have a clear idea how many clusters there should be for a given set of data, subtractive
clustering is a fast, one-pass algorithm for estimating the number of clusters and the cluster centers
for a set of data [2]. To obtain the cluster estimates, use the subclust function. You can use the
cluster estimates to initialize iterative optimization-based clustering methods, such as FCM, and
model identification methods, such as ANFIS. The subclust function finds the clusters using the
subtractive clustering method.

Subtractive clustering assumes that each data point is a potential cluster center. Based on that
assumption, the clustering algorithm includes the following steps.

1 Calculate the likelihood that each data point would define a cluster center, based on the density
of surrounding data points.

4 Data Clustering

4-4

2 Choose the data point with the highest potential to be the first cluster center.
3 Remove all data points near the first cluster center based on a specified cluster influence range.
4 Choose the remaining point with the highest potential as the next cluster center.
5 Repeat steps 3 and 4 until all the data is within the influence range of a cluster center.

The subtractive clustering method is an extension of the mountain clustering method proposed in [3].

References

[1] Bezdek, James C. Pattern Recognition with Fuzzy Objective Function Algorithms. Boston, MA:
Springer US, 1981. https://doi.org/10.1007/978-1-4757-0450-1.

[2] Chiu, Stephen L. “Fuzzy Model Identification Based on Cluster Estimation.” Journal of Intelligent
and Fuzzy Systems 2, no. 3 (1994): 267–78. https://doi.org/10.3233/IFS-1994-2306.

[3] Yager, Ronald R., and Dimitar P. Filev. “Generation of Fuzzy Rules by Mountain Clustering.”
Journal of Intelligent and Fuzzy Systems 2, no. 3 (1994): 209–19. https://doi.org/10.3233/
IFS-1994-2306.

See Also
fcm | fcmOptions | subclust | genfis

More About
• “Cluster Quasi-Random Data Using Fuzzy C-Means Clustering” on page 4-6
• “Model Suburban Commuting Using Subtractive Clustering and ANFIS” on page 4-30
• “Cluster Data Using Clustering Tool” on page 4-41

 Fuzzy Clustering

4-5

https://doi.org/10.1007/978-1-4757-0450-1
https://doi.org/10.3233/IFS-1994-2306
https://doi.org/10.3233/IFS-1994-2306
https://doi.org/10.3233/IFS-1994-2306

Cluster Quasi-Random Data Using Fuzzy C-Means Clustering

This example shows how FCM clustering works using quasi-random two-dimensional data.

Load the data set and plot it.

load fcmdata.dat
plot(fcmdata(:,1),fcmdata(:,2),"o")

Using the fcm function, find two clusters in this data set. The clustering algorithm stops when the
improvement in the objective function between subsequent iterations is below a threshold.

options = fcmOptions(NumClusters=2);
[center,U,objFcn] = fcm(fcmdata,options);

Iteration count = 1, obj. fcn = 8.970479
Iteration count = 2, obj. fcn = 7.197402
Iteration count = 3, obj. fcn = 6.325579
Iteration count = 4, obj. fcn = 4.586142
Iteration count = 5, obj. fcn = 3.893114
Iteration count = 6, obj. fcn = 3.810804
Iteration count = 7, obj. fcn = 3.799801
Iteration count = 8, obj. fcn = 3.797862
Iteration count = 9, obj. fcn = 3.797508
Iteration count = 10, obj. fcn = 3.797444
Iteration count = 11, obj. fcn = 3.797432

4 Data Clustering

4-6

Iteration count = 12, obj. fcn = 3.797430
Minimum improvement reached.

center contains the coordinates of the two cluster centers, U contains the membership grades for
each of the data points, and objFcn contains a history of the objective function across the iterations.

To view the progress of the clustering, plot the objective function.

figure
plot(objFcn)
title("Objective Function Values")
xlabel("Iteration Count")
ylabel("Objective Function Value")

Assign each data point to the cluster for which its cluster membership is greatest.

maxU = max(U);
index1 = find(U(1,:) == maxU);
index2 = find(U(2,:) == maxU);

Finally, plot the clustered data along with the two cluster centers found by the fcm function. The
large characters in the plot indicate the cluster centers.

figure
plot(fcmdata(index1,1),fcmdata(index1,2),"og")
hold on
plot(fcmdata(index2,1),fcmdata(index2,2),"xr")
plot(center(1,1),center(1,2),"ok",...

 Cluster Quasi-Random Data Using Fuzzy C-Means Clustering

4-7

 MarkerSize=15,LineWidth=3)
plot(center(2,1),center(2,2),"xk",...
 MarkerSize=15,LineWidth=3)

Every time you run this example, the fcm function initializes with different initial conditions. This
behavior can swap the order in which the cluster centers are computed and plotted.

See Also
fcm | fcmOptions

More About
• “Fuzzy Clustering” on page 4-2

4 Data Clustering

4-8

Adjust Fuzzy Overlap in Fuzzy C-Means Clustering

This example shows how to adjust the amount of fuzzy overlap when performing fuzzy c-means
clustering.

Create a random data set. For reproducibility, initialize the random number generator to its default
value.

rng("default")
data = rand(100,2);

Specify fuzzy partition matrix exponents.

M = [1.1 2.0 3.0 4.0];

The exponent values in M must be greater than 1, with smaller values specifying a lower degree of
fuzzy overlap. In other words, as M approaches 1, the boundaries between the clusters become more
crisp.

For each overlap exponent:

1 Cluster the data.
2 Classify each data point into the cluster for which it has the highest degree of membership.
3 Find the data points with maximum membership values below 0.6. These points have a more

fuzzy classification.
4 To quantify the degree of fuzzy overlap, calculate the average maximum membership value

across all data points. A higher average maximum membership value indicates that there is less
fuzzy overlap.

5 Plot the clustering results.

for i = 1:4
 % 1. Cluster the data.
 options = fcmOptions(...
 NumClusters=2,...
 Exponent=M(i),...
 Verbose=false);
 [centers,U] = fcm(data,options);

 % 2. Classify the data points.
 maxU = max(U);
 index1 = find(U(1,:) == maxU);
 index2 = find(U(2,:) == maxU);

 % 3. Find data points with lower maximum membership values.
 index3 = find(maxU < 0.6);

 % 4. Calculate the average maximum membership value.
 averageMax = mean(maxU);

 % 5. Plot the results.
 subplot(2,2,i)
 plot(data(index1,1),data(index1,2),"ob")
 hold on
 plot(data(index2,1),data(index2,2),"or")

 Adjust Fuzzy Overlap in Fuzzy C-Means Clustering

4-9

 plot(data(index3,1),data(index3,2),"xk",...
 LineWidth=2)
 plot(centers(1,1),centers(1,2),"xb",...
 MarkerSize=15,LineWidth=3)
 plot(centers(2,1),centers(2,2),"xr",...
 MarkerSize=15,LineWidth=3)
 hold off
 title("M = " + num2str(M(i)) + ...
 ", Ave. Max. = " + num2str(averageMax,3))
end

A given data point is classified into the cluster for which it has the highest membership value, as
indicated by maxU. A maximum membership value of 0.5 indicates that the point belongs to both
clusters equally. The data points marked with a black x have maximum membership values below
0.6. These points have a greater degree of uncertainty in their cluster membership.

More data points with low maximum membership values indicate a greater degree of fuzzy overlap in
the clustering result. The average maximum membership value, averageMax, provides a quantitative
description of the overlap. An averageMax value of 1 indicates crisp clusters, with smaller values
indicating more overlap.

See Also
fcm | fcmOptions

4 Data Clustering

4-10

More About
• “Fuzzy Clustering” on page 4-2
• “Cluster Quasi-Random Data Using Fuzzy C-Means Clustering” on page 4-6

 Adjust Fuzzy Overlap in Fuzzy C-Means Clustering

4-11

Fuzzy C-Means Clustering

This example shows how to perform fuzzy c-means clustering on 2-dimensional data. For an example
that clusters higher-dimensional data, see “Fuzzy C-Means Clustering for Iris Data” on page 4-16.

Fuzzy c-means (FCM) is a data clustering technique in which a data set is grouped into N clusters
with every data point in the dataset belonging to every cluster to a certain degree. For example, a
data point that lies close to the center of a cluster will have a high degree of membership in that
cluster, and another data point that lies far away from the center of a cluster will have a low degree
of membership to that cluster.

The fcm function performs FCM clustering. It starts with a random initial guess for the cluster
centers; that is, the mean location of each cluster. Next, fcm assigns every data point a random
membership grade for each cluster. By iteratively updating the cluster centers and the membership
grades for each data point, fcm moves the cluster centers to the correct location within a data set
and, for each data point, finds the degree of membership in each cluster. This iteration minimizes an
objective function that represents the distance from any given data point to a cluster center weighted
by the membership of that data point in the cluster.

Load Data

Load the five sample data sets, and select a data set to cluster. These data sets have different
numbers of clusters and data distributions.

load fcmdata

dataset = ;

Each data set contains two columns, which represent the two features for each data point.

Specify FCM Settings

Configure the clustering algorithm settings. For more information on these settings, see
fcmOptions. To obtain accurate clustering results for each data set, try different clustering options.

Specify the number of clusters to compute, which must be greater than 1.

Nc = ;

Specify the exponent the fuzzy partition matrix, which controls the degree of fuzzy overlap between
clusters. This value must be greater than 1, with smaller values creating more crisp cluster
boundaries. For more information, see “Adjust Fuzzy Overlap in Fuzzy C-Means Clustering” on page
4-9.

exp = ;

Specify the maximum number of optimization iterations.

maxIter = ;

Specify the minimum improvement in the objective function between successive iterations. When the
objective function improves by a value below this threshold, the optimization stops. A smaller value
produces more accurate clustering results, but the clustering can take longer to converge.

4 Data Clustering

4-12

minImprove = ;

Specify whether to display the objective function value after each iteration.

displayObjective = ;

Specify the distance metric to use during computation. You can select either a Euclidean or
Mahalanobis distance metric.

distMetric = ;

Create an fcmOptions object using these settings.

options = fcmOptions(...
 NumClusters=Nc,...
 Exponent=exp,...
 MaxNumIteration=maxIter,...
 MinImprovement=minImprove,...
 Verbose=displayObjective,...
 DistanceMetric=distMetric);

Cluster Data

Cluster the data into the specified number of clusters.

[C,U] = fcm(dataset,options);

C contains the computed centers for each cluster. U contains the computed fuzzy partition matrix,
which indicates the degree of membership of each data point within each cluster.

Classify each data point into the cluster for which it has the highest degree of membership.

maxU = max(U);
index = cell(Nc,1);
for i=1:Nc
 index{i} = find(U(i,:) == maxU);
end

Plot Clustering Results

Plot the clustering results.

figure
hold on
for i=1:Nc
 plot(dataset(index{i},1),dataset(index{i},2),"o")
 plot(C(i,1),C(i,2),"xk",MarkerSize=15,LineWidth=3)
end
xlabel("Feature 1")
ylabel("Feature 2")
hold off

 Fuzzy C-Means Clustering

4-13

The data points in each cluster are shown in a different colors. The center for each cluster is shown
as a black X.

Plot Data Point Membership Values

Select a cluster for which to plot a membership function surface.

cluster = ;

Obtain the membership function for the selected cluster by fitting a surface to the cluster
membership values for all data points. For more information on interpolating scattered 3-D data, see
griddata.

[X,Y] = meshgrid(0:0.05:1, 0:0.05:1);
Z = griddata(dataset(:,1),dataset(:,2),U(cluster,:),X,Y);
surf(X,Y,Z)
xlabel("Feature 1")
ylabel("Feature 2")
zlabel("Membership")

4 Data Clustering

4-14

When you decrease the exponent value, the transition from maximum full cluster membership to
zero cluster membership becomes more steep; that is, the cluster boundary becomes more crisp.

See Also
fcm | fcmOptions

More About
• “Fuzzy Clustering” on page 4-2

 Fuzzy C-Means Clustering

4-15

Fuzzy C-Means Clustering for Iris Data

This example shows how to use fuzzy c-means clustering for the iris data set. This dataset was
collected by botanist Edgar Anderson and contains random samples of flowers belonging to three
species of iris flowers: setosa, versicolor, and virginica. For each of the species, the data set contains
50 observations for sepal length, sepal width, petal length, and petal width.

Load Data

Load the data set from the iris.dat data file.

load iris.dat

Partition the data into three groups named setosa, versicolor, and virginica.

setosaIndex = iris(:,5)==1;
versicolorIndex = iris(:,5)==2;
virginicaIndex = iris(:,5)==3;

setosa = iris(setosaIndex,:);
versicolor = iris(versicolorIndex,:);
virginica = iris(virginicaIndex,:);

Plot Data in 2-D

The iris data contains four dimensions representing sepal length, sepal width, petal length, and petal
width. Plot the data points for each combination of two dimensions.

characteristics = ["sepal length","sepal width",...
 "petal length","petal width"];
pairs = [1 2; 1 3; 1 4; 2 3; 2 4; 3 4];

for i = 1:6
 x = pairs(i,1);
 y = pairs(i,2);
 subplot(2,3,i)
 plot([setosa(:,x) versicolor(:,x) virginica(:,x)],...
 [setosa(:,y) versicolor(:,y) virginica(:,y)],".")
 xlabel(characteristics(x))
 ylabel(characteristics(y))
end

4 Data Clustering

4-16

Setup Parameters

Specify the options for clustering the data using fuzzy c-means clustering. These options are:

• Nc — Number of clusters
• M — Fuzzy partition matrix exponent, which indicates the degree of fuzzy overlap between

clusters. For more information, see “Adjust Fuzzy Overlap in Fuzzy C-Means Clustering” on page
4-9.

• maxIter — Maximum number of iterations. The clustering process stops after this number of
iterations.

• minImprove — Minimum improvement. The clustering process stops when the objective function
improvement between two consecutive iterations is less than this value.

options = fcmOptions(...
 NumClusters=3,...
 Exponent=2.0, ...
 MaxNumIteration=100, ...
 MinImprovement=1e-6);

For more information about these options and the fuzzy c-means algorithm, see fcm and
fcmOptions.

Compute Clusters

Fuzzy c-means clustering is an iterative process. Initially, the fcm function generates a random fuzzy
partition matrix. This matrix indicates the degree of membership of each data point in each cluster.

 Fuzzy C-Means Clustering for Iris Data

4-17

In each clustering iteration, fcm calculates the cluster centers and updates the fuzzy partition matrix
using the calculated center locations. It then computes the objective function value.

Cluster the data, displaying the objective function value after each iteration.

[centers,U] = fcm(iris,options);

Iteration count = 1, obj. fcn = 28838.424340
Iteration count = 2, obj. fcn = 21010.880067
Iteration count = 3, obj. fcn = 15272.280943
Iteration count = 4, obj. fcn = 11029.756194
Iteration count = 5, obj. fcn = 10550.015503
Iteration count = 6, obj. fcn = 10301.776800
Iteration count = 7, obj. fcn = 9283.793786
Iteration count = 8, obj. fcn = 7344.379868
Iteration count = 9, obj. fcn = 6575.117093
Iteration count = 10, obj. fcn = 6295.215539
Iteration count = 11, obj. fcn = 6167.772051
Iteration count = 12, obj. fcn = 6107.998500
Iteration count = 13, obj. fcn = 6080.461019
Iteration count = 14, obj. fcn = 6068.116247
Iteration count = 15, obj. fcn = 6062.713326
Iteration count = 16, obj. fcn = 6060.390433
Iteration count = 17, obj. fcn = 6059.403978
Iteration count = 18, obj. fcn = 6058.988494
Iteration count = 19, obj. fcn = 6058.814438
Iteration count = 20, obj. fcn = 6058.741777
Iteration count = 21, obj. fcn = 6058.711512
Iteration count = 22, obj. fcn = 6058.698925
Iteration count = 23, obj. fcn = 6058.693695
Iteration count = 24, obj. fcn = 6058.691523
Iteration count = 25, obj. fcn = 6058.690622
Iteration count = 26, obj. fcn = 6058.690247
Iteration count = 27, obj. fcn = 6058.690092
Iteration count = 28, obj. fcn = 6058.690028
Iteration count = 29, obj. fcn = 6058.690001
Iteration count = 30, obj. fcn = 6058.689990
Iteration count = 31, obj. fcn = 6058.689985
Iteration count = 32, obj. fcn = 6058.689983
Iteration count = 33, obj. fcn = 6058.689983
Minimum improvement reached.

The clustering stops when the objective function improvement is below the specified minimum
threshold.

Plot the computed cluster centers as bold numbers.

for i = 1:6
 subplot(2,3,i)
 for j = 1:options.NumClusters
 x = pairs(i,1);
 y = pairs(i,2);
 text(centers(j,x),centers(j,y),int2str(j),...
 FontWeight="bold");
 end
end

4 Data Clustering

4-18

See Also
fcm | fcmOptions

More About
• “Fuzzy Clustering” on page 4-2

 Fuzzy C-Means Clustering for Iris Data

4-19

Brain Tumor Segmentation Using Fuzzy C-Means Clustering

This examples shows how to segment brain tumors from 3-D medical images using fuzzy c-means
(FCM) clustering algorithms.

Brain Tumor Segmentation

Automatic detection of brain tumors using medical images plays a vital role in the diagnosis process.
High resolution magnetic resonance (MR) images are a popular choice to diagnose brain tumors by
identifying abnormal brain tissue. MR image segmentation helps to partition brain tissue into
multiple regions, based on characteristics like intensity, color, and texture. One segmentation
approach is image clustering, which is a form of unsupervised classification that groups similar data
(pixels) together by comparing the distance of each data point to different cluster centers.

Different brain tissues, including cerebrospinal fluid, white matter, and gray matter, are not well-
defined in MR intensity images. As a result, the edges between regions blend together, as shown in
the following MR image slice.

Fuzzy clustering algorithms take inspiration from fuzzy inference systems and provide each data
point different levels of membership in each cluster. As a result, fuzzy clustering algorithms are
commonly used for brain tumor segmentation to handle the overlapping cluster representation of
brain tissues in MR images.

Fuzzy C-Means Clustering for Tumor Segmentation

The fuzzy c-means algorithm [1] is a popular clustering method that finds multiple cluster
membership values of a data point. Extensions of the classical FCM algorithm generally depend on
the type of distance metric calculated between data points and cluster centers. This example
demonstrates brain tumor segmentation using the classical FCM method, which uses a Euclidean
distance metric, and Gustafson-Kessel (GK) extension, which uses a Mahalanobis distance metric.

The segmentation process includes the following steps:

1 Prepare feature vectors from the training and testing data.
2 Cluster the training data using specified distance metric.

4 Data Clustering

4-20

3 Identify the ientified cluster that represents the tumor.
4 Use the identified cluster centers to identify tumors in the testing data.

After performing these steps using both distance metrics, you can compare the clustering results.

To run this example using previously saved clustering results, set runFCM to false. To run the
clustering process, set this value to true.

runFCM = ;

Download BraTS Sample Data

This example uses the sample BraTS data set [2], which contains 4-D volumes, each representing a
stack of 3-D volumetric scans. Each 4-D volume has size 240-by-240-by-152-by-4, where the first three
dimensions correspond to the height, width, and depth of a 3-D volumetric image. The fourth
dimension represents different scan modalities. For this example, you use only data from the first
scan modality.

Download two volumes, one for training and one for testing, and test labels from the sample data set
for this example.

imageDir = fullfile(tempdir,"BraTS");
filename = matlab.internal.examples.downloadSupportFile(...
 "vision","data/sampleBraTSTestSetValid.tar.gz");
untar(filename,imageDir);

trainDataFileName = fullfile(imageDir,...
 "sampleBraTSTestSetValid\imagesTest\BraTS447.mat");
testDataFileName = fullfile(imageDir,...
 "sampleBraTSTestSetValid\imagesTest\BraTS463.mat");
testLabelFileName = fullfile(imageDir,...
 "sampleBraTSTestSetValid\labelsTest\BraTS463.mat");

Create Training and Testing Data

First reshape the first scan modality from the training data from a 240-by-240-by-152-by-1 matrix to a
57,600-by-152 matrix, where each column represents a vertical slice of the 3-D volume data set.

orgTrainData = load(trainDataFileName);
[r,c,n,~] = size(orgTrainData.cropVol);
trainingData = reshape(orgTrainData.cropVol(:,:,:,1),[r*c n]);

Next, create feature vectors from the training data to capture spatial patterns in the data. Use a
moving window over each pixel of the training data and flatten out the subimage captured under the
window as a row feature vector. Larger window sizes can result in overlaps of different patterns in
the same subimage.

For this example, use a 3-by-3 window size, which produces a nine-element feature vector for each
data point. Create a feature matrix with nine columns for the features using the
createMovingWindowFeatures helper function included at the end of this example. Each row of
the matrix corresponds to one data point.

kDim = [3 3];
trainFeatures = createMovingWindowFeatures(trainingData,kDim);

Similarly, reshape the testing data set to a 57,600-by-152 matrix.

 Brain Tumor Segmentation Using Fuzzy C-Means Clustering

4-21

orgTestData = load(testDataFileName);
testData = reshape(orgTestData.cropVol(:,:,:,1),[r*c n]);

Create test feature vectors from the test data.

testFeatures = createMovingWindowFeatures(testData,kDim);

Load Labeled Data

Load labeled data for the testing images. This data indicates which pixels in the testing data
represent tumors.

orgLabel = load(testLabelFileName);
refLabel = orgLabel.cropLabel;

Identify labeled tumor pixel indices for each image and set a flag if an image contains tumor pixels.

refTumor = cell(1,n); % Tumor pixel ids
refHasTumor = false(1,n);
for id = 1:n
 refTumor{id} = find(refLabel(:,:,id)==1);
 refHasTumor(id) = ~isempty(refTumor{id});
end

Segment Image

Specify Training Options

Configure the clustering options to specify 15 clusters and a maximum of 10 iterations.

numClusters = 15;
options = fcmOptions;
options.NumClusters = numClusters;
options.MaxNumIteration = 10;

Cluster Data Using Euclidean Distance

To use the classical FCM algorithm, set the DistanceMetric option to "euclidean".

options.DistanceMetric = "euclidean";

Cluster the training data using the fcm function. For consistent results, initialize the random number
generator before calling fcm.

if runFCM
 rng("default") %#ok<*UNRCH>
 ecCenters = fcm(trainFeatures,options);
else
 load("fcmBrainTumorSegmentationResults.mat","ecCenters");
end

Find the distance from each data point in the testing data to each calculated cluster center.

ecDist = findDistance(ecCenters,testFeatures);

For each data point, find the index of the closest cluster center.

[~,ecLabel] = min(ecDist',[],2); %#ok<UDIM>

4 Data Clustering

4-22

Reshape the cluster center index array to match the original image dimensions. ecLabel contains
the cluster label for each image pixel in the testing data.

ecLabel = reshape(ecLabel,n,r*c)';
ecLabel = reshape(ecLabel,[r c n]);

Identify tumor pixels in each test image using the segmentTumor helper function included at the end
of this example. To use this function, you specify the tumor cluster index. You can use manual
inspection of the training data to identify the tumor cluster, which here is the third cluster returned.
The function labels the tumor pixels in the image, calculates the number of false positive pixels, and
returns a logical value indicating whether the image contains a tumor. You can separately tune a
fuzzy inference system (FIS) to automatically detect tumors from MR images.

ecTumor = zeros(r,c,n);
ecHasTumor = zeros(1,n);
ecNumFalsePos = zeros(1,n);
tumorCluster = 3;

for id=1:n
 [ecHasTumor(id),ecNumFalsePos(id),ecTumor(:,:,id)] = ...
 segmentTumor(ecLabel(:,:,id),refTumor{id},tumorCluster);
end

View four images for one test case: original test image, segmented image, tumor pixels detected in
the test image, and labeled image showing the ground truth of tumor pixels.

figure
refId = round(n/2);
subplot(2,2,1)
imshow(orgTestData.cropVol(:,:,refId,1))
xlabel("Test Image")
subplot(2,2,2)
imshow(ecLabel(:,:,refId)/numClusters)
xlabel("Segmented Image")
subplot(2,2,3)
imshow(ecTumor(:,:,refId))
xlabel("Tumor Detection")
subplot(2,2,4)
imshow(refLabel(:,:,refId))
xlabel("Labeled image")

 Brain Tumor Segmentation Using Fuzzy C-Means Clustering

4-23

Cluster Data Using Mahalanobis Distance

To use the GK clustering method, set the DistanceMetric option to "mahalanobis".

options.DistanceMetric = "mahalanobis";

Cluster the training data.

if runFCM
 rng("default")
 mnCenters = fcm(trainFeatures, options);
else
 load("fcmBrainTumorSegmentationResults.mat","mnCenters");
end

Find the distance from each data point in the testing data to each calculated cluster center and
determine the closest cluster center for each image pixel.

mnDist = findDistance(mnCenters,testFeatures);
[~,mnLabel] = min(mnDist',[],2); %#ok<UDIM>
mnLabel = reshape(mnLabel,n,r*c)';
mnLabel = reshape(mnLabel,[r c n]);

Identify tumor pixels in each test image and determine the number of false positives and whether the
image contains a tumor. TAs before, you can use manual inspection to identify the tumor cluster in
the training data. Here, this cluster is the 12th one returned.

mnTumor = zeros(r,c,n);
mnHasTumor = zeros(1,n);

4 Data Clustering

4-24

mnNumFalsePos = zeros(1,n);
tumorCluster = 12;

for id=1:n
 [mnHasTumor(id),mnNumFalsePos(id),mnTumor(:,:,id)] = ...
 segmentTumor(mnLabel(:,:,id),refTumor{id},tumorCluster);
end

As with the Euclidean clustering, create four images for one test case showing the segmentation and
ground truth.

figure
subplot(2,2,1)
imshow(orgTestData.cropVol(:,:,refId,1))
xlabel("Test Image")
subplot(2,2,2)
imshow(mnLabel(:,:,refId)/numClusters)
xlabel("Segmented Image")
subplot(2,2,3)
imshow(mnTumor(:,:,refId))
xlabel("Tumor Detection")
subplot(2,2,4)
imshow(refLabel(:,:,refId))
xlabel("Labeled Image")

 Brain Tumor Segmentation Using Fuzzy C-Means Clustering

4-25

Compare Results for Different Distance Metrics

Visually compare the tumor-detection results for a single test image. From left to right, the plots
show the tumor pixels for the ground truth labels, the Euclidean labels, and the Mahalanobis labels.
The clustering using the Mahalanobis distance more closely matches the ground truth labels.

figure
title("Tumor Pixels")
subplot(1,3,1)
imshow(refLabel(:,:,refId))
xlabel("Ground Truth")
subplot(1,3,2)
imshow(ecTumor(:,:,refId))
xlabel("Euclidean Distance")
subplot(1,3,3)
imshow(mnTumor(:,:,refId))
xlabel("Mahalanobis Distance")

The Mahalanobis metric provides fewer false positive pixels compared to the classical approach using
a Euclidean distance metric.

Plot the number of pixel-level false positives across all images for both distance metrics.

figure
bar(ecNumFalsePos)
hold on
bar(mnNumFalsePos,"EdgeAlpha",0.75,"FaceAlpha",0.75);

4 Data Clustering

4-26

xlabel("Image sequence")
ylabel("Number of pixels")
hold off
title("False Positives")
legend(["Euclidean" "Mahalanobis"])

Using the Mahalanobis distance metric produces fewer false positives for all images compared to the
Euclidean distance metric.

You can also compare the tumor-detection performance for the two clustering methods. To do so,
calculate true positive, true negative, false positive, and false negative values according to the tumor
detection results using the distance metrics.

depth = size(refLabel,3);
ecTruePositive = length(find(refHasTumor & ecHasTumor));
ecFalseNegative = length(find(refHasTumor & ~ecHasTumor));
ecFalsePositive = length(find(~refHasTumor & ecHasTumor));

mnTruePositive = length(find(refHasTumor & mnHasTumor));
mnFalseNegative = length(find(refHasTumor & ~mnHasTumor));
mnFalsePositive = length(find(~refHasTumor & mnHasTumor));

truePositive = [ecTruePositive;mnTruePositive];
falsePositive = [ecFalsePositive;mnFalsePositive];
falseNegative = [ecFalseNegative;mnFalseNegative];
trueNegative = depth - (truePositive+falsePositive+falseNegative);

 Brain Tumor Segmentation Using Fuzzy C-Means Clustering

4-27

tumorDetectionResults = table(...
 truePositive,trueNegative,falsePositive,falseNegative, ...
 VariableNames=["True Pos" "True Neg" "False Pos" "False Neg"], ...
 RowNames=["Euclidean Distance" "Mahalanobis Distance"] ...
);
disp(tumorDetectionResults)

 True Pos True Neg False Pos False Neg
 ________ ________ _________ _________

 Euclidean Distance 80 26 46 0
 Mahalanobis Distance 79 36 36 1

The true positive values are similar for both FCM methods. However, the Mahalanobis distance
metric produces fewer false positives when detecting a tumor in an image.

Conclusion

To improve the segmentation results, you can make the following modifications to this example.

• A higher number of clusters can help remove noise from the detected tumor clusters.
• A higher fuzzy exponent value can help reduce false negatives by grouping similar pixels in the

tumor cluster.
• Using more clustering iterations or a lower minimum improvement threshold increases the

training time, which allows the FCM algorithm to explore longer.

This example is limited to tumor segmentation using FCM clustering. It does not automatically detect
tumor clusters in the segmented images. However, you can construct a fuzzy inference system for
automatic detection of tumors in MR images as follows:

• Create feature vectors from labeled images as you do for the testing data in this example. Use
these features as the input training data.

• Use the corresponding binary labels as the output training data.
• Create and tune a fuzzy inference system using the input and output data.

References

[1] Höppner, Frank, Frank Klawonn, Rudolf Kruse, and Thomas Runkler. Fuzzy Cluster Analysis:
Methods for Classification, Data Analysis and Image Recognition. Chichester; New York: John Wiley &
Sons, 1999.

[2] "Brain Tumours". Medical Segmentation Decathlon. http://medicaldecathlon.com/

The BraTS data set is provided by Medical Segmentation Decathlon under the CC-BY-SA 4.0 license.
All warranties and representations are disclaimed; see the license for details. MathWorks® has
modified the data set referenced in the Download BraTS Sample Data on page 4-21 section of this
example. The modified sample data set has been cropped to a region containing primarily the brain
and tumor and each channel has been normalized independently by subtracting the mean and
dividing by the standard deviation of the cropped brain region.

Helper Functions

function y = createMovingWindowFeatures(in,dim)
%% Create feature vectors using a moving window.

4 Data Clustering

4-28

http://medicaldecathlon.com/
https://creativecommons.org/licenses/by-sa/4.0/

rStep = floor(dim(1)/2);
cStep = floor(dim(2)/2);

x1 = [zeros(size(in,1),rStep) in zeros(size(in,1),rStep)];
x = [zeros(cStep,size(x1,2));x1;zeros(cStep,size(x1,2))];

[row,col] = size(x);
yCol = prod(dim);
y = zeros((row-2*rStep)*(col-2*cStep), yCol);
ct = 0;
for rId = rStep+1:row-rStep
 for cId = cStep+1:col-cStep
 ct = ct + 1;
 y(ct,:) = reshape(x(rId-rStep:rId+rStep,cId-cStep:cId+cStep),1,[]);
 end
end
end

function dist = findDistance(centers,data)
%% Calculate feature distance from cluster center.

dist = zeros(size(centers, 1), size(data, 1));
for k = 1:size(centers, 1)
 dist(k, :) = sqrt(sum(((data-ones(size(data, 1), 1)*centers(k, :)).^2), 2));
end
end

function [hasTumor,numFalsePos,tumorLabel] = ...
 segmentTumor(testLabel,refPositiveIds,clusterId)
%% Calculate detection results using the test and reference data.

tumorIds = testLabel==clusterId;
segmentedImage = testLabel;
segmentedImage(tumorIds) = 1;
segmentedImage(~tumorIds) = 0;
tumorIdsECIds = find(tumorIds==1);
hasTumor = ~isempty(tumorIdsECIds);
numFalsePos = length(find(setdiff(tumorIdsECIds,refPositiveIds)));
tumorLabel = segmentedImage;
end

See Also
fcm | fcmOptions

More About
• “Fuzzy Clustering” on page 4-2

 Brain Tumor Segmentation Using Fuzzy C-Means Clustering

4-29

Model Suburban Commuting Using Subtractive Clustering and
ANFIS

This example shows how to model the relationship between the number of automobile trips generated
from an area and the demographics of the area using subtractive clustering and ANFIS tuning.

Load Traffic Data

This example uses demographic and trip data from 100 traffic analysis zones in New Castle County,
Delaware. The data set contains five demographic factors as input variables: population, number of
dwelling units, vehicle ownership, median household income, and total employment. The data
contains one output variable, number of automobile trips.

Load the training and validation data.

load trafficData

The data set contains 100 data points, 75 for training and 25 for validation. The training input data
(datain) and validation input data (valdatain) each have five columns that represent the input
variables. The training output data (dataout) and validation output data (valdataout) each have
one column that represents the output variable.

Plot the training data.

h = figure;
h.Position(3) = 1.5*h.Position(3);
subplot(1,2,1)
plot(datain)
legend("population","number of dwellings","vehicle ownership",...
 "median income","total employment","Location","northwest")
title('Input Variables')
xlabel('Data Point')

subplot(1,2,2)
plot(dataout)
legend("number of trips")
title("Output Variable")
xlabel('Data Point')

4 Data Clustering

4-30

Cluster Data

Subtractive clustering is a fast one-pass algorithm for estimating the number of clusters and the
cluster centers in a data set. To cluster the training data using subtractive clustering, use the
subclust function.

[C,S] = subclust([datain dataout],0.5);

For this example, use a cluster influence range of 0.5. This value indicates the range of influence of a
cluster when you consider the data space as a unit hypercube. Specifying a small cluster radius
usually generates many small clusters in the data, which produces a FIS with many rules. Specifying
a large cluster radius usually produces a few large clusters in the data and results in fewer rules.

Each row of C contains the position of a cluster center identified by the clustering algorithm. In this
case, the algorithm found three clusters in the data.

C

C = 3×6

 1.8770 0.7630 0.9170 18.7500 1.5650 2.1830
 0.3980 0.1510 0.1320 8.1590 0.6250 0.6480
 3.1160 1.1930 1.4870 19.7330 0.6030 2.3850

Plot the training data along with the cluster centers for two of the input variables.

figure
plot(datain(:,5),dataout(:,1),'.',C(:,5),C(:,6),"r*")
legend("Data points","Cluster centers","Location","southeast")
xlabel("Total Employment")
ylabel("Number of Trips")
title("Data and Cluster Centers")

 Model Suburban Commuting Using Subtractive Clustering and ANFIS

4-31

The values in S show the range of influence of the cluster centers for each data dimension. All cluster
centers have the same set of S values.

S

S = 1×6

 1.1621 0.4117 0.6555 7.6139 2.8931 1.4395

Generate Fuzzy Inference System Using Data Clusters

Use the genfis function to generate a fuzzy inference system (FIS) from the data using subtractive
clustering.

An important advantage of using a clustering method to find rules is that the resultant rules are more
tailored to the input data than they are in a FIS generated without clustering. This tailoring reduces
the total number of rules when the input data has a high dimension.

First, create a genfisOptions option set for subtractive clustering, specifying the same cluster
influence range value.

fisOpt = genfisOptions("SubtractiveClustering",...
 "ClusterInfluenceRange",0.5);

Generate the FIS model using the training data and the specified options.

fis = genfis(datain,dataout,fisOpt);

4 Data Clustering

4-32

Based on the dimensions of the input and output training data, the generated FIS has five inputs and
one output. genfis assigns default names for inputs, outputs, and membership functions.

The generated FIS object is a first-order Sugeno system with three rules.

showrule(fis,"Format","symbolic")

ans = 3x132 char array
 '1. (in1==in1cluster1) & (in2==in2cluster1) & (in3==in3cluster1) & (in4==in4cluster1) & (in5==in5cluster1) => (out1=out1cluster1) (1)'
 '2. (in1==in1cluster2) & (in2==in2cluster2) & (in3==in3cluster2) & (in4==in4cluster2) & (in5==in5cluster2) => (out1=out1cluster2) (1)'
 '3. (in1==in1cluster3) & (in2==in2cluster3) & (in3==in3cluster3) & (in4==in4cluster3) & (in5==in5cluster3) => (out1=out1cluster3) (1)'

You can conceptualize each rule as follows: If the inputs to the FIS (population, dwelling units,
number of vehicles, income, and employment) strongly belong to their representative membership
functions for a cluster, then the output (number of trips) must belong to the same cluster. That is,
each rule succinctly maps a cluster in the input space to the same cluster in the output space.

Each input and output variable has three membership functions, which correspond to the three
identified clusters. The parameters of the input and output membership functions are derived based
on the cluster centers and cluster ranges of influence. As an example, plot the membership functions
for the first input variable.

figure
plotmf(fis,"input",1)

 Model Suburban Commuting Using Subtractive Clustering and ANFIS

4-33

Evaluate Initial FIS Performance

Apply the training input values to the fuzzy system and find corresponding output values.

fuzout = evalfis(fis,datain);

Compute the root mean squared error (RMSE) of the output values of the fuzzy system compared to
the expected output values.

trnRMSE = norm(fuzout-dataout)/sqrt(length(fuzout))

trnRMSE = 0.5276

Validate the performance of the fuzzy system using the validation data.

valfuzout = evalfis(fis,valdatain);
valRMSE = norm(valfuzout-valdataout)/sqrt(length(valfuzout))

valRMSE = 0.6179

Plot the output of the model against the validation data.

figure
plot(valdataout)
hold on
plot(valfuzout,"o")
hold off
ylabel("Output value")
legend("Validation data","FIS output","Location","northwest")

4 Data Clustering

4-34

The plot shows that the model does not predict the validation data well.

Tune FIS Using ANFIS

To improve the FIS performance, you can optimize the system using the anfis function. First, try
using a relatively short training period (20 epochs) without using validation data, and then test the
resulting FIS model against the validation data.

opt = anfisOptions('InitialFIS',fis,...
 'EpochNumber',20,...
 'InitialStepSize',0.1);
fis2 = anfis([datain dataout],opt);

ANFIS info:
 Number of nodes: 44
 Number of linear parameters: 18
 Number of nonlinear parameters: 30
 Total number of parameters: 48
 Number of training data pairs: 75
 Number of checking data pairs: 0
 Number of fuzzy rules: 3

Start training ANFIS ...

1 0.527607
2 0.513727
3 0.492996
4 0.499985
5 0.490585
6 0.492924
Step size decreases to 0.090000 after epoch 7.
7 0.48733
8 0.485037
9 0.480813
Step size increases to 0.099000 after epoch 10.
10 0.475097
11 0.469759
12 0.462516
13 0.451177
Step size increases to 0.108900 after epoch 14.
14 0.447856
15 0.444357
16 0.433904
17 0.433739
Step size increases to 0.119790 after epoch 18.
18 0.420408
19 0.420512
20 0.420275

Designated epoch number reached. ANFIS training completed at epoch 20.

Minimal training RMSE = 0.420275

Assess the performance of the FIS on both the training data and the validation data.

fuzout2 = evalfis(fis2,datain);
trnRMSE2 = norm(fuzout2-dataout)/sqrt(length(fuzout2))

 Model Suburban Commuting Using Subtractive Clustering and ANFIS

4-35

trnRMSE2 = 0.4203

valfuzout2 = evalfis(fis2,valdatain);
valRMSE2 = norm(valfuzout2-valdataout)/sqrt(length(valfuzout2))

valRMSE2 = 0.5894

The model performance shows substantial improvement with respect to the training data but only
slightly with respect to the validation data. Plot the improved model output against the validation
data.

figure
plot(valdataout)
hold on
plot(valfuzout,'o')
plot(valfuzout2,'x')
hold off
ylabel('Output value')
legend("Validation data",...
 "Initial FIS: RMSE = " + num2str(valRMSE), ...
 "Tuned FIS: RMSE = " + num2str(valRMSE2), ...
 "Location","northwest")

Check ANFIS Result for Overfitting

When tuning a FIS, you can detect overfitting when the validation error starts to increase while the
training error continues to decrease.

4 Data Clustering

4-36

To check the model for overfitting, use anfis with validation data to train the model for 200 epochs.
First configure the ANFIS training options by modifying the existing anfisOptions option set.
Specify the number of epochs and validation data. Since the number of training epochs is larger,
suppress the display of training information in the Command Window.

opt.EpochNumber = 200;
opt.ValidationData = [valdatain valdataout];
opt.DisplayANFISInformation = 0;
opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;
opt.DisplayFinalResults = 0;

Train the FIS.

[fis3,trnErr,stepSize,fis4,valErr] = anfis([datain dataout],opt);

Here:

• fis3 is the FIS object when the training error reaches a minimum.
• fis4 is the snapshot FIS object when the validation data error reaches a minimum.
• stepSize is a history of the training step sizes.
• trnErr is the RMSE using the training data.
• valErr is the RMSE using the validation data for each training epoch.

After the training completes, validate the model using the training and validation data.

fuzout4 = evalfis(fis4,datain);
trnRMSE4 = norm(fuzout4-dataout)/sqrt(length(fuzout4))

trnRMSE4 = 0.3405

valfuzout4 = evalfis(fis4,valdatain);
valRMSE4 = norm(valfuzout4-valdataout)/sqrt(length(valfuzout4))

valRMSE4 = 0.5821

The error with the training data is the lowest thus far, and the error with the validation data is also
slightly lower than before. This result suggests possible overfitting, which occurs when you fit the
fuzzy system to the training data so well that it no longer does a good job of fitting the validation
data. The result is a loss of generality.

View the improved model output. Plot the model output against the validation data.

figure
plot(valdataout)
hold on
plot(valfuzout2,'o')
plot(valfuzout4,'x')
hold off
ylabel('Output value')
legend("Validation data",...
 "Tuned FIS: RMSE = " + num2str(valRMSE2), ...
 "Min val. error FIS: RMSE = " + num2str(valRMSE4), ...
 "Location","northwest")

 Model Suburban Commuting Using Subtractive Clustering and ANFIS

4-37

Next, plot the training error trnErr.

figure
plot(trnErr)
title('Training Error')
xlabel('Number of Epochs')
ylabel('Error')

4 Data Clustering

4-38

This plot shows that the training error settles at about the 60th epoch.

Plot the validation error valErr.

figure
plot(valErr)
title('Validation Error')
xlabel('Number of Epochs')
ylabel('Error')

 Model Suburban Commuting Using Subtractive Clustering and ANFIS

4-39

The plot shows that the smallest value of the validation data error occurs at epoch 52. After this
point, it increases slightly even as anfis continues to minimize the error against the training data.
This pattern is a sign of overfitting. Depending on the specified error tolerance, plotting the
validation error can also indicate the ability of the model to generalize the test data.

See Also
subclust | anfis

More About
• “Fuzzy Clustering” on page 4-2

4 Data Clustering

4-40

Cluster Data Using Clustering Tool
Using the Clustering tool, you can cluster data using fuzzy c-means or subtractive clustering For
more information on the clustering methods, see “Fuzzy Clustering” on page 4-2.

To open the tool, at the MATLAB command line, type:

findcluster

Use the Clustering tool to perform the following tasks:

1 Load and plot the data.
2 Perform the clustering.
3 Save the cluster center.

Load and Plot Data
To load a data set, perform either of the following actions:

• Click Load Data, and select the file containing the data.

 Cluster Data Using Clustering Tool

4-41

• Open the Clustering Tool with a data set directly by calling findcluster with the data set as an
input argument.

For example, enter:

findcluster('clusterdemo.dat')

The data set file must have the extension .dat. Each line of the data set file contains one data point.
For example, if you have 5-dimensional data with 100 data points, the file contains 100 lines, and
each line contains five values.

The Clustering tool works on multidimensional data sets, but displays only two of those dimensions
on the plot. To select other dimensions in the data set for plotting, use the X-axis and Y-axis drop-
down lists.

Cluster Data
To start clustering the data:

1 Choose the clustering function fcm (fuzzy C-Means clustering) or subtractiv (subtractive
clustering) from the drop-down menu under Methods.

2 Set options for:

• Fuzzy c-means clustering using the Cluster Num, Max Iteration, Min, and Exponent fields.
For information on these options, see fcm.

• Subtractive clustering using the Influence Range, Squash, Aspect Ratio, and Reject Ratio
fields. To use a different influence range for each data column, specify Influence Range as a
vector with the number of elements equal to the number of columns. For information on these
options, see subclust.

3 Cluster the data by clicking Start.

Once the clustering is complete, the cluster centers appear in black.

4 Data Clustering

4-42

Tip Using the Clustering tool, you can obtain only the computed cluster centers. To obtain additional
information for:

• Fuzzy c-means clustering, such as the fuzzy partition matrix, cluster the data using fcm.
• Subtractive clustering, such as the range of influence in each data dimension, cluster the data

using subclust.

To use the same clustering data with either fcm or subclust, first load the data file into the
MATLAB workspace. For example, at the MATLAB command line, type:

load clusterdemo.dat

Save Cluster Centers
To save the cluster centers, click Save Center.

See Also
findcluster | fcm | subclust

 Cluster Data Using Clustering Tool

4-43

More About
• “Fuzzy Clustering” on page 4-2

4 Data Clustering

4-44

Fuzzy Logic in Simulink

• “Simulate Fuzzy Inference Systems in Simulink” on page 5-2
• “Water Level Control in a Tank” on page 5-11
• “Temperature Control in a Shower” on page 5-17
• “Implement Fuzzy PID Controller in Simulink Using Lookup Table” on page 5-24

5

Simulate Fuzzy Inference Systems in Simulink
You can simulate a fuzzy inference system (FIS) in Simulink using either the Fuzzy Logic Controller
or Fuzzy Logic Controller with Ruleviewer blocks. Alternatively, you can evaluate fuzzy systems at the
command line using evalfis.

Using the Fuzzy Logic Controller, you can simulate traditional type-1 fuzzy inference systems
(mamfis and sugfis) and type-2 fuzzy inference systems (mamfistype2 and sugfistype2). The
Fuzzy Logic Controller with Ruleviewer block supports only type-1 systems.

For more information on creating fuzzy inference systems, see “Build Fuzzy Systems Using Fuzzy
Logic Designer” on page 2-15 and “Build Fuzzy Systems at the Command Line” on page 2-77.

Simulate Fuzzy Inference System

Once you have implemented a fuzzy inference system using Fuzzy Logic Designer, using Neuro-
Fuzzy Designer, or at the command line, you can simulate the system in Simulink.

For this example, you control the level of water in a tank using a fuzzy inference system implemented
using a Fuzzy Logic Controller block. Open the sltank model.

open_system('sltank')

For this system, you control the water that flows into the tank using a valve. The outflow rate depends
on the diameter of the output pipe, which is constant, and the pressure in the tank, which varies with
water level. Therefore, the system has nonlinear characteristics.

5 Fuzzy Logic in Simulink

5-2

The two inputs to the fuzzy system are the water level error, level, and the rate of change of the
water level, rate. The output of the fuzzy system is the rate at which the control valve is opening or
closing, valve.

To implement a fuzzy inference system, specify the FIS name parameter of the Fuzzy Logic
Controller block as the name of a FIS object in the MATLAB® workspace. In this example, the block
uses the mamfis object tank.

For more information on this system, see “Water Level Control in a Tank” on page 5-11.

As a first attempt to control the water level, set the following rules in the FIS. These rules adjust the
valve based on only the water level error.

• If the water level is okay, then do not adjust the valve.
• If the water level is low, then open the valve quickly.
• If the water level is high, then close the valve quickly.

Specify the rules by creating a vector of fisrule objects and assigning it to the Rules property of
the tank FIS object.

rule1 = "If level is okay then valve is no_change";
rule2 = "If level is low then valve is open_fast";
rule3 = "If level is high then valve is close_fast";
rules = [rule1 rule2 rule3];
tank.Rules = fisrule(rules);

Simulate the model, and view the water level.

open_system('sltank/Comparison')
sim('sltank',100)

 Simulate Fuzzy Inference Systems in Simulink

5-3

These rules are insufficient for controlling the system, since the water level oscillates around the
setpoint.

5 Fuzzy Logic in Simulink

5-4

To reduce the oscillations, add two more rules to the system. These rules adjust the valve based on
the rate of change of the water level when the water level is near the setpoint.

• If the water level is okay and increasing, then close the valve slowly.
• If the water level is okay and decreasing, then open the valve slowly.

To add these rules, use the addRule function.

rule4 = "If level is okay and rate is positive then valve is close_slow";
rule5 = "If level is okay and rate is negative then valve is open_slow";
newRules = [rule4 rule5];
tank = addRule(tank,newRules);

Simulate the model.

sim('sltank',100)

 Simulate Fuzzy Inference Systems in Simulink

5-5

The water level now tracks the setpoint without oscillating.

You can also simulate fuzzy systems using the Fuzzy Logic Controller with Ruleviewer block. The
sltankrule model is the same as the sltank model, except that it uses the Fuzzy Logic Controller
with Ruleviewer block.

open_system('sltankrule')

5 Fuzzy Logic in Simulink

5-6

During simulation, this block displays the Rule Viewer from the Fuzzy Logic Designer app.

sim('sltankrule',100)

 Simulate Fuzzy Inference Systems in Simulink

5-7

If you pause the simulation, you can examine the FIS behavior by manually adjusting the input
variable values in the Rule Viewer, and observing the inference process and output.

You can also access the Fuzzy Logic Designer editors from the Rule Viewer. From the Rule Viewer,
you can then adjust the parameters of your fuzzy system using these editors, and export the updated
system to the MATLAB workspace. To simulate the updated FIS, restart the simulation. For more
information on using these editors, see “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-
15.

Access Intermediate Fuzzy Inference Results
You can access intermediate fuzzy inference results using the Fuzzy Logic Controller block. You can
use this data to visualize the fuzzy inference process or troubleshoot the performance of your FIS. To
access this data, enable the corresponding parameters in the block, and connect signals to the
corresponding output ports.

Block Parameter Description Output Port
Fuzzified Inputs Fuzzified input values, obtained by evaluating the input

membership functions of each rule at the current input
values.

fi

Rule firing strengths Rule firing strengths, obtained by evaluating the
antecedent of each rule.

rfs

Rule outputs Rule outputs, obtained by evaluating the consequent of
each rule.

ro

Aggregated outputs Aggregate output for each output variable, obtained by
combining the corresponding outputs from all the rules.

ao

For more information, see Fuzzy Logic Controller.

5 Fuzzy Logic in Simulink

5-8

Simulation Modes
The Fuzzy Logic Controller block has the following two simulation modes:

• Interpreted execution — Simulate fuzzy systems using precompiled MEX files. Using this
option reduces the initial compilation time of the model.

• Code generation — Simulate fuzzy system without precompiled MEX files. Use this option
when simulating fuzzy systems for code generation applications. Doing so simulates your system
using the same code path used for generated code.

To select a simulation mode, set the Simulate using parameter of the block. By default, the block
uses Interpreted execution mode for simulation.

Map Command-Line Functionality to Fuzzy Logic Controller Block
The parameters and ports of the Fuzzy Logic Controller block map to the input and output arguments
of evalfis or the properties of evalfisOptions. The following table shows the block parameters
and ports that map to evalfis arguments.

evalfis Argument Description Block Parameter or Port
fis Fuzzy inference system FIS name
input, when a single row Input variable values in
output, when a single row Output variable values out
fuzzifiedIn Fuzzified inputs fi
ruleOut Rule outputs ro
aggregateOut Aggregated outputs ao
ruleFiring Rule firing strengths rfs

The following table shows the block parameters that map to evalfisOptions properties.

evalfisOptions Property Description Block Parameter or Port
NumSamplePoints Number of points in output

fuzzy sets
Number of samples for
output discretization

OutOfRangeInputValueMess
age

Diagnostic message behavior
when an input is out of range

Out of range input value

NoRuleFiredMessage Diagnostic message behavior
when no rules fire

No rule fired

EmptyOutputFuzzySetMessa
ge

Diagnostic message behavior
when an output fuzzy set is
empty

Empty output fuzzy set

The remaining parameters of the Fuzzy Logic Controller block do not map to arguments of evalfis.
Also, unlike the Fuzzy Logic Controller block, evalfis does not support fixed-point data for
simulation or code generation.

 Simulate Fuzzy Inference Systems in Simulink

5-9

See Also
Blocks
Fuzzy Logic Controller | Fuzzy Logic Controller with Ruleviewer

More About
• “Temperature Control in a Shower” on page 5-17
• “Water Level Control in a Tank” on page 5-11

5 Fuzzy Logic in Simulink

5-10

Water Level Control in a Tank

This model shows how to implement a fuzzy inference system (FIS) in a Simulink® model.

Simulink Model

This model controls the level of water in a tank using a fuzzy inference system implemented using a
Fuzzy Logic Controller block. Open the sltank model.

open_system('sltank')

For this system, you control the water that flows into the tank using a valve. The outflow rate depends
on the diameter of the output pipe, which is constant, and the pressure in the tank, which varies with
water level. Therefore, the system has nonlinear characteristics.

Fuzzy Inference System

The fuzzy system is defined in a FIS object, tank, in the MATLAB® workspace. For more information
on how to specify a FIS in a Fuzzy Logic Controller block, see Fuzzy Logic Controller.

The two inputs to the fuzzy system are the water level error, level, and the rate of change of the
water level, rate. Each input has three membership functions.

figure
plotmf(tank,'input',1)
figure
plotmf(tank,'input',2)

 Water Level Control in a Tank

5-11

5 Fuzzy Logic in Simulink

5-12

The output of the fuzzy system is the rate at which the control valve is opening or closing, valve,
which has five membership functions.

plotmf(tank,'output',1)

 Water Level Control in a Tank

5-13

Due to the diameter of the outflow pipe, the water tank in this system empties more slowly than it fills
up. To compensate for this imbalance, the close_slow and open_slow valve membership functions
are not symmetrical. A PID controller does not support such asymmetry.

The fuzzy system has five rules. The first three rules adjust the valve based on only the water level
error.

• If the water level is okay, then do not adjust the valve.
• If the water level is low, then open the valve quickly.
• If the water level is high, then close the valve quickly.

The other two rules adjust the valve based on the rate of change of the water level when the water
level is near the setpoint.

• If the water level is okay and increasing, then close the valve slowly.
• If the water level is okay and decreasing, then open the valve slowly.

tank.Rules

ans =

 1x5 fisrule array with properties:

 Description
 Antecedent

5 Fuzzy Logic in Simulink

5-14

 Consequent
 Weight
 Connection

 Details:
 Description
 __

 1 "level==okay => valve=no_change (1)"
 2 "level==low => valve=open_fast (1)"
 3 "level==high => valve=close_fast (1)"
 4 "level==okay & rate==positive => valve=close_slow (1)"
 5 "level==okay & rate==negative => valve=open_slow (1)"

In this model, you can also control the water level using a PID controller. To switch to the PID
controller, set the const block to a value greater than or equal to zero.

Simulation

The model simulates the controller with periodic changes in the setpoint of the water level. Run the
simulation.

sim('sltank',100)
open_system('sltank/Comparison')

 Water Level Control in a Tank

5-15

The water level tracks the setpoint well. You can adjust the performance of the controller by
modifying the rules of the tank FIS. For example, if you remove the last two rules, which are
analogous to a derivative control action, the controller performs poorly, with large oscillations in the
water level.

See Also
Blocks
Fuzzy Logic Controller | Fuzzy Logic Controller with Ruleviewer

More About
• “Simulate Fuzzy Inference Systems in Simulink” on page 5-2
• “Temperature Control in a Shower” on page 5-17

5 Fuzzy Logic in Simulink

5-16

Temperature Control in a Shower

This model shows how to implement a fuzzy inference system (FIS) in a Simulink® model.

Simulink Model

The model controls the temperature of a shower using a fuzzy inference system implemented using a
Fuzzy Logic Controller block. Open the shower model.

open_system('shower')

For this system, you control the flow rate and temperature of a shower by adjusting hot and cold
water valves.

Since there are two inputs for the fuzzy system, the model concatenates the input signals using a
Mux block. The output of the Mux block is connected to the input of the Fuzzy Logic Controller block.
Similarly, the two output signals are obtained using a Demux block connected to the controller.

Fuzzy Inference System

The fuzzy system is defined in a FIS object, fis, which is loaded in the MATLAB® workspace when
the model opens. For more information on how to specify a FIS in a Fuzzy Logic Controller block, see
Fuzzy Logic Controller.

The two inputs to the fuzzy system are the temperature error, temp, and the flow rate error, flow.
Each input has three membership functions.

figure
plotmf(fis,'input',1)

 Temperature Control in a Shower

5-17

figure
plotmf(fis,'input',2)

5 Fuzzy Logic in Simulink

5-18

The two outputs of the fuzzy system are the rate at which the cold and hot water valves are opening
or closing, cold and hot respectively. Each output has five membership functions.

figure
plotmf(fis,'output',1)
figure
plotmf(fis,'output',2)

 Temperature Control in a Shower

5-19

5 Fuzzy Logic in Simulink

5-20

The fuzzy system has nine rules for adjusting the hot and cold water valves based on the flow and
temperature errors. The rules adjust the total flow rate based on the flow error, and adjust the
relative hot and cold flow rates based on the temperature error.

fis.Rules

ans =

 1x9 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 Details:
 Description
 __

 1 "temp==cold & flow==soft => cold=openSlow, hot=openFast (1)"
 2 "temp==cold & flow==good => cold=closeSlow, hot=openSlow (1)"
 3 "temp==cold & flow==hard => cold=closeFast, hot=closeSlow (1)"
 4 "temp==good & flow==soft => cold=openSlow, hot=openSlow (1)"
 5 "temp==good & flow==good => cold=steady, hot=steady (1)"
 6 "temp==good & flow==hard => cold=closeSlow, hot=closeSlow (1)"
 7 "temp==hot & flow==soft => cold=openFast, hot=openSlow (1)"

 Temperature Control in a Shower

5-21

 8 "temp==hot & flow==good => cold=openSlow, hot=closeSlow (1)"
 9 "temp==hot & flow==hard => cold=closeSlow, hot=closeFast (1)"

Simulation

The model simulates the controller with periodic changes in the setpoints of the water temperature
and flow rate.

set_param('shower/flow scope','Open','on','Ymin','0','Ymax','1')
set_param('shower/temp scope','Open','on','Ymin','15','Ymax','30')
sim('shower',50)

The flow rate tracks the setpoint well. The temperature also tracks its setpoint, though there are
temperature deviations when the controller adjusts to meet a new flow setpoint.

5 Fuzzy Logic in Simulink

5-22

bdclose('shower') % Closing model also clears its workspace variables.

See Also
Blocks
Fuzzy Logic Controller

More About
• “Simulate Fuzzy Inference Systems in Simulink” on page 5-2
• “Water Level Control in a Tank” on page 5-11

 Temperature Control in a Shower

5-23

Implement Fuzzy PID Controller in Simulink Using Lookup Table

This example shows how to implement a fuzzy inference system for nonlinear PID control using a 2-D
Lookup Table block.

Overview

A fuzzy inference system (FIS) maps given inputs to outputs using fuzzy logic. For example, a typical
mapping of a two-input, one-output fuzzy controller can be depicted in a 3-D plot. The plot is often
referred to as a control surface plot.

For control applications, typical FIS inputs are the error (e(k)) and change of error (e(k)-e(k-1)),
E and CE respectively in the control surface plot. The FIS output is the control action inferred from
the fuzzy rules, u in the surface plot. Fuzzy Logic Toolbox™ provides commands and apps for
designing a FIS for a desired control surface. You can then simulate the designed FIS using the Fuzzy
Logic Controller block in Simulink®.

You can often approximate nonlinear control surfaces using lookup tables to simplify the generated
code and improve execution speed. For example, you can replace a Fuzzy Logic Controller block in
Simulink with a set of Lookup Table blocks, one table for each output defined in the FIS. You can
compute the data used in the lookup table using the evalfis command.

For this example, you design a nonlinear fuzzy PID controller for a plant in Simulink. The plant is a
single-input, single-output system in discrete time. The design goal is to achieve good reference
tracking performance.

5 Fuzzy Logic in Simulink

5-24

Ts = 0.1;
Plant = c2d(zpk([],[-1 -3 -5],1),Ts);

You also implement the fuzzy inference system using a 2-D lookup table that approximates the control
surface and achieves the same control performance.

Fuzzy PID Controller Structure

The fuzzy controller in this example is in the feedback loop and computes PID-like actions using fuzzy
inference. Open the Simulink model.

open_system('sllookuptable')

The fuzzy PID controller uses a parallel structure as shown in the Fuzzy PID subsystem. For more
information, see [1]. The controller is a combination of fuzzy PI control and fuzzy PD control.

open_system('sllookuptable/Fuzzy PID')

 Implement Fuzzy PID Controller in Simulink Using Lookup Table

5-25

The fuzzy PID controller uses the change of the output -(y(k)-y(k-1)), instead of change of error
e(k)-e(k-1), as the second input signal to the FIS. Doing so prevents the step change in reference
signal from directly triggering the derivative action. The two gain blocks, GCE and GCU, in the feed
forward path from r to u, ensure that the error signal e is used in proportional action when the fuzzy
PID controller is linear.

Design Conventional PID Controller

The conventional PID controller in this example is a discrete-time PID controller with Backward Euler
numerical integration in both the integral and derivative actions. The controller gains are Kp, Ki, and
Kd.

open_system('sllookuptable/Conventional PID')

Similar to the fuzzy PID controller, the input signal to the derivative action is -y(k), instead of e(k).

You can tune the PID controller gains manually or using tuning formulas. In this example, obtain the
initial PID design using the pidtune command from Control System Toolbox™.

Define the PID structure, tune the controller, and extract the PID gains.

C0 = pid(1,1,1,'Ts',Ts,'IF','B','DF','B');
C = pidtune(Plant,C0)
[Kp,Ki,Kd] = piddata(C);

C =

 Ts*z z-1
 Kp + Ki * ------ + Kd * ------
 z-1 Ts*z

 with Kp = 30.6, Ki = 25.2, Kd = 9.02, Ts = 0.1

5 Fuzzy Logic in Simulink

5-26

Sample time: 0.1 seconds
Discrete-time PID controller in parallel form.

Design Equivalent Linear Fuzzy PID Controller

By configuring the FIS and selecting the four scaling factors, you can obtain a linear fuzzy PID
controller that reproduces the control performance of the conventional PID controller.

First, configure the fuzzy inference system so that it produces a linear control surface from inputs E
and CE to output u. The FIS settings are based on design choices described in [2]:

• Use a Sugeno style fuzzy inference system with default inference methods.
• Normalize the ranges of both inputs to [-10 10].
• Use triangular input membership functions that overlap their neighbor functions at a membership

value of 0.5.
• Use an output range of [-20 20].
• Use constant output membership functions.

Construct the fuzzy inference system.

FIS = sugfis;

Define input variable E.

FIS = addInput(FIS,[-10 10],'Name','E');
FIS = addMF(FIS,'E','trimf',[-20 -10 0],'Name','Negative');
FIS = addMF(FIS,'E','trimf',[-10 0 10],'Name','Zero');
FIS = addMF(FIS,'E','trimf',[0 10 20],'Name','Positive');

Define input CE.

FIS = addInput(FIS,[-10 10],'Name','CE');
FIS = addMF(FIS,'CE','trimf',[-20 -10 0],'Name','Negative');
FIS = addMF(FIS,'CE','trimf',[-10 0 10],'Name','Zero');
FIS = addMF(FIS,'CE','trimf',[0 10 20],'Name','Positive');

Define output variable u with constant membership functions.

FIS = addOutput(FIS,[-20 20],'Name','u');
FIS = addMF(FIS,'u','constant',-20,'Name','LargeNegative');
FIS = addMF(FIS,'u','constant',-10,'Name','SmallNegative');
FIS = addMF(FIS,'u','constant',0,'Name','Zero');
FIS = addMF(FIS,'u','constant',10,'Name','SmallPositive');
FIS = addMF(FIS,'u','constant',20,'Name','LargePositive');

Define the following fuzzy rules:

1 If E is Negative and CE is Negative, then u is LargeNegative.
2 If E is Negative and CE is Zero, then u is SmallNegative.
3 If E is Negative and CE is Positive, then u is Zero.
4 If E is Zero and CE is Negative, then u is SmallNegative.
5 If E is Zero and CE is Zero, then u is Zero.
6 If E is Zero and CE is Positive, then u is SmallPositive.

 Implement Fuzzy PID Controller in Simulink Using Lookup Table

5-27

7 If E is Positive and CE is Negative, then u is Zero.
8 If E is Positive and CE is Zero, then u is SmallPositive.
9 If E is Positive and CE is Positive, then u is LargePositive.

ruleList = [1 1 1 1 1; % Rule 1
 1 2 2 1 1; % Rule 2
 1 3 3 1 1; % Rule 3
 2 1 2 1 1; % Rule 4
 2 2 3 1 1; % Rule 5
 2 3 4 1 1; % Rule 6
 3 1 3 1 1; % Rule 7
 3 2 4 1 1; % Rule 8
 3 3 5 1 1]; % Rule 9
FIS = addRule(FIS,ruleList);

While you implement your FIS from the command line in this example, you can alternatively build
your FIS using the Fuzzy Logic Designer app.

Plot the linear control surface.

gensurf(FIS)

Determine scaling factors GE, GCE, GCU, and GU from the Kp, Ki, and Kd gains of by the conventional
PID controller. Comparing the expressions of the traditional PID and the linear fuzzy PID, the
variables are related as follows:

5 Fuzzy Logic in Simulink

5-28

• Kp = GCU * GCE + GU * GE
• Ki = GCU * GE
• Kd = GU * GCE

Assume that the maximum reference step is 1, and thus the maximum error e is 1. Since the input
range of E is [-10 10], set GE to 10. You can then solve for GCE, GCU, and GU.

GE = 10;
GCE = GE*(Kp-sqrt(Kp^2-4*Ki*Kd))/2/Ki;
GCU = Ki/GE;
GU = Kd/GCE;

Implement Fuzzy Inference System Using 2-D Lookup Table

The fuzzy controller block has two inputs (E and CE) and one output (u). Therefore, you can replace
the fuzzy system using a 2-D lookup table.

To generate a 2-D lookup table from your FIS, loop through the input universe, and compute the
corresponding output values using evalfis. Since the control surface is linear, you can use a few
sample points for each input variable.

Step = 10;
E = -10:Step:10;
CE = -10:Step:10;
N = length(E);
LookUpTableData = zeros(N);
for i=1:N
 for j=1:N
 % Compute output u for each combination of sample points.
 LookUpTableData(i,j) = evalfis(FIS,[E(i) CE(j)]);
 end
end

View the fuzzy PID controller using 2-D lookup table.

open_system('sllookuptable/Fuzzy PID using Lookup Table')

The only difference compared to the Fuzzy PID controller is that the Fuzzy Logic Controller block is
replaced with a 2-D Lookup Table block.

When the control surface is linear, a fuzzy PID controller using the 2-D lookup table produces the
same result as one using the Fuzzy Logic Controller block.

 Implement Fuzzy PID Controller in Simulink Using Lookup Table

5-29

Simulate Closed-Loop Response in Simulink

The Simulink model simulates three different controller subsystems, namely Conventional PID, Fuzzy
PID, and Fuzzy PID using Lookup Table, to control the same plant.

Run the simulation. To compare the closed-loop responses to a step reference change, open the
scope. As expected, all three controllers produce the same result.

sim('sllookuptable')
open_system('sllookuptable/Scope')

Design Fuzzy PID Controller with Nonlinear Control Surface

Once you have a linear fuzzy PID controller, you can obtain a nonlinear control surface by adjusting
your FIS settings, such as its style, membership functions, and rule base.

For this example, design a steep control surface using a Sugeno-type FIS. Each input set has two
terms (Positive and Negative), and the number of rules is reduced to four.

Construct the FIS.

FIS = sugfis;

Define input E.

FIS = addInput(FIS,[-10 10],'Name','E');
FIS = addMF(FIS,'E','gaussmf',[7 -10],'Name','Negative');
FIS = addMF(FIS,'E','gaussmf',[7 10],'Name','Positive');

Define input CE.

FIS = addInput(FIS,[-10 10],'Name','CE');
FIS = addMF(FIS,'CE','gaussmf',[7 -10],'Name','Negative');
FIS = addMF(FIS,'CE','gaussmf',[7 10],'Name','Positive');

5 Fuzzy Logic in Simulink

5-30

Define output u.

FIS = addOutput(FIS,[-20 20],'Name','u');
FIS = addMF(FIS,'u','constant',-20,'Name','Min');
FIS = addMF(FIS,'u','constant',0,'Name','Zero');
FIS = addMF(FIS,'u','constant',20,'Name','Max');

Define the following rules:

1 If E is Negative and CE is Negative, then u is Min.
2 If E is Negative and CE is Positive, then u is Zero.
3 If E is Positive and CE is Negative, then u is Zero.
4 If E is Positive and CE is Positive, then u is Max.

ruleList = [1 1 1 1 1;... % Rule 1
 1 2 2 1 1;... % Rule 2
 2 1 2 1 1;... % Rule 3
 2 2 3 1 1]; % Rule 4
FIS = addRule(FIS,ruleList);

View the 3-D nonlinear control surface. This surface has a higher gain near the center of the E and CE
plane than the linear surface has, which helps reduce the error more quickly when the error is small.
When the error is large, the controller becomes less aggressive to avoid possible saturation.

gensurf(FIS)

 Implement Fuzzy PID Controller in Simulink Using Lookup Table

5-31

Before starting the simulation, update the lookup table with the new control surface data. Since the
surface is nonlinear, to obtain a sufficient approximation, add more sample points.

Step = 1;
E = -10:Step:10;
CE = -10:Step:10;
N = length(E);
LookUpTableData = zeros(N);
for i=1:N
 for j=1:N
 % Compute output u for each combination of sample points.
 LookUpTableData(i,j) = evalfis(FIS,[E(i) CE(j)]);
 end
end

Run the simulation.

sim('sllookuptable')

Compared with the traditional linear PID controller (the response curve with large overshoot), the
nonlinear fuzzy PID controller reduces the overshoot by 50%. The two response curves from the
nonlinear fuzzy controllers almost overlap, which indicates that the 2-D lookup table approximates
the fuzzy system well.

bdclose('sllookuptable') % Closing model also clears its workspace variables.

Conclusion

You can approximate a nonlinear fuzzy PID controller using a lookup table. By replacing a Fuzzy
Logic Controller block with Lookup Table blocks in Simulink, you can deploy a fuzzy controller with
simplified generated code and improved execution speed.

5 Fuzzy Logic in Simulink

5-32

References

[1] Xu, J. X., Hang, C. C., Liu, C. "Parallel structure and tuning of a fuzzy PID controller." Automatica,
Vol. 36, pp. 673-684. 2000.

[2] Jantzen, J. Tuning of Fuzzy PID Controllers, Technical Report, Dept. of Automation, Technical
University of Denmark. 1999.

See Also
Blocks
Fuzzy Logic Controller | 2-D Lookup Table

More About
• “Simulate Fuzzy Inference Systems in Simulink” on page 5-2

 Implement Fuzzy PID Controller in Simulink Using Lookup Table

5-33

Deployment

• “Deploy Fuzzy Inference Systems” on page 6-2
• “Generate Code for Fuzzy System Using Simulink Coder” on page 6-4
• “Generate Structured Text for Fuzzy System Using Simulink PLC Coder” on page 6-9
• “Generate Code for Fuzzy System Using MATLAB Coder” on page 6-12

6

Deploy Fuzzy Inference Systems
You can deploy your fuzzy inference system (FIS) by:

• Generating code in MATLAB or Simulink
• Packaging and deploying a standalone application in MATLAB or Simulink

All fuzzy inference system options, including custom inference functions, support code generation
and deployment.

Generate Code in MATLAB
You can generate code for evaluating the following types of fuzzy inference systems using MATLAB
Coder™.

• Type-1 fuzzy inference systems (mamfis, sugfis)
• Type-2 fuzzy inference systems (mamfistype2, sugfistype2)
• FIS trees (fistree)

Code generation in MATLAB does not directly support fuzzy inference system objects. Instead, you
must first convert your fuzzy system into a homogeneous structure using
getFISCodeGenerationData, and then pass the resulting structure to evalfis.

Code generation for fuzzy systems in MATLAB supports double-precision and single-precision data.

For more information, see “Generate Code for Fuzzy System Using MATLAB Coder” on page 6-12.

Note Code generation does not support the construction of fuzzy systems at the command line.

Generate Code in Simulink
You can generate code for evaluating fuzzy inference systems implemented in Simulink using
Simulink Coder or Simulink PLC Coder™.

Simulink code generation supports the following fuzzy inference system, which you simulate using
the Fuzzy Logic Controller block.

• Type-1 fuzzy inference systems (mamfis, sugfis)
• Type-2 fuzzy inference systems (mamfistype2, sugfistype2)

Code generation for fuzzy systems in Simulink supports double-precision, single-precision, and fixed-
point data.

For more information, see “Generate Code for Fuzzy System Using Simulink Coder” on page 6-4
and “Generate Structured Text for Fuzzy System Using Simulink PLC Coder” on page 6-9.

Deploy Fuzzy Systems
You can package and deploy standalone applications that include fuzzy systems using either MATLAB
Compiler™ or Simulink Compiler.

6 Deployment

6-2

You can compile:

• MATLAB code that uses most Fuzzy Logic Toolbox command-line functionality. Compiling code
that uses graphical functions (plotfis, plotmf, gensurf) is not supported. Deploying the Fuzzy
Logic Designer app is not supported. For more information on compiling MATLAB code, see
“Create Standalone Application from MATLAB Function” (MATLAB Compiler).

• Simulink models that use the Fuzzy Logic Controller block. For more information on compiling
Simulink models, see “Create and Deploy a Script with Simulink Compiler” (Simulink Compiler).

See Also
Functions
evalfis | mamfis | sugfis | mamfistype2 | sugfistype2 | fistree

Blocks
Fuzzy Logic Controller

More About
• “Build Fuzzy Systems at the Command Line” on page 2-77
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15

 Deploy Fuzzy Inference Systems

6-3

Generate Code for Fuzzy System Using Simulink Coder

You can generate code for a Fuzzy Logic Controller block using Simulink® Coder™. For more
information on generating code, see “Generate Code Using Simulink Coder” (Simulink Coder).

While this example generates code for a type-1 Sugeno fuzzy inference system, the workflow also
applies to Mamdani and type-2 fuzzy systems.

Generate Code for Fuzzy Inference System

By default, the Fuzzy Logic Controller block uses double-precision data for simulation and code
generation. The fuzzyPID model is configured to use double-precision data. For more information on
configuring your fuzzy inference system for code generation, see Fuzzy Logic Controller.

mdl = 'fuzzyPID';
open_system(mdl)

It is good practice to validate the performance of the system in Simulink. Run the simulation. The
model saves the output response u to the MATLAB® workspace.

sim(mdl)

To generate code for the model, use the slbuild (Simulink) function. For this example, suppress the
Command Window output for the build process.

set_param(mdl,'RTWVerbose','off')
slbuild(mdl)

Starting build procedure for: fuzzyPID
Successful completion of build procedure for: fuzzyPID

Build Summary

Top model targets built:

Model Action Rebuild Reason
==
fuzzyPID Code generated and compiled. Code generation information file does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 34.818s

6 Deployment

6-4

By default, Simulink Coder generates C code for a generic real-time target. To select a different
target file and language, in the Configuration Parameters dialog box, modify the System target file
and Language parameters, respectively.

The generated code is stored in a new fuzzyPID_grt_rtw folder in your current working folder. The
name of this folder depends on the selected target file.

On a Windows® system, by default, an executable file named fuzzyPID.exe is also added to the
current working folder. To generate code without compilation, in the Configuration parameters dialog
box, select the Generate code only parameter before generating code.

Run the executable.

if ispc
 status = system(mdl);
else
 disp('The example only runs the executable on Windows system.');
end

** starting the model **
** created fuzzyPID.mat **

After the executable completes successfully (status = 0), the software creates a fuzzyPID.mat
data file that contains the simulation results.

You can compare the output response from the generated code, rtw_y, with the output from the
Simulink simulation, y, using the following code.

load fuzzyPID.mat
plot(tout,y,'b-',rt_tout,rt_y,'ro')
legend('Simulink','Executable','Location','Southeast')

 Generate Code for Fuzzy System Using Simulink Coder

6-5

The result from the generated code matches the Simulink simulation.

You can also generate code for just the controller subsystem in this model. To do so, specify the
subsystem when calling the slbuild function.

slbuild([mdl '/Fuzzy PID'])

Starting build procedure for: Fuzzy0
Successful completion of build procedure for: Fuzzy0

Build Summary

Top model targets built:

Model Action Rebuild Reason
==
Fuzzy0 Code generated and compiled. Code generation information file does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 20.146s

You can deploy generated code according to your application needs. For example, you can configure
the properties of executable files and create static or dynamic libraries. For more information, see
“Build Process Workflow for Real-Time Systems” (Simulink Coder).

Generate Code for Other Data Types

The Fuzzy Logic Controller block also supports single-precision and fixed-point data for simulation
and code generation. In both cases, your resulting fuzzy system has decreased accuracy compared to
an equivalent double-precision fuzzy system. Use:

6 Deployment

6-6

• Single-precision data to reduce the memory footprint of your system.
• Fixed-point data if your target platform only supports fixed-point arithmetic.

To use one of these data types, set the Data type property of the block, and configure the other
components in the model to use the same data type.

The fuzzyPID_single model is configured for single-precision data. Open the model.

mdl2 = 'fuzzyPID_single';
open_system(mdl2)

In this model, the Data type parameter of the Fuzzy Logic Controller block is set to single. The
Fuzzy Logic Controller block automatically converts input signals to the specified data type. Also, the
Simulate using parameter is set to Code Generation. The Simulate using option does not affect
the code generation process. Instead, setting this option simulates your fuzzy system using the same
code path used by the generated code.

Generate code for this model.

set_param(mdl2,'RTWVerbose','off')
slbuild(mdl2)

Starting build procedure for: fuzzyPID_single
Successful completion of build procedure for: fuzzyPID_single

Build Summary

Top model targets built:

Model Action Rebuild Reason
===
fuzzyPID_single Code generated and compiled. Code generation information file does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 28.71s

Setting the Data type parameter of a Fuzzy Logic Controller block ensures that all the inference
steps use the specified data type. However, depending on the configuration of other blocks in the
model, some of the generated code can still use double-precision data.

See Also
Fuzzy Logic Controller

 Generate Code for Fuzzy System Using Simulink Coder

6-7

More About
• “Deploy Fuzzy Inference Systems” on page 6-2
• “Generate Structured Text for Fuzzy System Using Simulink PLC Coder” on page 6-9
• “Generate Code for Fuzzy System Using MATLAB Coder” on page 6-12

6 Deployment

6-8

Generate Structured Text for Fuzzy System Using Simulink PLC
Coder

You can generate Structured Text for a Fuzzy Logic Controller block using Simulink® PLC Coder™.
For more information on generating Structured Text, see “Code Generation” (Simulink PLC Coder).

While this example generates Structured Text for a type-1 Sugeno fuzzy inference system, the
workflow also applies to Mamdani and type-2 fuzzy systems.

By default, the Fuzzy Logic Controller block uses double-precision data for simulation and code
generation. The fuzzyPID model is configured to use double-precision data. You can also use either
single-precision or fixed-point data. For more information on configuring your fuzzy inference system
for code generation, see Fuzzy Logic Controller.

mdl = 'fuzzyPID';
open_system(mdl)

It is good practice to validate the performance of the system in Simulink before generating code. Run
the simulation.

sim(mdl)
open_system([mdl '/Output'])

 Generate Structured Text for Fuzzy System Using Simulink PLC Coder

6-9

Close output plot.

close_system([mdl '/Output'])

To generate Structured Text for the model, use the plcgeneratecode (Simulink PLC Coder)
function, which generates code for an atomic subsystem in a model. To generate code for the Fuzzy
PID controller, configure the subsystem as an atomic subsystem by selecting the Treat as atomic
unit parameter for the subsystem.

subsys = [mdl '/Fuzzy PID'];
set_param(subsys,'TreatAsAtomicUnit','on')

When generating code for just a Fuzzy Logic Controller block, place the block inside a subsystem,
and set the Treat as atomic unit parameter of that subsystem.

To generate Structured Text for the Fuzzy PID subsystem, uncomment this line.

plcgeneratecode(subsys);

Generating PLC code for 'fuzzyPID/Fuzzy PID'.
Using model settings from 'fuzzyPID' for PLC code generation parameters.
Begin code generation for IDE codesys23.
Emit PLC code to file.
Creating PLC code generation report fuzzyPID_codegen_rpt.html.
PLC code generation successful for 'fuzzyPID/Fuzzy PID'.
Generated files:
plcsrc\fuzzyPID.exp

By default, the software saves the generated code in the following location.

plcsrc/fuzzy_PID.exp

6 Deployment

6-10

See Also
Fuzzy Logic Controller

More About
• “Deploy Fuzzy Inference Systems” on page 6-2
• “Generate Code for Fuzzy System Using Simulink Coder” on page 6-4

 Generate Structured Text for Fuzzy System Using Simulink PLC Coder

6-11

Generate Code for Fuzzy System Using MATLAB Coder

You can generate code for evaluating a fuzzy systems using MATLAB® Coder™. For more information
on generating code, see “Code Generation” (MATLAB Coder).

Create Fuzzy System

To generate code for evaluating fuzzy systems, you must first design a fuzzy inference system (FIS).
For more information, see “Build Fuzzy Systems at the Command Line” on page 2-77, “Build Fuzzy
Systems Using Fuzzy Logic Designer” on page 2-15, and “Tuning Fuzzy Inference Systems” on page
3-2.

You can generate code for evaluating the following types of fuzzy systems.

• Type-1 Mamdani FIS implemented using a mamfis object
• Type-1 Sugeno FIS implemented using a sugfis object
• Type-2 Mamdani FIS implemented using a mamfistype2 object
• Type-2 Sugeno FIS implemented using a sugfistype2 object
• FIS trees implemented using fistree objects that contain any combination of mamfis, sugfis,

mamfistype2, or sugfistype2 objects

In this example, you generate code for a type-2 Sugeno FIS and a FIS tree. The workflows also apply
to the other types of fuzzy systems.

Load the final tuned type-2 Sugeno FIS from “Predict Chaotic Time Series Using Type-2 FIS” on page
3-89.

data1 = load("tunedfischaotictimeseriestype2.mat");
fis = data1.fisout3;

Load the final tuned FIS tree from “Design Controller for Artificial Pancreas Using Fuzzy Logic” on
page 3-145.

data2 = load("fuzzyPancreasExampleData.mat");
fisTree = data2.fisTMFTuned;

Convert Fuzzy System into Homogeneous Structure

Generating code using MATLAB Coder does not support FIS objects or FIS tree objects directly.
Instead, to generate code for evaluating a fuzzy system, you must convert your FIS or FIS tree into a
homogeneous structure using the getFISCodeGenerationData function.

Convert the Sugeno FIS into a homogeneous structure.

fisData = getFISCodeGenerationData(fis);

Convert the FIS tree into a homogeneous structure.

fisTreeData = getFISCodeGenerationData(fisTree);

Generate Code with Embedded Fuzzy System

If you do not want to change the fuzzy system properties after compilation, you can embed the FIS or
FIS tree data within the generated code. There are three methods for embedding the fuzzy system.

6 Deployment

6-12

• Embed FIS data from MATLAB workspace
• Embed FIS data from MAT file
• Embed FIS data from FIS file (*.fis).

Embed FIS from MATLAB Workspace

Create a function for evaluating a fuzzy system for input vector x. Within this function, you can
specify options for the evalfis function using an evalfisOptions object.

function y = evaluatefis1(fis,x)
 %#codegen
 opt = evalfisOptions('NumSamplePoints',51);
 y = evalfis(fis,x,opt);
end

Generate code for evaluatefis1 using the type-2 Sugeno FIS stored in fisData. When generating
code:

• Specify that the fis input argument is constant, which embeds the FIS data within the generated
code.

• Specify the size of the input vector. In this case, the FIS has four input variables. Therefore,
specify the input vector as a vector of zeros with four elements.

• Specify the target for your build, such as a static library, an executable, or a MEX file. For this
example, generate a MEX file.

codegen('evaluatefis1','-args',{coder.Constant(fisData),[0 0 0 0]},'-config:mex')

Code generation successful.

To validate the execution of the MEX file:

1 Evaluate the MEX file for one or more input values. When you call the MEX file, specify the same
FIS structure that you used at compile time.

2 Evaluate the original FIS for the same input values using evaluatefis1. When evaluating the
FIS using evaluatefis1, use the same homogeneous FIS structure.

3 Compare the evaluation results.

mexOutput1 = evaluatefis1_mex(fisData,[0.3 0.1 0.8 0.2])

mexOutput1 = 0.6913

evalfisOutput1 = evaluatefis1(fisData,[0.3 0.1 0.8 0.2])

evalfisOutput1 = 0.6913

Embed FIS from MAT File

If your FIS or FIS tree is stored in a MAT file, you can embed the FIS data in the generated code by
loading the FIS data from within the evaluation function.

Save the FIS tree data to a MAT file.

save("FISTreeData.mat","fisTreeData","-mat");

Specify a function for evaluating the FIS tree for input vector x. This function assumes that the FIS
tree is stored in the MAT file as variable fisTreeData.

 Generate Code for Fuzzy System Using MATLAB Coder

6-13

function y = evaluatefis2(x)
 %#codegen
 s = coder.load('FISTreeData.mat');
 opt = evalfisOptions('NumSamplePoints',51);
 y = evalfis(s.fisTreeData,x,opt);
end

Generate code for evaluatefis2.

codegen('evaluatefis2','-args',{[0 0 0]},'-config:mex')

Code generation successful.

Validate the execution of the MEX file.

mexOutput2 = evaluatefis2_mex([105 0.25 0.001])

mexOutput2 = 0.7366

evalfisOutput2 = evaluatefis2([105 0.25 0.001])

evalfisOutput2 = 0.7366

Embed FIS from FIS File

If your type-1 or type-2 FIS is stored in a FIS file, you can embed the FIS data in the generated code
by reading the FIS data from within the evaluation function. This workflow is not supported for FIS
trees.

Save the type-2 FIS to a file.

writeFIS(fis,'predictTimeSeries.fis')

Specify a function for evaluating a fuzzy system for input vector x. Within this function, read the FIS
data from the file predictType2.fis. Since the stored FIS is a type-2 system, you must specify the
FIS type when calling getFISCodeGenerationData. If your stored FIS is a type-1 system, you do
not have to specify the FIS type.

function y = evaluatefis3(x)
 %#codegen
 fisData = getFISCodeGenerationData('predictTimeSeries.fis','FuzzySetType','type2');
 opt = evalfisOptions('NumSamplePoints',51);
 y = evalfis(fisData,x,opt);
end

Generate code for evaluatefis3.

codegen('evaluatefis3','-args',{[0 0 0 0]},'-config:mex')

Code generation successful.

Validate the execution of the MEX file.

mexOutput3 = evaluatefis3_mex([0.3 0.1 0.8 0.2])

mexOutput3 = 0.6913

evalfisOutput3 = evaluatefis3([0.3 0.1 0.8 0.2])

evalfisOutput3 = 0.6913

6 Deployment

6-14

Generate Code That Loads Fuzzy System at Run Time

To change the FIS properties after compilation, you can generate code for evaluating a FIS that is
read from a FIS file specified at run time. In this case, the FIS data is not embedded in the generated
code. Modifying the fuzzy system properties after compilation using a FIS file is not supported for FIS
trees.

Specify a function for evaluating the fuzzy system defined in a specified FIS file for input vector x.
This function uses the same input data types as evaluatefis4.

function y = evaluatefis4(fisFileName,x)
 %#codegen
 fis = getFISCodeGenerationData(fisFileName,'FuzzySetType','type2');
 opt = evalfisOptions('NumSamplePoints',51);
 y = evalfis(fis,x,opt);
end

Define input data types for this function.

fileName = coder.newtype('char',[1 Inf],[false true]);
x = coder.newtype('double',[1 Inf],[false true]);

Generate code for evaluatefis4.

codegen('evaluatefis4','-args',{fileName,x},'-config:mex')

Code generation successful.

Validate the execution of the MEX file.

mexOutput4 = evaluatefis4_mex('predictTimeSeries.fis',[0.3 0.1 0.8 0.2])

mexOutput4 = 0.6913

evalfisOutput4 = evaluatefis4('predictTimeSeries.fis',[0.3 0.1 0.8 0.2])

evalfisOutput4 = 0.6913

Each time you run evaluatefis4, the function reloads the fuzzy system from the specified file. For
computational efficiency, you can create a function that does not reload a previously loaded FIS. For
example, the evaluatefis5 function loads a FIS from a FIS file only when a new file name is
specified.

function y = evaluatefis5(fileName,x)
 %#codegen

 persistent fisName fis
 if isempty(fisName)
 [fisName,fis] = loadFIS(fileName);
 elseif ~strcmp(fisName,fileName)
 [fisName,fis] = loadFIS(fileName);
 end

 opt = evalfisOptions('NumSamplePoints',51);
 y = evalfis(fis,x,opt);
end

function [fisName,fis] = loadFIS(fileName)

 Generate Code for Fuzzy System Using MATLAB Coder

6-15

 fisName = fileName;
 fis = getFISCodeGenerationData(fisName,'FuzzySetType','type2');
end

Generate code for evaluatefis5. The input data types for this function are the same as for
evaluatefis2.

codegen('evaluatefis5','-args',{fileName,x},'-config:mex')

Code generation successful.

Execute the MEX file using the stored type-2 FIS.

mexOutput5 = evaluatefis5_mex('predictTimeSeries.fis',[0.3 0.1 0.8 0.2])

mexOutput5 = 0.6913

You can use this function to evaluate another FIS with the same number of inputs. For example, save
an intermediate version of the FIS from “Predict Chaotic Time Series Using Type-2 FIS” on page 3-89
to predictTimeSeries2.fis, and evaluate the FIS using the MEX file for the same input values.

writeFIS(data1.fisout2,'predictTimeSeries2.fis')
mexOutput5_2 = evaluatefis5_mex('predictTimeSeries2.fis',[0.3 0.1 0.8 0.2])

mexOutput5_2 = 0.7934

Generate Code for Single-Precision Data

The preceding examples generated code for double-precision data. To generate code for single-
precision data, specify the data type of the input values as single. You can use single-precision data
when evaluating FIS objects and FIS tree objects. For example, generate code for evaluatefis2
using single-precision data.

codegen('evaluatefis2','-args',{single([0 0 0])},'-config:mex')

Code generation successful.

Execute the MEX file, passing in single-precision input values.

mexOutputSingle = evaluatefis2_mex(single([105 0.25 0.001]))

mexOutputSingle = 0.7366

See Also
evalfis | evalfisOptions | getFISCodeGenerationData

More About
• “Deploy Fuzzy Inference Systems” on page 6-2
• “Generate Code for Fuzzy System Using Simulink Coder” on page 6-4

6 Deployment

6-16

Apps

7

Fuzzy Logic Designer
Design, test, and tune fuzzy inference systems

Description
The Fuzzy Logic Designer app lets you design, test, and tune a fuzzy inference system (FIS) for
modeling complex system behavior.

Using this app, you can:

• Design Mamdani and Sugeno FISs.
• Design type-1 and type-2 FISs.
• Tune the rules and membership functions of a FIS.
• Add or remove input and output variables.
• Specify input and output membership functions.
• Define fuzzy if-then rules.
• Select fuzzy inference functions for:

• And operations
• Or operations
• Implication
• Aggregation
• Defuzzification

• Analyze the behavior of a FIS, including:

• View rule inference process for given input values.
• View output surface maps for fuzzy inference systems.
• Compare FIS outputs with corresponding output values from testing data.
• View error distributions across input ranges based on testing data.

• Export FIS designs to the MATLAB workspace.

Limitations

The Fuzzy Logic Designer app does not support the following tasks.

• FIS tree creation — Instead, create FIS trees at the MATLAB command line using fistree
objects. You can create the component FIS objects using Fuzzy Logic Designer and export them
to the MATLAB workspace.

• FIS tree tuning — Instead, tune FIS trees at the MATLAB command line using the tunefis
function. You can tune the component FIS objects using Fuzzy Logic Designer and export them
to the MATLAB workspace.

7 Apps

7-2

Open the Fuzzy Logic Designer App
• MATLAB Toolstrip: On the Apps tab, under Control System Design and Analysis, click the app

icon.
• MATLAB command prompt: Enter fuzzyLogicDesigner.

Examples

Import FIS from Workspace

In Fuzzy Logic Designer, under Import > Import Fuzzy Inference System from Workspace,
click the fuzzy inference system.

 Fuzzy Logic Designer

7-3

A new Fuzzy Logic Designer instance opens and loads the selected FIS.

Import FIS from File

In Fuzzy Logic Designer, select Import > Import Fuzzy Inference System from Workspace.

Then, in the Import Fuzzy Inference System dialog box, select a FIS file and click Open.

Convert FIS

Using Fuzzy Logic Designer, you can convert between Mamdani and Sugeno systems and between
type-1 and type-2 systems.

When you convert a FIS, the app adds the converted FIS to the Design Browser. To make the
converted system active, select it in the Design Browser and click Set Active Design.

7 Apps

7-4

For more information on converting between type-1 and type2 systems, see convertToType1 and
convertToType2.

For more information on converting between Mamdani and Sugeno systems, see “Mamdani and
Sugeno Fuzzy Inference Systems” on page 2-2.

• “Get Started Using Fuzzy Logic Designer” on page 2-35
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15
• “Define Fuzzy Rules Using Fuzzy Logic Designer” on page 2-54
• “Define Membership Functions Using Fuzzy Logic Designer” on page 2-44
• “Analyze Fuzzy System Using Fuzzy Logic Designer” on page 2-61
• “Tune Fuzzy Inference System Using Fuzzy Logic Designer” on page 3-6
• “Train Adaptive Neuro-Fuzzy Inference Systems” on page 3-207
• “Configure Tuning Options in Fuzzy Logic Designer” on page 3-52
• “Select Rules and Parameters to Tune in Fuzzy Logic Designer” on page 3-31
• “Export FIS and Simulation Data from Fuzzy Logic Designer” on page 2-71

Programmatic Use
fuzzyLogicDesigner opens the Fuzzy Logic Designer app and loads the Getting Started dialog
box where you can open an existing FIS or create an initial FIS structure. For more information, see
“Get Started Using Fuzzy Logic Designer” on page 2-35.

fuzzyLogicDesigner(fis) opens the app and loads the fuzzy inference system fis. fis can be
any mamfis, sugfis, mamfistype2, or sugfistype2 object in the MATLAB workspace.

fuzzyLogicDesigner(fileName) opens the app and loads a fuzzy inference system from a file.
fileName is the name of a FIS (*.fis) file on the MATLAB path.

To save a fuzzy inference system to a FIS file:

• In Fuzzy Logic Designer, under Save, select the fuzzy inference system.
• At the command line, use writeFIS.

Version History
Introduced in R2014b

R2023a: Tune Rules and Membership Functions

You can interactively tune the rules and membership function parameters of the following types of
fuzzy inference systems.

• Mamdani and Sugeno systems
• Type-1 and type-2 systems

For an example, see “Tune Fuzzy Inference System Using Fuzzy Logic Designer” on page 3-6.

 Fuzzy Logic Designer

7-5

R2023a: Interactively evaluate performance of FIS using testing data

You can interactively evaluate the performance of fuzzy inference system designs for given input/
output testing data using the following documents in the app.

• System Validation — Compare the outputs from each FIS design with the corresponding output
value from the testing data.

• Error Distribution — For a given FIS design, view the output error for different combinations of
inputs.

For more information on analyzing FIS designs, see “Analyze Fuzzy System Using Fuzzy Logic
Designer” on page 2-61..

R2023a: Automatically distribute membership functions across variable range

When defining membership functions for input and output variables, you can evenly distribute
existing membership function across the variable range. For more information on defining
membership functions, see “Define Membership Functions Using Fuzzy Logic Designer” on page 2-
44.

R2022b: Redesigned Fuzzy Logic Designer App
Behavior change in future release

The redesigned app streamlines workflows for interactively building fuzzy inference systems. Using
the updated app, you can:

• Design both Mamdani and Sugeno fuzzy inference systems
• Design fuzzy inference systems with either type-1 or type-2 membership functions

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this app issues
a warning starting in R2019b.

R2014b: Command to open app renamed to fuzzyLogicDesigner
Behavior changed in R2014b

Previously, the command to open the app was fuzzy.

See Also
Apps
Neuro-Fuzzy Designer

Functions
evalfis | plotfis | mamfis | sugfis | mamfistype2 | sugfistype2

7 Apps

7-6

Topics
“Get Started Using Fuzzy Logic Designer” on page 2-35
“Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15
“Define Fuzzy Rules Using Fuzzy Logic Designer” on page 2-54
“Define Membership Functions Using Fuzzy Logic Designer” on page 2-44
“Analyze Fuzzy System Using Fuzzy Logic Designer” on page 2-61
“Tune Fuzzy Inference System Using Fuzzy Logic Designer” on page 3-6
“Train Adaptive Neuro-Fuzzy Inference Systems” on page 3-207
“Configure Tuning Options in Fuzzy Logic Designer” on page 3-52
“Select Rules and Parameters to Tune in Fuzzy Logic Designer” on page 3-31
“Export FIS and Simulation Data from Fuzzy Logic Designer” on page 2-71
“What Is Fuzzy Logic?” on page 1-3
“Foundations of Fuzzy Logic” on page 1-7
“Fuzzy Inference Process” on page 1-19

 Fuzzy Logic Designer

7-7

Neuro-Fuzzy Designer
(To be removed) Design, train, and test Sugeno-type fuzzy inference systems

Note Neuro-Fuzzy Designer will be removed in a future release. For more information, see “To be
removed”.

Description
The Neuro-Fuzzy Designer app lets you design, train, and test adaptive neuro-fuzzy inference
systems (ANFIS) using input/output training data.

Using this app, you can:

• Tune membership function parameters of Sugeno-type fuzzy inference systems.
• Automatically generate an initial inference system structure based on your training data.
• Modify the inference system structure before tuning.
• Prevent overfitting to the training data using additional checking data.
• Test the generalization ability of your tuned system using testing data.
• Export your tuned fuzzy inference system to the MATLAB workspace.

You can use the Neuro-Fuzzy Designer to train a type-1 Sugeno-type fuzzy inference system that:

• Has a single output.
• Uses weighted average defuzzification.
• Has output membership functions all of the same type, for example linear or constant.
• Has complete rule coverage with no rule sharing; that is, the number of rules must match the

number of output membership functions, and every rule must have a different consequent.
• Has unity weight for each rule.
• Does not use custom membership functions.

7 Apps

7-8

Open the Neuro-Fuzzy Designer App
• MATLAB Toolstrip: On the Apps tab, under Control System Design and Analysis, click the app

icon.
• MATLAB command prompt: Enter neuroFuzzyDesigner.

Examples
• “Train Adaptive Neuro-Fuzzy Inference Systems” on page 3-207

Programmatic Use
neuroFuzzyDesigner opens the Neuro-Fuzzy Designer app.

neuroFuzzyDesigner(fis) opens the app and loads the fuzzy inference system fis. fis can be
any valid sugfis object in the MATLAB workspace.

 Neuro-Fuzzy Designer

7-9

You can create an initial Sugeno-type fuzzy inference system from training data using the genfis
command.

neuroFuzzyDesigner(fileName) opens the app and loads a fuzzy inference system. fileName is
the name of a FIS file (*.fis) on the MATLAB path.

To save a fuzzy inference system to a FIS file:

• In the Fuzzy Logic Designer, select File > Export > To File
• At the command line, use writeFIS.

Version History
Introduced in R2014b

R2023a: To be removed
Not recommended starting in R2023a

The Neuro-Fuzzy Designer app will be removed in a future release.

You can now tune a single-output type-1 Sugeno system using the ANFIS method in Fuzzy Logic
Designer instead. For more information, see “Train Adaptive Neuro-Fuzzy Inference Systems” on
page 3-207.

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this app issues
a warning starting in R2019b.

R2014b: Command to open app renamed to neuroFuzzyDesigner
Behavior changed in R2014b

Previously, the command to open the app was anfisedit.

See Also
Apps
Fuzzy Logic Designer

Functions
anfis | genfis

Topics
“Train Adaptive Neuro-Fuzzy Inference Systems” on page 3-207
“Neuro-Adaptive Learning and ANFIS” on page 3-203

7 Apps

7-10

Functions

8

addInput
Add input variable to fuzzy inference system

Syntax
fisOut = addInput(fisIn)
fisOut = addInput(fisIn,range)
fisOut = addInput(___ ,Name,Value)

Description
fisOut = addInput(fisIn) adds a default input variable to fisIn and returns the resulting fuzzy
system in fisOut. This input variable has a default name, default range, and no membership
functions.

fisOut = addInput(fisIn,range) adds an input variable with the specified range.

fisOut = addInput(___ ,Name,Value)configures the input variable using one or more name-
value pair arguments.

Examples

Add Input Variable to Fuzzy Inference System

Create a Sugeno fuzzy inference system.

fis = sugfis('Name','tipper');

Add an input variable with default specifications.

fis = addInput(fis);

You can configure the input variable properties using dot notation. For example, specify the name and
range for the variable.

fis.Inputs(1).Name = "service";
fis.Inputs(1).Range = [0 10];

View the input variable.

fis.Inputs(1)

ans =
 fisvar with properties:

 Name: "service"
 Range: [0 10]
 MembershipFunctions: [0x0 fismf]

You can also specify a variable name and range when you add it to the fuzzy system.

8 Functions

8-2

fis2 = sugfis('Name','tipper');
fis2 = addInput(fis2,[0 10],'Name',"service");

Add Input Variable with Membership Functions

Create a fuzzy inference system.

fis = mamfis('Name',"tipper");

Add an input variable with three Gaussian membership functions distributed over the input range.

fis = addInput(fis,'NumMFs',3,'MFType',"gaussmf");

View the membership functions.

plotmf(fis,'input',1)

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

 addInput

8-3

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

range — Variable range
[0 1] (default) | two-element vector

Variable range, specified as a two-element element vector where the first element is less than the
second element. The first element specifies the lower bound of the range, and the second element
specifies the upper bound of the range.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: fis = addInput(fis,NumMFs=3)

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: fis = addInput(fis,'NumMFs',3)

Name — Variable name
string | character vector

Variable name, specified as a string or character vector. The default variable name is
"input<uniqueIndex>", where uniqueIndex is automatically generated based on the current
number of inputs in fisIn.

NumMFs — Number of membership functions
0 (default) | nonnegative integer

Number of membership functions, specified as a nonnegative integer.

MFType — Membership function type
"trimf" (default) | "gaussmf"

Membership function type, specified as one of the following values.

• "trimf" — Triangular membership functions
• "gaussmf" — Gaussian membership functions

The membership functions are uniformly distributed over the input variable range with approximately
80% overlap in the membership function supports.

Output Arguments
fisOut — Updated fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Updated fuzzy inference system, returned as one of the following objects.

8 Functions

8-4

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

fisOut contains the added input variable, with all other properties matching the properties of
fisIn.

Version History
Introduced in R2018b

R2018b: Replaces addvar

This function replaces addvar for adding input variables to a fuzzy inference system.

See Also
removeInput | addOutput | fisvar

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77

 addInput

8-5

addMF
Add membership function to fuzzy variable

Syntax
fisOut = addMF(fisIn,varName)
fisOut = addMF(fisIn,varName,type,parameters)
fisOut = addMF(___ ,Name,Value)

varOut = addMF(varIn)
varOut = addMF(varIn,type,parameters)
varOut = addMF(___ ,Name,Value)

Description
fisOut = addMF(fisIn,varName) adds a default membership function to the input or output
variable varName in the fuzzy inference system fisIn and returns the resulting fuzzy system in
fisOut.

fisOut = addMF(fisIn,varName,type,parameters) adds a membership function with the
specified type and parameters.

fisOut = addMF(___ ,Name,Value) configures the membership function using one or more
name-value pair arguments.

varOut = addMF(varIn) adds a default membership function to fuzzy variable varIn and returns
the resulting fuzzy variable in varOut.

If varIn does not contain any membership functions, this syntax adds a default type-1 membership
function. Otherwise, the type of the added membership function matches the type of the existing
membership functions in varIn.

varOut = addMF(varIn,type,parameters) adds a membership function with the specified type
and parameters.

varOut = addMF(___ ,Name,Value) specifies the name of the membership function using the
Name name-value argument.

To add a type-2 membership function to a fuzzy variable with no existing membership functions, you
must specify either the LowerLag or LowerScale name-value argument.

Examples

Add Membership Function to Fuzzy Inference System

Create a Mamdani fuzzy system, and add three input variables and one output variable. For this
example, give the second input variable and the output variable the same name.

fis = mamfis;
fis = addInput(fis,[0 80],"Name","speed");

8 Functions

8-6

fis = addInput(fis,[0 100],"Name","throttle");
fis = addInput(fis,[0 10],"Name","distance");
fis = addOutput(fis,[0 100],"Name","throttle");

Add a membership function to the first input variable, specifying a trapezoidal membership function,
and set the membership function parameters.

fis = addMF(fis,"speed","trapmf",[-5 0 10 30]);

You can also specify the name of your membership when you add it to a fuzzy system. Add a
membership function called "high" to the first input variable.

fis = addMF(fis,"speed","trapmf",[50 70 80 85],'Name',"high");

View the membership functions for the first input variable.

plotmf(fis,"input",1)

If your system has an input variable with the same name as an output variable, you must specify the
variable type when adding a membership function. For example, add a membership function to the
output variable.

fis = addMF(fis,"throttle","trimf",[0 20 40],'VariableType',"output");
plotmf(fis,"output",1)

 addMF

8-7

Alternatively, you can add a default membership function to a fuzzy system and set its parameters
using dot notation. For example, add and configure a membership function for the third input
variable.

fis = addMF(fis,"distance");
fis.Inputs(3).MembershipFunctions(1).Type = "trapmf";
fis.Inputs(3).MembershipFunctions(1).Parameters = [-1 0 2 4];
plotmf(fis,"input",3)

8 Functions

8-8

Add Membership Function to Type-2 Fuzzy Inference System

Create a type-2 Sugeno fuzzy system, and add two input variables and one output variable.

fis = sugfistype2;
fis = addInput(fis,[0 80],"Name","speed");
fis = addInput(fis,[0 10],"Name","distance");
fis = addOutput(fis,[0 100],"Name","braking");

Add a membership function to the first input variable, specifying a trapezoidal membership function,
and set the membership function parameters. This type-2 membership function uses default lower
membership function lag and scale parameters.

fis = addMF(fis,"speed","trapmf",[-5 0 10 30]);

You can also specify the configuration of the lower MF when adding a type-2 membership function.

fis = addMF(fis,"speed","trapmf",[10 30 50 70],'LowerScale',0.8,'LowerLag',0.1);

You can also specify the name of your membership function when you add it to a fuzzy system. Add a
membership function called "high" to the first input variable.

fis = addMF(fis,"speed","trapmf",[50 70 80 85],'Name',"high");

View the membership functions for the first input variable.

 addMF

8-9

plotmf(fis,"input",1)

Add Membership Function to Fuzzy Variable

Create a fuzzy variable with a specified range.

var = fisvar([0 1]);

Add a membership function to the variable, specifying a trapezoidal membership function, and set the
membership function parameters.

var = addMF(var,"trapmf",[-0.5 0 0.2 0.4]);

You can also specify the name of your membership when you add it to a fuzzy variable. For example,
add a membership function called "large".

var = addMF(var,"trapmf",[0.6 0.8 1 1.5],'Name',"large");

View the membership functions.

var.MembershipFunctions

ans =
 1x2 fismf array with properties:

8 Functions

8-10

 Type
 Parameters
 Name

 Details:
 Name Type Parameters
 _______ ________ ____________________________

 1 "mf1" "trapmf" -0.5 0 0.2 0.4
 2 "large" "trapmf" 0.6 0.8 1 1.5

Alternatively, you can add a default membership function to a fuzzy variable and set its parameters
using dot notation.

var = fisvar([0 1]);
var = addMF(var);
var.MembershipFunctions(1).Type = "trapmf";
var.MembershipFunctions(1).Parameters = [-0.5 0 0.2 0.4];

Add Type-2 Membership Function to Fuzzy Variable

Create a fuzzy variable with a specified range. By default, this variable has no membership functions.

var = fisvar([0 9]);

To add a type-2 membership function to a variable with no existing membership functions, specify
either a LowerLag or LowerScale value for the membership function. For example specify a lower
scale value.

var = addMF(var,"trimf",[0 3 6],'LowerScale',1);

Once a variable contains a type-2 membership function, you can add additional type-2 membership
functions without specifying one of these parameters.

var = addMF(var,"trimf",[3 6 9]);

View the membership functions.

var.MembershipFunctions

ans =
 1x2 fismftype2 array with properties:

 Type
 UpperParameters
 LowerScale
 LowerLag
 Name

 Details:
 Name Type Upper Parameters Lower Scale Lower Lag
 _____ _______ ________________ ___________ __________

 1 "mf1" "trimf" 0 3 6 1 0.2 0.2

 addMF

8-11

 2 "mf2" "trimf" 3 6 9 1 0.2 0.2

Specify Custom Membership Functions at Command Line

To use a custom membership function when designing a FIS at the MATLAB® command line, specify
the name and parameters when adding the membership function using addMF. For example, the
following command adds custom membership function custmf1 to the first input variable, input1,
of FIS myFIS and names it customMF1.

Create a FIS and add an input variable.

myFIS = mamfis;
myFIS = addInput(myFIS);

Add custom membership function custmf1 to the first input variable, input1, of this FIS and name
it customMF1.

myFIS = addMF(myFIS,"input1","custmf1",[0 1 2 4 6 8 9 10],...
 "Name","customMF1");

Ensure that the range of the input variable matches the expected range of your membership function.
For this example, set the range of the first input to [0 10].

myFIS.Inputs(1).Range = [0 10];

To verify the appearance of your membership function, you can plot it using plotMF.

plotmf(myFIS,"input",1)

8 Functions

8-12

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

varName — Variable name
string | character vector

Variable name, specified as a string or character vector. You can specify the name of either an input
or output variable in your FIS. If your system has an input variable with the same name as an output
variable, specify the type of the variable you want to add a membership function to using the
VariableType name-value pair.

type — Membership function type
"trimf" (default) | string | character vector | function handle

 addMF

8-13

Membership function type, specified as a string or character vector that contains the name of a
function in the current working folder or on the MATLAB path. You can also specify a handle to such a
function. When you specify type, you must also specify parameters.

This table describes the values that you can specify for type.

Membership
Function Type

Description For More Information

"gbellmf" Generalized bell-shaped membership
function

gbellmf

"gaussmf" Gaussian membership function gaussmf
"gauss2mf" Gaussian combination membership

function
gauss2mf

"trimf" Triangular membership function trimf
"trapmf" Trapezoidal membership function trapmf
"linsmf" Linear s-shaped saturation

membership function
linsmf

"linzmf" Linear z-shaped saturation
membership function

linzmf

"sigmf" Sigmoidal membership function sigmf
"dsigmf" Difference between two sigmoidal

membership functions
dsigmf

"psigmf" Product of two sigmoidal membership
functions

psigmf

"zmf" Z-shaped membership function zmf
"pimf" Pi-shaped membership function pimf
"smf" S-shaped membership function smf
"constant" Constant membership function for

Sugeno output membership functions
“Sugeno Fuzzy Inference Systems” on
page 2-3

"linear" Linear membership function for
Sugeno output membership functions

String or character
vector

Name of a custom membership
function in the current working folder
or on the MATLAB path. Custom
output membership functions are not
supported for Sugeno systems.

“Build Fuzzy Systems Using Custom
Functions” on page 2-86

Function handle Handle to a custom membership
function in the current working folder
or on the MATLAB path. Custom
output membership functions are not
supported for Sugeno systems.

parameters — Membership function parameters
[0 0.5 1] (default) | vector

8 Functions

8-14

Membership function parameters, specified as a vector. The length of the parameter vector depends
on the membership function type. When you specify parameters, you must also specify type.

When fisIn is a type-1 FIS or varIn contains type-1 membership functions, parameters sets the
Parameters property of the added membership function.

When fisIn is a type-2 FIS or varIn contains type-2 membership functions, parameters sets the
UpperParameters property of the added membership function.

varIn — Fuzzy variable
fisvar object

Fuzzy variable, specified as a fisvar object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: fis = addMF(fis,"distance",Name="high")

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: fis = addMF(fis,"distance","Name","high")

Name — Membership function name
string | character vector

Membership function name, specified as the comma-separated pair consisting of 'Name' and a string
or character vector. The default membership function name is "mf<uniqueIndex>", where
uniqueIndex is automatically generated based on the current number of membership functions in
the associated variable.

VariableType — Variable type
"input" | "output"

Variable type, specified as the comma-separated pair 'VariableType' and one of the following:

• "input" — Input variable
• "output" — Output variable

If your system has an input variable with the same name as an output variable, specify which variable
to add the membership function to VariableType.

This name-value pair does not apply when adding when adding a membership function to a fisvar
object.

LowerScale — Lower membership function scaling factor
1 (default) | positive scalar less than or equal to 1

Lower membership function scaling factor for type-2 membership functions, specified as a positive
scalar less than or equal to 1. Use LowerScale to define the maximum value of the lower
membership function.

 addMF

8-15

Depending on the value of LowerLag, the actual maximum lower membership function value can be
less than LowerScale.

This name-value pair applies only when adding type-2 membership functions.

LowerLag — Lower membership function delay factor
[0.2 0.2] (default) | scalar value between 0 and 1 | vector of length 2

Lower membership function delay factor for type-2 membership functions, specified as a scalar value
or a vector of length two. You can specify lag values between 0 and 1, inclusive.

This name-value pair applies only when adding type-2 membership functions.

The following membership function types support only a scalar LowerLag value:

• Symmetric MFs — gaussmf and gbellmf
• One-sided MFs — sigmf, smf, and zmf

All other built-in membership functions support either a scalar or vector LowerLag value. For these
membership functions, when you specify a:

• Scalar value, the same lag value is used for both the left and right side of the membership
function.

• Vector value, you can define different lag values for the left and right sides of the membership
function.

The lag value defines the point at which the lower membership function value starts increasing from
zero based on the value of the upper membership function. For example, a lag value of 0.1 indicates
that the lower membership function becomes positive when the upper membership function has a
membership value of 0.1.

When the lag value is zero, the lower membership function starts increasing at the same point as the
upper membership function.

Some membership function types restrict the maximum lag value. For example, LowerLag must be
less than 1 for the gaussmf, gauss2mf, gbellmf, sigmf, dsigmf, and psigmf membership
functions.

Output Arguments
fisOut — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

fisOut contains the added membership function, with all other properties matching the properties
of fisInfisOut contains the added membership function, with all other properties matching the
properties of fisIn

8 Functions

8-16

varOut — Fuzzy variable
fisvar object

Fuzzy variable, returned as a fisvar object. varOut contains the added membership function, with
all other properties matching the properties of varIn.

Version History
Introduced in R2018b

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

R2018b: Function renamed and method for specifying variable and membership function
changed
Behavior changed in R2018b

The name and behavior of the addmf function has changed. Now:

• addmf is addMF
• You specify the variable to which you want to add the membership function by name rather than

by index.
• You specify the name of the membership function using a name-value pair argument.

These changes require updates to your code.

Update Code

The following table shows some typical usages of addmf for adding membership functions to fuzzy
variables and how to update your code. In this table, fis is a fuzzy inference system with two inputs,
service and food, and one output, tip.

If your code has this form: Use this code instead:
fis = addmf(fis'input',1,...
 'poor',...
 'gaussmf',[1.5 0])

fis = addMF(fis,"service",...
 "gaussmf",[1.5 0],
 'Name',"poor")

fis = addmf(fis,'input',2,...
 'rancid',...
 'trapmf',[-2 0 1 3])

fis = addMF(fis,"food",...
 "trapmf",[-2 0 1 3],...
 'Name',"rancid")

fis = addmf(fis,'output',1,...
 'cheap',...
 'trimf',[0 5 10])

fis = addMF(fis,"tip",...
 "trimf",[0 5 10],...
 'Name',"cheap")

See Also
mamfis | sugfis | fisvar | removeMF | addInput | addOutput | addRule

 addMF

8-17

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77

8 Functions

8-18

addOutput
Add output variable to fuzzy inference system

Syntax
fisOut = addOutput(fisIn)
fisOut = addOutput(fisIn,range)
fisOut = addOutput(___ ,Name,Value)

Description
fisOut = addOutput(fisIn) adds a default output variable to fisIn, and returns the resulting
fuzzy system in fisOut. This output variable has a default name, default range, and no membership
functions.

fisOut = addOutput(fisIn,range) adds an output variable with the specified range.

fisOut = addOutput(___ ,Name,Value)configures the output variable using one or more name-
value pair arguments.

Examples

Add Output Variable to Fuzzy Inference System

Create a Mamdani fuzzy inference system.

fis = mamfis('Name','tipper');

Add an output variable with default specifications.

fis = addOutput(fis);

You can configure the output variable properties using dot notation. For example, specify the name
and range for the variable.

fis.Outputs(1).Name = "tip";
fis.Outputs(1).Range = [10 30];

View the output variable.

fis.Outputs(1)

ans =
 fisvar with properties:

 Name: "tip"
 Range: [10 30]
 MembershipFunctions: [0x0 fismf]

You can also specify the variable name and range when you add it to the fuzzy system.

 addOutput

8-19

fis2 = mamfis('Name','tipper');
fis2 = addOutput(fis2,[10 30],'Name',"tip");

Add Output Variable with Membership Functions

Create a Sugeno fuzzy inference system.

fis = sugfis('Name',"tipper");

Add an output variable with three constant membership functions distributed over the output range.

fis = addOutput(fis,'NumMFs',3,'MFType',"constant");

View the membership functions.

fis.Outputs(1).MembershipFunctions

ans =
 1x3 fismf array with properties:

 Type
 Parameters
 Name

 Details:
 Name Type Parameters
 _____ __________ __________

 1 "mf1" "constant" 0
 2 "mf2" "constant" 0.5
 3 "mf3" "constant" 1

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following objects.

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

range — Variable range
[0 1] (default) | two-element vector

Variable range, specified as a two-element element vector where the first element is less than the
second element. The first element specifies the lower bound of the range, and the second element
specifies the upper bound of the range.

8 Functions

8-20

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: fis = addOutput(fis,NumMFs=3)

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: fis = addOutput(fis,'NumMFs',3)

Name — Variable name
string | character vector

Variable name, specified as a string or character vector.

NumMFs — Number of membership functions
0 (default) | nonnegative integer

Number of membership functions, specified as a nonnegative integer.

MFType — Membership function type
"trimf" (default) | "gaussmf"

Membership function type, specified as one of the following values.

• "trimf" — Triangular membership functions for the outputs of Mamdani system
• "gaussmf" — Gaussian membership functions for the outputs of Mamdani systems
• "constant" — Constant membership functions for the outputs of Sugeno systems
• "linear" — Linear membership functions for the outputs of Sugeno systems. To add an output

variable with linear membership functions, your FIS must have at least one input variable.

The membership functions are uniformly distributed over the variable range with approximately 80%
overlap in the membership function supports.

Output Arguments
fisOut — Updated fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Updated inference system, returned as one of the following objects.

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

fisOut contains the added output variable, with all other properties matching the properties of
fisIn.

 addOutput

8-21

Version History
Introduced in R2018b

R2018b: Replaces addvar

This function replaces addvar for adding output variables to a fuzzy inference system.

See Also
removeOutput | addInput | fisvar

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77

8 Functions

8-22

addRule
Add rule to fuzzy inference system

Syntax
fisOut = addRule(fisIn)
fisOut = addRule(fisIn,ruleDescription)

Description
fisOut = addRule(fisIn) adds a single fuzzy rule to fuzzy inference system fisIn with the
default description "input1==mf1 => output1=mf1" and returns the resulting fuzzy system in
fisOut.

fisOut = addRule(fisIn,ruleDescription) adds one or more fuzzy rules using the rule
descriptions in ruleDescription.

Examples

Add Single Rule to Fuzzy Inference System

Load a fuzzy inference system (FIS), and clear the existing rules.

fis = readfis('tipper');
fis.Rules = [];

Add a rule to the FIS.

ruleTxt = 'If service is poor then tip is cheap';
fis2 = addRule(fis,ruleTxt);

fis2 is equivalent to fis, except that the specified rule is added to the rule base.

fis2.Rules

ans =
 fisrule with properties:

 Description: "service==poor => tip=cheap (1)"
 Antecedent: [1 0]
 Consequent: 1
 Weight: 1
 Connection: 1

Add Rules to Fuzzy Inference System

Load a fuzzy inference system (FIS).

 addRule

8-23

fis = readfis('tipper');

Specify if-then rules using linguistic expressions.

rule1 = "If service is poor or food is rancid then tip is cheap";
rule2 = "If service is excellent and food is not rancid then tip is generous";
rules = [rule1 rule2];

Add the rules to the FIS.

fis2 = addRule(fis,rules);

fis2 is equivalent to fis, except that the specified rules are added to the rule base.

Add Rules Using Symbolic Expressions

Load a fuzzy inference system (FIS), and clear the existing rules.

fis = readfis('tipper');
fis.Rules = [];

Specify the following rules using symbolic expressions:

• If service is poor or food is rancid then tip is cheap.
• If service is excellent and food is not rancid then tip is generous.

rule1 = "service==poor | food==rancid => tip=cheap";
rule2 = "service==excellent & food~=rancid => tip=generous";
rules = [rule1 rule2];

Add the rules to the FIS.

fis2 = addRule(fis,rules);

fis2 is equivalent to fis, except that the specified rules are added to the rule base.

fis2.Rules

ans =
 1x2 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 Details:
 Description

 1 "service==poor | food==rancid => tip=cheap (1)"
 2 "service==excellent & food~=rancid => tip=generous (1)"

8 Functions

8-24

Add Rules Using Membership Function Indices

Load fuzzy inference system (FIS) and clear the existing rules.

fis = readfis('mam22.fis');
fis.Rules = [];

Specify the following rules using membership function indices:

• If angle is small and velocity is big, then force is negBig and force2 is posBig2.
• If angle is not small and velocity is small, then force is posSmall and force2 is

negSmall2.

rule1 = [1 2 1 4 1 1];
rule2 = [-1 1 3 2 1 1];
rules = [rule1; rule2];

Add the rules to the FIS.

fis2 = addRule(fis,rules);

fis2 is equivalent to fis, except that the specified rules are added to the rule base.

fis2.Rules

ans =
 1x2 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 Details:
 Description
 __

 1 "angle==small & velocity==big => force=negBig, force2=posBig2 (1)"
 2 "angle~=small & velocity==small => force=posSmall, force2=negSmall2 (1)"

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following objects.

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system

 addRule

8-25

• sugfistype2 object — Type-2 Sugeno fuzzy inference system

ruleDescription — Rule description
string | character vector | numeric row vector | string array | character array | numeric array

Rule description, specified using either a text or numeric rule definition.

Text Rule Description

For a text rule description, specify ruleDescription as one of the following:

• String or character vector specifying a single rule.

rule = "If service is poor or food is rancid then tip is cheap";
• String array, where each element corresponds to a rule.

ruleList = ["If service is poor or food is rancid then tip is cheap";
 "If service is good then tip is average";
 "If service is excellent or food is delicious then tip is generous"];

• Character array where each row corresponds to a rule.
rule1 = 'If service is poor or food is rancid then tip is cheap';
rule2 = 'If service is good then tip is average';
rule3 = 'If service is excellent or food is delicious then tip is generous';
ruleList = char(rule1,rule2,rule3);

For each rule, use one of the following rule text formats.

• Verbose — Linguistic expression in the following format, using the IF and THEN keywords:

"IF <antecedent> THEN <consequent> (<weight>)"

In <antecedent>, specify the membership function for each input variable using the IS or IS
NOT keyword. Connect these conditions using the AND or OR keywords. If a rule does not use a
given input variable, omit it from the antecedent.

In <consequent>, specify the condition for each output variable using the IS or IS NOT
keyword, and separate these conditions using commas. The IS NOT keyword is not supported for
Sugeno outputs. If a rule does not use a given output variable, omit it from the consequent.

Specify the weight using a positive numerical value.

"IF A IS a AND B IS NOT b THEN X IS x, Y IS NOT y (1)"
• Symbolic — Expression that uses the symbols in the following table instead of keywords. There is

no symbol for the IF keyword.

Symbol Keyword
== IS (in rule antecedent)
~= IS NOT
& AND
| OR
=> THEN
= IS (in rule consequent)

For example, the following symbolic rule is equivalent to the previous verbose rule.

8 Functions

8-26

"A==a & B~=b => X=x, Y~=y (1)"

Numeric Rule Description

For a numeric rule description, specify ruleDescription as one of the following:

• Row vector to specify a single fuzzy rule
• Array, where each row of ruleValues specifies one rule

For each row, the numeric rule description has M+N+2 columns, where M is the number of input
variables and N is the number of output variables. Each column contains the following information:

• The first M columns specify input membership function indices and correspond to the
Antecedent property of the rule. To indicate a NOT condition, specify a negative value. If a rule
does not use a given input, set the corresponding index to 0. For each rule, at least one input
membership function index must be nonzero.

• The next N columns specify output membership function indices and correspond to the
Consequent property of the rule. To indicate a NOT condition for Mamdani systems, specify a
negative value. NOT conditions are not supported for Sugeno outputs. If a rule does not use a
given output, set the corresponding index to 0. For each rule, at least one output membership
function index must be nonzero.

• Column M+N+1 specifies the rule weight and corresponds to the Weight property of the rule.
• The final column specifies the antecedent fuzzy operator and corresponds to the Connection

property of the rule.

Output Arguments
fisOut — Updated fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Updated fuzzy inference system, returned as one of the following objects.

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

fisOut contains the added output rules, with all other properties matching the properties of fisIn.

Version History
Introduced in R2018b

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

 addRule

8-27

R2018b: Renamed to addRule
Behavior changed in R2018b

addrule is now addRule. To update your code, change the function name from addrule to
addRule. The syntaxes are equivalent.

R2018b: Specify rules using linguistic and symbolic expressions
Behavior changed in R2018b

You can add rules to a fuzzy system using linguistic and symbolic expressions. This addRule
functionality replaces the equivalent parsrule functionality.

See Also
addInput | addOutput | addMF

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77

8 Functions

8-28

addvar
(To be removed) Add variable to fuzzy inference system

Note addvar will be removed in a future release. Use addInput or addOutput instead. For more
information, see “Compatibility Considerations”.

Syntax
outfis = addvar(infis,varType,varName,varRange)

Description
outfis = addvar(infis,varType,varName,varRange) adds an input or output variable to the
fuzzy system infis with the specified name and range.

Indices are applied to variables in the order in which they are added. For example, the first input
variable added to a system is input variable number one for that system. Input and output variables
are numbered independently.

Examples

Add Variable to Fuzzy Inference System

Create a new FIS.

fis = newfis('tipper');

Add a new input variable.

fis = addvar(fis,'input','service',[0 10]);

View new variable properties.

getfis(fis,'input',1)

ans = struct with fields:
 Name: 'service'
 NumMFs: 0
 range: [0 10]

Input Arguments
infis — Fuzzy system
mamfis object | sugfis object

Fuzzy system, specified as a FIS object.

 addvar

8-29

varType — Variable type
'input' | 'output'

Variable type, specified as either 'input' or 'output'.

varName — Variable name
string | character vector

Variable name, specified as a string or character vector.

varRange — Variable range
two-element vector

Variable range, specified as a two-element vector, where the first element is the minimum value and
the second element is the maximum value for the variable.

Output Arguments
outfis — Updated fuzzy system
mamfis object | sugfis object

Updated fuzzy system, returned as a FIS object.

Version History
Introduced before R2006a

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

R2018b: To be removed
Not recommended starting in R2018b

addvar will be removed in a future release. To add input or output variables to a fuzzy system, use
addInput or addOutput, respectively, instead. There are differences between these functions that
require updates to your code.

Update Code

This table shows some typical usages of addvar and how to update your code to use addInput or
addOutput instead.

If your code has this form: Use this code instead:
fis = addvar(fis,'input',...
 'service',[0 10])

fis = addInput(fis,[0 10],...
 'Name',"service")

8 Functions

8-30

If your code has this form: Use this code instead:
fis = addvar(fis,'output',...
 'tip',[0 30])

fis = addOutput(fis,[0 30],...
 'Name',"tip")

See Also
addInput | addOutput | addMF | addRule | rmmf | rmvar

 addvar

8-31

anfis
Tune Sugeno-type fuzzy inference system using training data

Syntax
fis = anfis(trainingData)
fis = anfis(trainingData,options)

[fis,trainError] = anfis(___)
[fis,trainError,stepSize] = anfis(___)

[fis,trainError,stepSize,chkFIS,chkError] = anfis(trainingData,options)

Description
fis = anfis(trainingData) generates a single-output Sugeno fuzzy inference system (FIS) and
tunes the system parameters using the specified input/output training data. The FIS object is
automatically generated using grid partitioning.

The training algorithm uses a combination of the least-squares and backpropagation gradient descent
methods to model the training data set.

fis = anfis(trainingData,options) tunes an FIS using the specified training data and
options. Using this syntax, you can specify:

• An initial FIS object to tune.
• Validation data for preventing overfitting to training data.
• Training algorithm options.
• Whether to display training progress information.

[fis,trainError] = anfis(___) returns the root mean square training error for each training
epoch.

[fis,trainError,stepSize] = anfis(___) returns the training step size at each training
epoch.

[fis,trainError,stepSize,chkFIS,chkError] = anfis(trainingData,options) returns
the validation data error for each training epoch, chkError, and the tuned FIS object for which the
validation error is minimum, chkFIS. To use this syntax, you must specify validation data using
options.ValidationData.

Examples

Train Fuzzy Inference System Using ANFIS

Load training data. This data has a single input and a single output.

load fuzex1trnData.dat

8 Functions

8-32

Generate and train a fuzzy inference system. By default, the FIS structure is created using a grid
partition of the input variable range with two membership functions.

fis = anfis(fuzex1trnData);

ANFIS info:
 Number of nodes: 12
 Number of linear parameters: 4
 Number of nonlinear parameters: 6
 Total number of parameters: 10
 Number of training data pairs: 25
 Number of checking data pairs: 0
 Number of fuzzy rules: 2

Start training ANFIS ...

1 0.229709
2 0.22896
3 0.228265
4 0.227624
Step size increases to 0.011000 after epoch 5.
5 0.227036
6 0.2265
7 0.225968
8 0.225488
Step size increases to 0.012100 after epoch 9.
9 0.225052
10 0.22465

Designated epoch number reached. ANFIS training completed at epoch 10.

Minimal training RMSE = 0.22465

Plot the ANFIS output and training data.

x = fuzex1trnData(:,1);
anfisOutput = evalfis(fis,x);
plot(x,fuzex1trnData(:,2),'*r',x,anfisOutput,'.b')
legend('Training Data','ANFIS Output','Location','NorthWest')

 anfis

8-33

The ANFIS data does not match the training data well. To improve the match:

• Increase the number of membership functions in the FIS structure to 4. Doing so adds fuzzy rules
and tunable parameters to the system.

• Increase the number of training epochs.

opt = anfisOptions('InitialFIS',4,'EpochNumber',40);

Suppress the error and step size Command Window display.

opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;

Train the FIS.

fis = anfis(fuzex1trnData,opt);

ANFIS info:
 Number of nodes: 20
 Number of linear parameters: 8
 Number of nonlinear parameters: 12
 Total number of parameters: 20
 Number of training data pairs: 25
 Number of checking data pairs: 0
 Number of fuzzy rules: 4

Minimal training RMSE = 0.0833853

8 Functions

8-34

Plot the ANFIS output and training data.

figure
anfisOutput = evalfis(fis,x);
plot(x,fuzex1trnData(:,2),'*r',x,anfisOutput,'.b')
legend('Training Data','ANFIS Output','Location','NorthWest')

The match between the training data and ANFIS output has improved.

Create Initial FIS for ANFIS Training

Create single-input, single-output training data.

x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);

Define an initial FIS structure with five Gaussian input membership functions.

genOpt = genfisOptions('GridPartition');
genOpt.NumMembershipFunctions = 5;
genOpt.InputMembershipFunctionType = 'gaussmf';
inFIS = genfis(x,y,genOpt);

Configure the ANFIS training options. Set the initial FIS, and suppress the training progress display.

 anfis

8-35

opt = anfisOptions('InitialFIS',inFIS);
opt.DisplayANFISInformation = 0;
opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;
opt.DisplayFinalResults = 0;

Train the FIS using the specified options.

outFIS = anfis([x y],opt);

Compare the ANFIS output with the training data.

plot(x,y,x,evalfis(outFIS,x))
legend('Training Data','ANFIS Output')

Obtain ANFIS Training and Validation Errors

Load training and validation data. This data has a single input and a single output.

load fuzex2trnData.dat
load fuzex2chkData.dat

Specify the training options.

opt = anfisOptions('InitialFIS',4,'EpochNumber',40);
opt.ValidationData = fuzex2chkData;

8 Functions

8-36

opt.DisplayANFISInformation = 0;
opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;
opt.DisplayFinalResults = 0;

Train the FIS, and return the training error.

[trainFIS,trainFISError,~,validationFIS,validationFISError] = anfis(fuzex2trnData,opt);

trainFISError contains the root mean squared error for the training data at each training epoch.
The training error for trainFIS is the minimum value in trainFISError.

trainFISRMSE = min(trainFISError)

trainFISRMSE = 0.2572

validationFISError contains the root mean squared error for the validation data at each training
epoch. The validation error for validationFIS is the minimum value in validationFISError.

validationFISRMSE = min(validationFISError)

validationFISRMSE = 0.6300

Obtain ANFIS Step Size Profile

Create single-input, single-output training data.

x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);

Configure the ANFIS training options. Set the initial FIS, and suppress the training progress display.

opt = anfisOptions('InitialFIS',4,'EpochNumber',60);
opt.DisplayANFISInformation = 0;
opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;
opt.DisplayFinalResults = 0;

A larger step size increase rate can make the training converge faster. However, increasing the step
size increase rate too much can lead to poor convergence. For this example, try doubling the step size
increase rate.

opt.StepSizeIncreaseRate = 2*opt.StepSizeIncreaseRate;

Train the FIS, and return the step size array.

[fis,~,stepSize] = anfis([x y],opt);

Plot the step size profile. An optimal step size profile should increase initially, reach a maximum, and
then decrease for the rest of the training.

figure
plot(stepSize)

 anfis

8-37

Validate ANFIS Training

Load training data.

load fuzex1trnData.dat

Load validation data.

load fuzex1chkData.dat

Specify the following training options:

• 4 input membership functions
• 30 training epochs
• Suppress training progress display

opt = anfisOptions('InitialFIS',4,'EpochNumber',30);
opt.DisplayANFISInformation = 0;
opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;
opt.DisplayFinalResults = 0;

Add the validation data to the training options.

opt.ValidationData = fuzex1chkData;

8 Functions

8-38

Train the FIS, and return the validation results.

[fis,trainError,stepSize,chkFIS,chkError] = anfis(fuzex1trnData,opt);

The training error, trainError, and validation error, chkError, arrays each contain one error value
per training epoch. Plot the training error and the validation error.

x = [1:30];
plot(x,trainError,'.b',x,chkError,'*r')

The minimum validation error occurs at epoch 17. The increase in validation error after this point
indicates overfitting of the model parameters to the training data. Therefore, the tuned FIS at epoch
17, chkFIS, exhibits the best generalization performance.

Input Arguments
trainingData — Training data
array

Training data, specified as an array. For a fuzzy system with N inputs, specify trainingData as an
array with N+1 columns. The first N columns contain input data, and the final column contains
output data. Each row of trainingData contains one data point.

Generally, training data should fully represent the features of the data the FIS is intended to model.

 anfis

8-39

options — Training options
anfisOptions option set

Training options, specified as an anfisOptions option set. Using options, you can specify:

• An initial FIS structure to tune, options.InitialFIS.
• Validation data for preventing overfitting to training data, options.ValidationData.
• Training algorithm options, such as the maximum number of training epochs,

options.EpochNumber, or the training error goal, options.ErrorGoal.
• Whether to display training progress information, such as the training error values for each

training epoch, options.DisplayErrorValues.

Output Arguments
fis — Trained fuzzy inference system
mamfis object | sugfis object

Trained fuzzy inference system with membership function parameters tuned using the training data,
returned as a mamfis or sugfis object. This fuzzy system corresponds to the epoch for which the
training error is smallest. If two epochs have the same minimum training error, the FIS from the
earlier epoch is returned.

trainError — Root mean square training error
array

Root mean square training error for each training epoch, returned as an array. The minimum value in
trainError is the training error for fuzzy system fis.

stepSize — Training step size
array

Training step size for each epoch, returned as an array. The anfis training algorithm tunes the FIS
parameters using gradient descent optimization methods. The training step size is the magnitude of
the gradient transitions in the parameter space.

Ideally, the step size increases at the start of training, reaches a maximum, and then decreases for
the remainder of the training. To achieve this step size profile, adjust the initial step size
(options.InitialStepSize), step size increase rate (options.StepSizeIncreaseRate), and
step size decrease rate options.StepSizeDecreaseRate.

chkFIS — Tuned FIS for which the validation error is minimum
mamfis object | sugfis object

Tuned FIS for which the validation error is minimum, returned as a mamfis or sugfis object. If two
epochs have the same minimum validation error, the FIS from the earlier epoch is returned.

chkFIS is returned only when you specify validation data using options.ValidationData.

chkError — Root mean square validation error
array

Root mean square training error, returned as an array with length equal to the number of training
epochs. The minimum value in chkError is the training error for fuzzy system chkFIS.

8 Functions

8-40

chkError is returned only when you specify validation data using options.ValidationData.

Alternative Functionality
tunefis Function

Starting in R2019a, you can tune a fuzzy system using tunefis. This function provides several other
options for tuning algorithms, specified by the tunefisOptions object.

To use ANFIS, specify the tuning algorithm as "anfis" in tunefisOptions. Then, use the options
object as an input argument for tunefis. For example:

Create the initial fuzzy inference system, and define the tunable parameter settings.

x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);
options = genfisOptions('GridPartition');
options.NumMembershipFunctions = 5;
fisin = genfis(x,y,options);
[in,out,rule] = getTunableSettings(fisin);

Tune the membership function parameters with "anfis".

opt = tunefisOptions("Method","anfis");
fisout = tunefis(fisin,[in;out],x,y,opt);

Fuzzy Logic Designer App

Starting in R2023a, you can interactively tune an ANFIS system using the Fuzzy Logic Designer
app. For an example, see “Train Adaptive Neuro-Fuzzy Inference Systems” on page 3-207.

Version History
Introduced before R2006a

R2020b: Implementation converted to MATLAB code

The ANFIS training algorithm is now implemented using MATLAB code. Previously, the training
algorithm was implemented as a C MEX file application.

The new ANFIS implementation displays the training error and step size increases in the MATLAB
Command Window after each training epoch. Previously, the training data for all epochs was
displayed in the Command Window at the end of training.

The new implementation can also reduce training time for some training configurations and
platforms.

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

 anfis

8-41

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

R2017a: Specify options using anfisOptions
Behavior changed in R2017a

To specify options for training adaptive neuro-fuzzy inference systems, you now create an
anfisOptions option set. You can then modify the options using dot notation. Any options you do
not modify remain at their default values.

Previously, to train an adaptive neuro-fuzzy inference system using anfis, you specified the training
options using optional input arguments.

fis = anfis(trnData,initFIS,trnOpt,dispOpt,chkData,optMethod);

Starting in R2017a, if your code uses anfis, modify the code to use an anfisOptions option set.

opt = anfisOptions;
opt.InitialFIS = 3;
fis = anfis(trnData,opt);

The following table shows the mapping of the old anfis input arguments to the new anfisOptions
option set.

Old anfis Input Argument New anfisOptions Option
initFIS InitialFIS
trnOpt(1) EpochNumber
trnOpt(2) ErrorGoal
trnOpt(3) InitialStepSize
trnOpt(4) StepSizeDecreaseRate
trnOpt(5) StepSizeIncreaseRate
dispOpt(1) DisplayANFISInformation
dispOpt(2) DisplayErrorValues
dispOpt(3) DisplayStepSize
dispOpt(4) DisplayFinalResults
chkData ValidationData
optMethod OptimizationMethod

R2016b: Supports deployment using MATLAB Compiler

The anfis function supports application deployment using MATLAB Compiler.

References
[1] Jang, J.-S. R. "Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter Algorithm."

Proceedings of the Ninth National Conference on Artificial Intelligence (AAAI-91). (July 1991):
762–767.

8 Functions

8-42

[2] Jang, J.-S. R. "ANFIS: Adaptive-Network-based Fuzzy Inference Systems." IEEE Transactions on
Systems, Man, and Cybernetics 23, no. 3 (May 1993): 665–685.

See Also
Apps
Fuzzy Logic Designer

Functions
anfisOptions | genfis | tunefis

Topics
“Neuro-Adaptive Learning and ANFIS” on page 3-203
“Predict Chaotic Time-Series Using ANFIS” on page 3-219
“Modeling Inverse Kinematics in a Robotic Arm” on page 3-227

 anfis

8-43

convertfis
Convert previous versions of fuzzy inference data in current format

Syntax
fisNew = convertfis(fisOld)

Description
In R2018b, the format of fuzzy inference systems changed from a structure format to an object
format. To convert fuzzy systems in an old format to the new format, use convertfis.

fisNew = convertfis(fisOld) converts the old-format fuzzy inference system fisOld into the
current object format.

Examples

Convert Old-Format Fuzzy Inference System

Load a fuzzy inference system created using an old format. For example, load a FIS structure from a
MAT-file.

load fisStructure

View the fields of the structure.

fisStructure

fisStructure = struct with fields:
 name: 'tipper'
 type: 'mamdani'
 andMethod: 'min'
 orMethod: 'max'
 defuzzMethod: 'centroid'
 impMethod: 'min'
 aggMethod: 'max'
 input: [1x2 struct]
 output: [1x1 struct]
 rule: [1x3 struct]

Convert the structure to a mamfis object and view the object properties.

fisObject = convertfis(fisStructure)

fisObject =
 mamfis with properties:

 Name: "tipper"
 AndMethod: "min"
 OrMethod: "max"

8 Functions

8-44

 ImplicationMethod: "min"
 AggregationMethod: "max"
 DefuzzificationMethod: "centroid"
 DisableStructuralChecks: 0
 Inputs: [1x2 fisvar]
 Outputs: [1x1 fisvar]
 Rules: [1x3 fisrule]

 See 'getTunableSettings' method for parameter optimization.

Input Arguments
fisOld — Old-format fuzzy inference system
structure | matrix

Old-format fuzzy inference system, specified as a structure or a matrix.

Output Arguments
fisNew — New-format fuzzy inference system
mamfis object | sugfis object

New-format fuzzy inference system, returned as a mamfis object or a sugfis object.

Version History
Introduced in R2018b

See Also
mamfis | sugfis

 convertfis

8-45

convertToStruct
Convert fuzzy inference system object into a structure

Syntax
fisStructure = convertToStruct(fisObject)

Description
fisStructure = convertToStruct(fisObject) converts a fuzzy inference system object into a
structure.

Examples

Convert FIS Object into Structure

Load a fuzzy inference system.

fisObject = readfis('tipper')

fisObject =
 mamfis with properties:

 Name: "tipper"
 AndMethod: "min"
 OrMethod: "max"
 ImplicationMethod: "min"
 AggregationMethod: "max"
 DefuzzificationMethod: "centroid"
 DisableStructuralChecks: 0
 Inputs: [1x2 fisvar]
 Outputs: [1x1 fisvar]
 Rules: [1x3 fisrule]

 See 'getTunableSettings' method for parameter optimization.

Convert the fuzzy inference system object into a structure.

fisStructure = convertToStruct(fisObject)

fisStructure = struct with fields:
 name: 'tipper'
 type: 'mamdani'
 andMethod: 'min'
 orMethod: 'max'
 defuzzMethod: 'centroid'
 impMethod: 'min'
 aggMethod: 'max'
 input: [1x2 struct]
 output: [1x1 struct]

8 Functions

8-46

 rule: [1x3 struct]

Input Arguments
fisObject — Fuzzy inference system object
mamfis object | sugfis object

Fuzzy inference system object, specified as a mamfis or sugfis object.

Output Arguments
fisStructure — Fuzzy inference system structure
structure

Fuzzy inference system structure, returned as a structure. The fields of the structure correspond to
the properties of the FIS object. For object properties that are themselves objects, the corresponding
structure field is a structure.

Version History
Introduced in R2018b

See Also
mamfis | sugfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77

 convertToStruct

8-47

convertToSugeno
Convert Mamdani fuzzy inference system into Sugeno fuzzy inference system

Syntax
sugenoFIS = convertToSugeno(mamdaniFIS)

Description
sugenoFIS = convertToSugeno(mamdaniFIS) converts the Mamdani fuzzy inference system
mamdaniFIS into a Sugeno fuzzy inference system sugenoFIS.

Examples

Transform Mamdani FIS into Sugeno FIS

Load a Mamdani fuzzy inference system.

mam_fis = readfis('mam22.fis');

Convert this system to a Sugeno fuzzy inference system.

sug_fis = convertToSugeno(mam_fis);

Plot the output surfaces for both fuzzy systems.

subplot(2,2,1)
gensurf(mam_fis)
title('Mamdani system (Output 1)')
subplot(2,2,2)
gensurf(sug_fis)
title('Sugeno system (Output 1)')
subplot(2,2,3)
gensurf(mam_fis,gensurfOptions('OutputIndex',2))
title('Mamdani system (Output 2)')
subplot(2,2,4)
gensurf(sug_fis,gensurfOptions('OutputIndex',2))
title('Sugeno system (Output 2)')

8 Functions

8-48

The output surfaces for both systems are similar.

Input Arguments
mamdaniFIS — Mamdani fuzzy inference system
mamfis object | mamfistype2 object

Mamdani fuzzy inference system, specified as a mamfis or mamfistype2 object.

mamdaniFIS must not contain rules with NOT logic in the consequent.

Output Arguments
sugenoFIS — Sugeno fuzzy inference system
sugfis object | sugfistype2 object

Sugeno fuzzy inference system, returned as one of the following:

• sugfis object when mamdaniFIS is a mamfis object
• sugfistype2 object when mamdaniFIS is a mamfistype2 object

sugenoFIS:

 convertToSugeno

8-49

• Has constant output membership functions, whose values correspond to the centroids of the
output membership functions in mamdaniFIS

• Uses the weighted-average defuzzification method
• Uses the product implication method
• Uses the sum aggregation method

The remaining properties of sugenoFIS, including the input membership functions and rule
definitions remain unchanged from mamdaniFIS.

Tips
• If you have a functioning Mamdani fuzzy inference system, consider using convertToSugeno to

convert to a more computationally efficient Sugeno structure to improve performance.

Alternative Functionality
App

You can interactively convert a Mamdani FIS into a Sugeno FIS using the Fuzzy Logic Designer
app. You can then export the system to the MATLAB workspace.

Version History
Introduced in R2018b

R2018b: Replaces mam2sug

This function replaces mam2sug for converting a Mamdani system to a Sugeno system.

See Also
Functions
mamfis | sugfis | mamfistype2 | sugfistype2

Apps
Fuzzy Logic Designer

Topics
“Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2

8 Functions

8-50

convertToType1
Convert type-2 fuzzy inference system into type-1 fuzzy inference system

Syntax
fisT1 = convertToType1(fisT2)

Description
fisT1 = convertToType1(fisT2) converts the type-2 fuzzy inference system fisT2 into a type-1
fuzzy inference system fisT1.

Examples

Convert Type-2 FIS to Type-1 FIS

Create a type-2 fuzzy inference system. For this example, Create a type-2 Mamdani FIS with two
inputs, one output.

fisT2 = mamfistype2("NumInputs",2,"NumOutputs",1);

View the membership function for the first input variable.

plotmf(fisT2,"input",1)

 convertToType1

8-51

Convert fisT2 into a type-1 fuzzy inference system.

fisT1 = convertToType1(fisT2);

View the converted membership functions for the first input variable.

plotmf(fisT1,"input",1)

8 Functions

8-52

Input Arguments
fisT2 — Type-2 fuzzy inference system
mamfistype2 object | sugfistype2 object

Type-2 fuzzy inference system, specified as a mamfistype2 or sugfistype2 object.

Output Arguments
fisT1 — Type-1 fuzzy inference system
mamfis object | sugfis object

Type-1 fuzzy inference system, returned as one of the following:

• mamfis object when fisT2 is a mamfistype2 object
• sugfis object when fisT2 is a sugfistype2 object

The properties of fisT1 match the corresponding properties of fisT2, except that each type-2
membership function is converted to a type-1 membership function. The parameters of each type-1
membership function in fisT1 match the upper membership function parameters of the
corresponding type-2 membership function in fisT2.

 convertToType1

8-53

Alternative Functionality
App

You can interactively convert a type-2 FIS into a type-1 FIS using the Fuzzy Logic Designer app. You
can then export the system to the MATLAB workspace.

Version History
Introduced in R2019b

See Also
convertToType2 | convertToSugeno

Topics
“Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2
“Type-2 Fuzzy Inference Systems” on page 2-8

8 Functions

8-54

convertToType2
Convert type-1 fuzzy inference system into type-2 fuzzy inference system

Syntax
fisT2 = convertToType2(fisT1)

Description
fisT2 = convertToType2(fisT1) converts the type-1 fuzzy inference system fisT1 into a type-2
fuzzy inference system fisT2.

Examples

Convert Type-1 FIS to Type-2 FIS

Create a type-1 fuzzy inference system. For this example, load the tipper.fis file.

fisT1 = readfis('tipper');

View the membership function for the first input variable.

plotmf(fisT1,"input",1)

 convertToType2

8-55

Convert fisT1 into a type-2 fuzzy inference system.

fisT2 = convertToType2(fisT1);

View the converted membership functions for the first input variable.

plotmf(fisT2,"input",1)

8 Functions

8-56

Create Type-2 Fuzzy Inference System from Data

To create a type-2 FIS from input/output data, you must first create a type-1 FIS using genfis.

Load training data and generate a FIS using subtractive clustering.

load clusterDemo.dat
inputData = clusterDemo(:,1:2);
outputData = clusterDemo(:,3);
opt = genfisOptions('SubtractiveClustering',...
 'ClusterInfluenceRange',[0.5 0.25 0.3]);
fisT1 = genfis(inputData,outputData,opt);
fisT1.Outputs

ans =
 fisvar with properties:

 Name: "out1"
 Range: [-0.1274 1.1458]
 MembershipFunctions: [1x3 fismf]

Convert the generated FIS to a type-2 FIS.

fisT2 = convertToType2(fisT1);

 convertToType2

8-57

Since the initial type-1 FIS is a Sugeno system, only the input MFs are converted to type-2 MFs.

Input Arguments
fisT1 — Type-1 fuzzy inference system
mamfis object | sugfis object

Type-1 fuzzy inference system, specified as a mamfis or sugfis object.

Output Arguments
fisT2 — Type-2 fuzzy inference system
mamfistype2 object | sugfistype2 object

Type-2 fuzzy inference system, returned as one of the following:

• mamfistype2 object when fisT1 is a mamfis object
• sugfistype2 object when fisT1 is a sugfis object

The properties of fisT2 match the corresponding properties of fisT1, except that each type-1
membership function (except for Sugeno output membership functions) is converted to a type-2
membership function. The upper membership function parameters of each type-2 membership
function in fisT2 match the membership function parameters of the corresponding type-1
membership function in fisT1.

fisT2 has default LowerScale and LowerLag values and uses the default "karnikmendel" type
reduction method.

Alternative Functionality
App

You can interactively convert a type-1 FIS into a type-2 FIS using the Fuzzy Logic Designer app. You
can then export the system to the MATLAB workspace.

Version History
Introduced in R2019b

See Also
convertToType1 | convertToSugeno

Topics
“Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2
“Type-2 Fuzzy Inference Systems” on page 2-8

8 Functions

8-58

defuzz
Defuzzify membership function

Syntax
output = defuzz(x,mf,method)

Description
output = defuzz(x,mf,method) returns the defuzzified output value for membership function mf
at the variable values in x using the specified defuzzification method.

Examples

Obtain Defuzzified Value
x = -10:0.1:10;
mf = trapmf(x,[-10 -8 -4 7]);
out = defuzz(x,mf,'centroid')

out = -3.2857

Input Arguments
x — Variable values
vector

Variable values,

mf — Membership function values
vector

Membership function values, specified as a vector with the same length as x. Each element of mf
contains a fuzzy membership value for the corresponding variable value in x.

method — Defuzzification method
'centroid' | 'bisector' | 'mom' | 'lom' | 'som' | character vector | string

Defuzzification method, specified as one of the following:

• 'centroid' — Centroid of the area under the output fuzzy set
• 'bisector' — Bisector of the area under the output fuzzy set
• 'mom' — Mean of the values for which the output fuzzy set is maximum
• 'lom' — Largest value for which the output fuzzy set is maximum
• 'som' — Smallest value for which the output fuzzy set is maximum
• Character vector or string that contains the name of a custom function in the current working

folder or on the MATLAB path

 defuzz

8-59

For more information on:

• The built-in defuzzification methods, see “Defuzzification Methods” on page 1-25.
• Custom defuzzification methods, see “Build Fuzzy Systems Using Custom Functions” on page 2-86

Output Arguments
output — Defuzzified output value
scalar

Defuzzified output value, returned as a scalar.

Version History
Introduced before R2006a

See Also
Fuzzy Logic Designer

Topics
“Foundations of Fuzzy Logic” on page 1-7
“Fuzzy Inference Process” on page 1-19
“Defuzzification Methods” on page 1-25

8 Functions

8-60

dsigmf
Difference between two sigmoidal membership functions

Syntax
y = dsigmf(x,params)

Description
This function computes fuzzy membership values using the difference between two sigmoidal
membership functions. You can also compute this membership function using a fismf object. For
more information, see “fismf Object” on page 8-63.

This membership function is related to the sigmf and psigmf membership functions.

y = dsigmf(x,params) returns fuzzy membership values computed using the difference between
two sigmoidal membership functions. Each sigmoidal function is given by:

f x; ak, ck = 1
1 + e−ak(x− ck)

To define the membership function parameters, specify params as the vector [a1 c1 a2 c2].

Membership values are computed for each input value in x.

Examples

Obtain Difference of Two Sigmoidal Functions

Specify input values across the universe of discourse.

x = 0:0.1:10;

Evaluate membership function for the input values.

y = dsigmf(x,[5 2 5 7]);

Plot the membership function.

plot(x,y)
title('dsigmf, P = [5 2 5 7]')
xlabel('x')
ylabel('Degree of Membership')
ylim([-0.05 1.05])

 dsigmf

8-61

Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length four

Membership function parameters, specified as the vector [a1 c1 a2 c2]. Here, a1 and c1 are the
parameters of the first sigmoidal function, and a2 and c2 are the parameters of the second sigmoidal
function.

For each sigmoidal function, to open the function to the left or right, specify a negative or positive
value for a, respectively. The magnitude of a defines the width of the transition area, and parameter c
defines the center of the transition area.

To define a unimodal membership function with a maximum value of 1, specify the same signs for a1
and a2, and select c values far enough apart to allow for both transition areas to reach 1.

8 Functions

8-62

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.

Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the dsigmf membership function.

mf = fismf("dsigmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of dsigmf, respectively.

Version History
Introduced before R2006a

R2018b: C and C++ code generation support

This function supports C and C++ code generation using MATLAB Coder.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fismf | fismftype2 | psigmf | sigmf | gaussmf | gauss2mf | gbellmf | trimf | trapmf |
linsmf | linzmf | pimf | smf | zmf

Topics
“Membership Functions” on page 1-9

 dsigmf

8-63

evalfis
Evaluate fuzzy inference system

Syntax
output = evalfis(fis,input)
output = evalfis(fis,input,options)
[output,fuzzifiedIn,ruleOut,aggregatedOut,ruleFiring] = evalfis(___)

Description
output = evalfis(fis,input) evaluates the fuzzy inference system fis for the input values in
input and returns the resulting output values in output.

output = evalfis(fis,input,options) evaluates the fuzzy inference system using specified
evaluation options.

[output,fuzzifiedIn,ruleOut,aggregatedOut,ruleFiring] = evalfis(___) returns
intermediate results from the fuzzy inference process. This syntax is not supported when fis is a
fistree object.

Examples

Evaluate Fuzzy Inference System

Load FIS.

fis = readfis('tipper');

Evaluate the FIS when the first input is 2 and the second input is 1.

output = evalfis(fis,[2 1])

output = 7.0169

Evaluate FIS for Multiple Input Combinations

Load FIS.

fis = readfis('tipper');

Specify the input combinations to evaluate using an array with one row per input combination.

input = [2 1;
 4 5;
 7 8];

Evaluate the FIS for the specified input combinations.

8 Functions

8-64

output = evalfis(fis,input)

output = 3×1

 7.0169
 14.4585
 20.3414

Each row of output is the defuzzified output value for the corresponding row of input.

Specify Number of Output Samples for FIS Evaluation

Load FIS.

fis = readfis('tipper');

Create an evalfisOptions option set, specifying the number of samples in the output fuzzy sets.

options = evalfisOptions('NumSamplePoints',50);

Evaluate the FIS using this option set.

output = evalfis(fis,[2 1],options);

Evaluate Tree of Fuzzy Inference Systems

Create a pair of Mamdani fuzzy inference systems.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);

Define the connection between the two.

con = ["fis1/output1" "fis2/input1"];

Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],con);

Create an evalfisOptions option set, specifying the number of samples in the output fuzzy sets.

options = evalfisOptions('NumSamplePoints',50);

Evaluate the fistree object using a specified input combination and this option set.

y = evalfis(tree,[0.5 0.2 0.7],options)

y = 0.1553

 evalfis

8-65

Obtain Intermediate Fuzzy Inference Results

Load FIS.

fis = readfis('tipper');

Evaluate the FIS, and return the intermediate inference results.

[output,fuzzifiedIn,ruleOut,aggregatedOut,ruleFiring] = evalfis(fis,[2 1]);

You can examine the intermediate results to understand or visualize the fuzzy inference process. For
example, view the aggregated output fuzzy set, which is the fuzzy set that evalfis defuzzifies to find
the output value. Also, plot the defuzzified output value.

outputRange = linspace(fis.output.range(1),fis.output.range(2),length(aggregatedOut))';
plot(outputRange,aggregatedOut,[output output],[0 1])
xlabel('Tip')
ylabel('Output Membership')
legend('Aggregated output fuzzy set','Defuzzified output')

The length of aggregatedOutput corresponds to the number of sample points used to discretize
output fuzzy sets.

8 Functions

8-66

Evaluate Type-2 Fuzzy Inference System

Create a type-2 Mamdani fuzzy inference system.

fis = mamfistype2('NumInputs',2,'NumOutputs',1);

Evaluate the FIS when the first input is 0.4 and the second input is 0.72.

output = evalfis(fis,[0.4 0.72])

output = 0.1509

The output of a type-2 FIS is a crisp value.

When you obtain intermediate fuzzy inference results for a type-2 FIS, you obtain intermediate
results generated using both upper and lower MF values. For example, obtain the intermediate
fuzzified input values.

[output,fuzzifiedInput] = evalfis(fis,[0.5 0.75]);

View the fuzzified input values.

fuzzifiedInput

fuzzifiedInput = 9×4

 0 0 0 0
 1.0000 0 1.0000 0
 0 0 0 0
 0 0.4000 0 0.2500
 1.0000 0.4000 1.0000 0.2500
 0 0.4000 0 0.2500
 0 0.4000 0 0.2500
 1.0000 0.4000 1.0000 0.2500
 0 0.4000 0 0.2500

The first two columns contain the fuzzified values of the first and second inputs based on the upper
MF for each input. The second two columns contain the fuzzified values for based on the lower MF
for each input.

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object | fistree object |
homogeneous structure

Fuzzy inference system to be evaluated, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system
• fistree object — Tree of interconnected fuzzy inference systems

 evalfis

8-67

• Homogeneous structure created using getFISCodeGenerationData. For an example, see
“Generate Code for Fuzzy System Using MATLAB Coder” on page 6-12.

input — Input values
M-by-NU array

Input values, specified as an M-by-NU array, where NU is the number of input variables in fis and M
is the number of input combinations to evaluate.

evalfis supports double-precision or single-precision input values.

options — Evaluation options
evalfisOptions object

Evaluation options, specified as an evalfisOptions object.

Output Arguments
output — Output values
array

Output values, returned as an M-by-NY array, where NY is the number of output variables in fis.
evalfis evaluates fis for each row of input and returns the resulting defuzzified outputs in the
corresponding row of output.

fuzzifiedIn — Fuzzified input values
array

Fuzzified input values, returned as an array.

When fis is a type-1 fuzzy inference system, fuzzifiedIn is an NR-by-NU array, where NR is the
number of rules in fis. Element (i,j) of fuzzifiedIn is the value of the input membership function
for the jth input in the ith rule.

When fis is a type-2 fuzzy inference system, fuzzifiedIn is an NR-by-(2*NU) array. The first NU
columns contain the fuzzified values of the upper membership function for each rule, and the last NU
columns contain the fuzzified values from the lower membership functions.

If input specifies multiple input combinations, then fuzzifiedIn corresponds to the combination
in the last row of input.

For more information on fuzzifying input values, see “Fuzzify Inputs” on page 1-19.

This output argument is not supported when fis is a fistree object.

ruleOut — Rule outputs
array

Rule outputs, returned as an array. To obtain the output for each rule, evalfis applies the firing
strength from the rule antecedent to the output membership function using the implication method
specified in fis.

When fis is a type-1 Mamdani system, ruleOut is an NS-by-(NRNY) array, where NR is the number of
rules, NY is the number of outputs, and NS is the number of sample points used for evaluating output

8 Functions

8-68

variable ranges. Each column of ruleOut contains the output fuzzy set for one rule. The first NR
columns contain the rule outputs for the first output variable, the next NR columns correspond to the
second output variable, and so on.

When fis is a type-2 Mamdani system, ruleOut is an NS-by-(2*NR*NY) array. The first NR*NY
columns contain the rule outputs generated using upper membership functions, and the last NR*NY
columns contain the rule outputs generated using lower membership functions.

When fis is a type-1 Sugeno system, each rule output is a scalar value. In this case, ruleOut is an
NR-by-NY array. Element (j,k) of ruleOut is the value of the kth output variable for the jth rule.

When fis is a type-2 Sugeno system, ruleOut is an NR-by-(3*NY) array. The first NY columns contain
the rule output levels. The next NY columns contain the corresponding rule firing strengths generated
using upper membership functions. The last NY columns contain the rule firing strengths generated
using lower membership functions. For example, in a three-output system, columns 4 and 7 contain
the firing strengths for the output levels in column 1.

If input specifies multiple input combinations, then ruleOut corresponds to the combination in the
last row of input.

For more information on fuzzy implication, see “Apply Implication Method” on page 1-21.

This output argument is not supported when fis is a fistree object.

aggregatedOut — Aggregated output
array | row vector

Aggregated output for each output variable, returned as an NS-by-NY array or a row vector of length
NY. For each output variable, evalfis combines the corresponding outputs from all the rules using
the aggregation method specified in fis.

For a type-1 Mamdani system, the aggregate result for each output variable is a fuzzy set. In this
case, aggregatedOut is as an NS-by-NY array, where NY is the number of outputs and NS is the
number of sample points used for evaluating output variable ranges. Each column of
aggregatedOut contains the aggregate fuzzy set for one output variable.

For a type-2 Mamdani system, the aggregate result for each output variable is a fuzzy set. In this
case, aggregatedOut is as an NS-by-(2*NY) array. The first NY columns contain the aggregated
outputs generated using upper membership functions, and the last NY columns contain the
aggregated outputs generated using lower membership functions.

When fis is a type-1 Sugeno system, the aggregate result for each output variable is a scalar value.
In this case, aggregatedOut is a row vector of length NY, where element k is the sum of the rule
outputs for the kth output variable.

When fis is a type-2 Sugeno system, aggregatedOut is an NR-by-(3*NY) array. aggregatedOut
contains the same data as ruleOut with the columns sorted based on the output levels. For example,
in a three-output system, when the output levels in column 1 are sorted, the corresponding firing
strengths in columns 4 and 7 are adjusted accordingly.

If input specifies multiple input combinations, then aggregatedOut corresponds to the
combination in the last row of input.

For more information on fuzzy aggregation, see “Aggregate All Outputs” on page 1-22.

 evalfis

8-69

This output argument is not supported when fis is a fistree object.

ruleFiring — Rule firing strengths
column vector | array

Rule firing strength, returned as a column vector or array. To obtain the firing strength for each rule,
evalfis evaluates the rule antecedents; that is, it applies fuzzy operator to the values of the
fuzzified inputs.

For a type-1 fuzzy system, ruleFiring is a column vector of length NR, where NR is the number of
rules, and element i is the firing strength of the ith rule.

For a type-2 fuzzy system, ruleFiring is an NR-by-2 array. The first column contains the rule firing
strengths generated using upper membership functions, and the second column contains the rule
firing strengths generated using lower membership functions.

If input specifies multiple input combinations, then ruleFiring corresponds to the combination in
the last row of input.

For more information on applying the fuzzy operator, see “Apply Fuzzy Operator” on page 1-20.

This output argument is not supported when fis is a fistree object.

Alternative Functionality
App

You can interactively evaluate type-1 and type-2 fuzzy inference systems using the Fuzzy Logic
Designer app. The app does not support FIS trees.

Simulink Block

You can evaluate FIS objects using the Fuzzy Logic Controller block. This block does not support
evaluating FIS trees. For more information on mapping the arguments of evalfis to the Fuzzy Logic
Controller block, see “Simulate Fuzzy Inference Systems in Simulink” on page 5-2.

Version History
Introduced before R2006a

R2022b: C and C++ code generation support for evaluating FIS trees

You can generate code for evaluating FIS trees using MATLAB Coder. For more information, see
“Generate Code for Fuzzy System Using MATLAB Coder” on page 6-12.

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

8 Functions

8-70

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

R2018b: C and C++ code generation support

You can generate code for loading and evaluating the following types of fuzzy inference systems using
MATLAB Coder.

• Type-1 and type-2 Mamdani systems
• Type-1 and type-2 Mamdani systems

For more information, see “Generate Code for Fuzzy System Using MATLAB Coder” on page 6-12.

R2018b: Input argument order changed
Behavior changed in R2018b

Previously, to evaluate a fuzzy inference system, fis, you specified the input variable values, input,
as the first input argument. For example:

output = evalfis(input,fis);
output = evalfis(input,fis,options);

Update your code to specify the fuzzy inference system as the first input argument. For example:

output = evalfis(fis,input);
output = evalfis(fis,input,options);

R2018b: Obtain intermediate rule firing strengths

You can obtain intermediate rule firing strengths when evaluating a fuzzy inference system using the
ruleFiring output argument.

R2018a: Specify number of sample points for output fuzzy sets using evalfisOptions
object
Behavior changed in R2018a

Previously, to specify the number of sample points, numPts, to use when evaluating output fuzzy sets
of fuzzy inference system fis, you used an input argument. For example:

output = evalfis(input,fis,numPts);

Update your code to specify the number of sample points using an evalfisOptions object. For
example:

opt = evalfisOptions('NumSamplePoints',numPts);
output = evalfis(input,fis,opt);

R2018a: Diagnostic message behavior changed
Behavior changed in R2018a

The diagnostic message behavior of the evalfis function has changed. Previously, the evalfis
function had the following behaviors for diagnostic conditions.

 evalfis

8-71

Diagnostic Condition Previous Behavior
Input values outside of their specified variable
ranges

MATLAB warning

No rules fired for a given output at the current
input values

MATLAB Command Window message

Empty output fuzzy sets MATLAB Command Window message

These diagnostic conditions are reported as MATLAB warnings by default. You can change this
behavior by specifying the corresponding options in an evalfisOptions object.

To disable the default warning messages, update your code to use an evalfisOptions object, and
specify the diagnostic message options. For example, disable the empty output fuzzy set message.

opt = evalfisOptions('EmptyOutputFuzzySetMessage',"none");
output = evalfis(input,fis,opt);

R2018a: Intermediate fuzzy inference outputs for Sugeno systems analogous to outputs for
Mamdani systems
Behavior changed in R2018a

When evaluating a Sugeno system using the following syntax, the intermediate fuzzy inference results
are now analogous to the intermediate results for Mamdani systems.
[output,fuzzifiedInputs,ruleOutputs,aggregatedOutput] = evalfis(input,fis);

For a Sugeno system:

• ruleOutputs now returns an array that contains the scalar output value for each rule; that is,
the product of the rule firing strength and the rule output level.

• aggregatedOutput now returns the sum of all the rule output values for each output variable.

Previously, for a Sugeno fuzzy system:

• ruleOutputs returned an array that contained the output level for each rule.
• aggregatedOutput returned an array that contained the firing strength for each rule.

Starting in R2018a, if your code returns intermediate fuzzy inference results when evaluating a
Sugeno system using evalfis, modify your code to use the new ruleOutputs and
aggregatedOutput results.

R2017b: Smaller number of sample points supported for output variable ranges

Using the numPts input argument, you can specify the number of sample points for evaluating the
output range of a Mamdani fuzzy inference system as any value greater than 1. Previously, the
minimum value was 101.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

8 Functions

8-72

• All evalfis syntaxes are supported for code generation. However, mamfis, sugfis,
mamfistype2, sugfistype2, and fistree objects are not supported. To use evalfis for code
generation, you must convert your FIS objects into homogeneous structures using
getFISCodeGenerationData.

• Unlike the Fuzzy Logic Controller block, evalfis does not support fixed-point data for simulation
or code generation.

• When evaluating a fuzzy inference system in Simulink, it is recommended to not use evalfis or
evalfisOptions within a MATLAB Function block. Instead, evaluate your fuzzy inference system
using a Fuzzy Logic Controller block.

See Also
Functions
mamfis | sugfis | mamfistype2 | sugfistype2 | fistree | evalfisOptions

Topics
“Fuzzy Inference Process” on page 1-19
“Build Fuzzy Systems at the Command Line” on page 2-77

 evalfis

8-73

evalmf
Evaluate fuzzy membership function

Syntax
y = evalmf(mfT1,x)

[yUpper,yLower] = evalmf(mfT2,x)

Description
y = evalmf(mfT1,x) evaluates one or more type-1 membership functions based on the input
values in x, returning the membership function values.

[yUpper,yLower] = evalmf(mfT2,x) evaluates one or more type-2 membership function based
on the input values in x, returning both the upper and lower membership function values.

Examples

Evaluate Membership Function

Evaluate a generalized bell-shaped membership function across a range of input values from 0
through 10.

x = 0:0.1:10;
mf = fismf("gbellmf",[2 4 6]);
y = evalmf(mf,x);

Plot the evaluation.

plot(x,y)
xlabel('gbellmf, P = [2 4 6]')

8 Functions

8-74

Evaluate Multiple Membership Functions

Create a vector of three Gaussian membership functions.

mf = [fismf("gaussmf",[0.9 2.5],'Name',"low");
 fismf("gaussmf",[0.9 5],'Name',"medium");
 fismf("gaussmf",[0.9 7.55],'Name',"high")];

Specify the input range over which to evaluate the membership functions.

x = (-2:0.1:12)';

Evaluate the membership functions.

y = evalmf(mf,x);

Plot the evaluation results.

plot(x,y)
xlabel('Input (x)')
ylabel('Membership value (y)')
legend("low","medium","high")

 evalmf

8-75

Evaluate Type-2 Membership Function

Create a triangular type-2 membership function.

mf = fismftype2("trimf",[5 7 9],'LowerLag',0.3,'LowerScale',0.8);

Evaluate the membership function across a range of input values from 0 through 10.

x = 0:0.1:10;
[yUpper,yLower] = evalmf(mf,x);

Plot the evaluated upper and lower MFs.

plot(x,yUpper,x,yLower)
legend('Upper MF','Lower MF','Location','northwest')
xlabel('Input')
ylabel('Membership value')

8 Functions

8-76

Input Arguments
mfT1 — Type-1 membership function
fismf object | vector of fismf objects

Type-1 membership function, specified as a fismf object or a vector of such objects.

x — Input value
scalar | vector | 2-D matrix

Input value, specified as a scalar, vector, or 2-D matrix. If mf is a:

• Single fismf object, then you can specify x as a scalar, vector, or matrix
• Vector of fismf objects, then you can specify x as a scalar or vector

mfT2 — Type-2 membership function
fismftype2 object | array of fismftype2 objects

Type-2 membership function, specified as a fismftype2 object or a vector of such objects.

Output Arguments
y — Membership values for a type-1 membership function
scalar | vector | 2-D matrix

 evalmf

8-77

Membership value for a type-1 membership function, returned as a scalar, vector, or 2-D matrix. If
mfT1 is a:

• Single fismf object, then y is a scalar, vector, or matrix with the same dimensions as x. Each
element of y is the evaluated membership value for the corresponding element of x.

• Vector of fismf objects, then y is an M-by-N matrix, where M and N are the lengths of mfT1 and
x, respectively. y(i,j) is the evaluated value of membership function mfT1(i) for input value x(j).

yUpper — Upper MF membership values for a type-2 membership function
scalar | vector | 2-D matrix

Upper MF membership value for a type-2 membership function, returned as a scalar, vector, or 2-D
matrix. If mfT2 is a:

• Single fismftype2 object, then y is a scalar, vector, or matrix with the same dimensions as x.
Each element of y is the evaluated membership value for the corresponding element of x.

• Vector of fismftype2 objects, then y is an M-by-N matrix, where M and N are the lengths of
mfT2 and x, respectively. y(i,j) is the evaluated value of membership function mfT2(i) for input
value x(j).

yLower — Lower MF membership values for a type-2 membership function
scalar | vector | 2-D matrix

Lower MF membership value for a type-2 membership function, returned as a scalar, vector, or 2-D
matrix. If mfT2 is a:

• Single fismftype2 object, then y is a scalar, vector, or matrix with the same dimensions as x.
Each element of y is the evaluated membership value for the corresponding element of x.

• Vector of fismftype2 objects, then y is an M-by-N matrix, where M and N are the lengths of
mfT2 and x, respectively. y(i,j) is the evaluated value of membership function mfT2(i) for input
value x(j).

Version History
Introduced before R2006a

R2018b: fismf object input argument
Behavior changed in R2018b

evalmf now takes a fismf object as an input argument rather than the type and parameters of the
membership function. Also, you can now evaluate multiple membership functions by passing an array
of fismf objects to evalmf. There are differences between these approaches that require updates to
your code.
Update Code

Previously, you evaluated a membership function for given input values, x, by specifying the type of
membership function, type, and the membership functions parameters, params.

y = evalmf(x,params,type);

Update your code to first create a fismf object, mf. Then, pass this object to evalmf.

mf = fismf(type,params);
y = evalmf(mf,x);

8 Functions

8-78

Also, previously, to evaluate multiple membership functions you called evalmf once for each
membership function.

y1 = evalmf(x,params1,type1);
y2 = evalmf(x,params2,type2);
y3 = evalmf(x,params3,type3);

Now, you can evaluate multiple membership functions by passing an array of fismf objects to
evalmf.

mf1 = fismf(type1,params1);
mf2 = fismf(type2,params2);
mf2 = fismf(type3,params3);
y = evalmf([mf1 mf2 mf3],x);

Here, y = [y1 y2 y3]';

See Also
fismf | fismftype2

Topics
“Foundations of Fuzzy Logic” on page 1-7

 evalmf

8-79

fcm
Fuzzy c-means clustering

Syntax
[centers,U] = fcm(data)
[centers,U] = fcm(data,options)

[centers,U,objFunc] = fcm(___)

Description
[centers,U] = fcm(data) performs fuzzy c-means clustering on the data using default options.

[centers,U] = fcm(data,options) specifies clustering options, including the number of
clusters and the clustering exponent.

[centers,U,objFunc] = fcm(___) returns the objective function values at each optimization
iteration for all of the previous syntaxes.

Examples

Cluster Data Using Fuzzy C-Means Clustering

Load the data to cluster. Each row of fcmdata contains one data point. The two columns of fcmdata
contain the feature values for each data point.

load fcmdata.dat

Specify clustering options using an fcmOptions object. For this example, set the number of clusters
to 2 and use default values for the other options.

options = fcmOptions(NumClusters=2);

Find the cluster centers using fuzzy c-means clustering.

[centers,U] = fcm(fcmdata,options);

Iteration count = 1, obj. fcn = 8.970479
Iteration count = 2, obj. fcn = 7.197402
Iteration count = 3, obj. fcn = 6.325579
Iteration count = 4, obj. fcn = 4.586142
Iteration count = 5, obj. fcn = 3.893114
Iteration count = 6, obj. fcn = 3.810804
Iteration count = 7, obj. fcn = 3.799801
Iteration count = 8, obj. fcn = 3.797862
Iteration count = 9, obj. fcn = 3.797508
Iteration count = 10, obj. fcn = 3.797444
Iteration count = 11, obj. fcn = 3.797432
Iteration count = 12, obj. fcn = 3.797430
Minimum improvement reached.

8 Functions

8-80

Classify each data point into the cluster with the largest membership value.

maxU = max(U);
index1 = find(U(1,:) == maxU);
index2 = find(U(2,:) == maxU);

Plot the clustered data and cluster centers.

plot(fcmdata(index1,1),fcmdata(index1,2),"ob")
hold on
plot(fcmdata(index2,1),fcmdata(index2,2),"or")
plot(centers(1,1),centers(1,2),"xb",MarkerSize=15,LineWidth=3)
plot(centers(2,1),centers(2,2),"xr",MarkerSize=15,LineWidth=3)
xlabel("Feature 1")
ylabel("Feature 2")
hold off

Specify Fuzzy Overlap Between Clusters

Create a random data set.

data = rand(100,2);

Specify the following FCM clustering options.

 fcm

8-81

• Compute two clusters.
• To increase the amount of fuzzy overlap between the clusters, specify a large fuzzy partition

matrix exponent.
• Suppress the command-window display of the objective function values for each iteration.

options = fcmOptions(...
 NumClusters=2,...
 Exponent=3.0,...
 Verbose=false);

Cluster the data.

[centers,U] = fcm(data,options);

Configure Clustering Termination Conditions

Load the clustering data.

load clusterDemo.dat

Configure an options object for computing three clusters and suppress the command-window output
of the objective function values. Also, set the clustering termination conditions such that the
optimization stops when either of the following occurs:

• The number of iterations reaches a maximum of 50.
• The objective function improves by less than 0.001 between two consecutive iterations.

options = fcmOptions(...
 NumClusters=3,...
 MaxNumIteration=50,...
 MinImprovement=0.001,...
 Verbose=false);

Cluster the data.

[centers,U,objFun] = fcm(clusterDemo,options);

The length of the objective function vector is less than 50; therefore the clustering did not reach the
maximum number of iterations.

View the final three values of the objective function vector.

objFun(end-2:end)

ans = 3×1

 15.4353
 15.4306
 15.4305

The optimization stopped because the objective function improved by less than 0.001 between the
final two iterations.

8 Functions

8-82

Input Arguments
data — Data set to be clustered
matrix

Data set to be clustered, specified as a matrix with Nd rows, where Nd is the number of data points.
The number of columns in data is equal to the data dimensionality, that is, the number of features in
each data point.

options — Clustering options
fcmOptions object

Clustering options, specified as an fcmOptions object.

Output Arguments
centers — Cluster centers
matrix

Final cluster centers, returned as a matrix with Nc rows containing the coordinates of each cluster
center, where Nc is the number of clusters specified using options.NumClusters. The number of
columns in centers is equal to the dimensionality of the data being clustered.

U — Fuzzy partition matrix
matrix

Fuzzy partition matrix, returned as an Nc-by-Nd matrix. Element U(i,j) indicates the degree of
membership μij of the jth data point in the ith cluster. For a given data point, the sum of the
membership values for all clusters is one.

objFunc — Objective function values
vector

Objective function values for each iteration, returned as a vector.

Tips
• To generate a fuzzy inference system using FCM clustering, use the genfis function. For

example, suppose that you cluster your data using the following syntax.

[centers,U] = fcm(data,fcmOpt);

The first M columns of data correspond to input variables and the remaining columns correspond
to output variables.

You can generate a fuzzy system using the same training data and FCM clustering configuration.
To do so:

1 Configure the clustering options.

opt = genfisOptions("FCMClustering");
opt.NumClusters = fcmOpt.NumClusters;
opt.Exponent = fcmOpt.Exponent;
opt.MaxNumIteration = fcmOpt.MaxNumIteration;

 fcm

8-83

opt.MinImprovement = fcmOpt.MinImprovement;
opt.DistanceMetric = fcmOpt.DistanceMetric;
opt.Verbose = fcmOpt.Verbose;

2 Extract the input and output variable data.

inputData = data(:,1:M);
outputData = data(:,M+1:end);

3 Generate the FIS structure.

fis = genfis(inputData,outputData,opt);

The fuzzy system fis contains one fuzzy rule for each cluster, and each input and output variable
has one membership function per cluster. For more information, see genfis and
genfisOptions.

Algorithms
FCM is a clustering method that allows each data point to belong to multiple clusters with varying
degrees of membership. To configure clustering options, create an fcmOptions object.

The FCM algorithm computes cluster centers and membership values to minimize the following
objective function.

Jm = ∑
i = 1

C
∑

j = 1

N
μi j

mDi j
2

Here:

• N is the number of data points.
• C is the number of clusters. To specify this value, use the NumClusters option.
• m is fuzzy partition matrix exponent for controlling the degree of fuzzy overlap, with m > 1. Fuzzy

overlap refers to how fuzzy the boundaries between clusters are, that is, the number of data
points that have significant membership in more than one cluster. To specify the fuzzy partition
matrix exponent, use the Exponent option.

• Dij is the distance from the jth data point to the ith cluster.
• μij is the degree of membership of the jth data point in the ith cluster. For a given data point, the

sum of the membership values for all clusters is one.

The fcm function supports two types of FCM clustering: classical FCM and Gustafson-Kessel FCM.
These methods differ in the distance metric used for computing Dij. For more information, see “Fuzzy
Clustering” on page 4-2.

Version History
Introduced before R2006a

R2023a: Gustafson-Kessel FCM algorithm
Behavior changed in R2023a

You can now cluster data using the Gustafson-Kessel FCM algorithm, which allows you to detect
clusters with different geometrical shapes within the same data set. This algorithm uses a

8 Functions

8-84

Mahalanobis distance metric instead of the Euclidean distance metric used in classical FCM
clustering.

To use this algorithm, create an fcmOptions object and set the DistanceMetric property to
"mahalanobis".

R2023a: Specify options using fcmOptions object
Behavior changed in R2023a

To specify options for clustering data using FCM, you now use an fcmOptions object.

Previously, you specified the number of clusters using an input argument and specified other options
in a vector format.

Nc = 3;
exp = 2.5;
maxIter = 200;
minImprove = 1e-4;
verbose = false;
options = [exp maxIter minImprove verbose];
[centers,U] = fcm(data,Nc,options);

Now, you specify these clustering options using an fcmOptions object.

options = fcmOptions(...
 NumClusters=Nc,...
 Exponent=exp,...
 MaxNumIteration=maxIter,...
 MinImprovement=minImprove,...
 Verbose=verbose);
[centers,U] = fcm(data,options);

References
[1] Bezdek, James C. Pattern Recognition with Fuzzy Objective Function Algorithms. Boston, MA:

Springer US, 1981. https://doi.org/10.1007/978-1-4757-0450-1.

See Also
fcmOptions | genfis | subclust

Topics
“Fuzzy C-Means Clustering” on page 4-12
“Adjust Fuzzy Overlap in Fuzzy C-Means Clustering” on page 4-9
“Fuzzy C-Means Clustering for Iris Data” on page 4-16
“Brain Tumor Segmentation Using Fuzzy C-Means Clustering” on page 4-20

 fcm

8-85

https://doi.org/10.1007/978-1-4757-0450-1

findcluster
Open clustering tool

Syntax
findcluster
findcluster(fileName)

Description
findcluster opens a UI to implement either fuzzy c-means or fuzzy subtractive clustering. For
more information on:

• Clustering methods, see “Fuzzy Clustering” on page 4-2
• Using the Clustering tool, see “Cluster Data Using Clustering Tool” on page 4-41

findcluster(fileName) opens the UI, loads the data set in the file specified by fileName, and
plots the first two dimensions of the data.

Examples

Open Clustering Tool

Open the Clustering tool and load the data set in clusterdemo.dat.

findcluster('clusterDemo.dat')

8 Functions

8-86

You can configure the clustering options.

To cluster the data, click Start.

Input Arguments
fileName — Data file name
string | character vector

Data file name, specified as a string or character vector.

The data set file must have the extension .dat. Each line of the data set file contains one data point.
For example, if you have 5-dimensional data with 100 data points, the file contains 100 lines, and
each line contains five values.

Tips
• Using the Clustering tool, you can obtain only the computed cluster centers. To obtain additional

information for:

• Fuzzy c-means clustering, such as the fuzzy partition matrix, cluster the data using fcm.

 findcluster

8-87

• Subtractive clustering, such as the range of influence in each data dimension, cluster the data
using subclust.

• To use the same clustering data with either fcm or subclust, first load the data file into the
MATLAB workspace. For example, at the MATLAB command line, type:

load clusterdemo.dat

Version History
Introduced before R2006a

See Also
fcm | subclust

Topics
“Fuzzy Clustering” on page 4-2
“Cluster Data Using Clustering Tool” on page 4-41

8 Functions

8-88

fuzarith
Perform fuzzy arithmetic

Syntax
C = fuzarith(X,A,B,operator)

Description
C = fuzarith(X,A,B,operator) returns the fuzzy set C, which is the result of applying the
specified fuzzy operator to the fuzzy sets A and B. The operation is performed across the universe of
discourse X

Examples

Perform Fuzzy Arithmetic

Specify Gaussian and trapezoidal membership functions.

N = 501;
minX = -20;
maxX = 20;
x = linspace(minX,maxX,N);

A = trapmf(x,[-10 -2 1 3]);
B = gaussmf(x,[2 5]);

Evaluate the sum, difference, product, and quotient of A and B.

Csum = fuzarith(x,A,B,'sum');
Csub = fuzarith(x,A,B,'sub');
Cprod = fuzarith(x,A,B,'prod');
Cdiv = fuzarith(x,A,B,'div');

Plot the addition and subtraction results.

figure
subplot(2,1,1)
plot(x,A,'--',x,B,':',x,Csum,'c')
title('Fuzzy Addition, A+B')
legend('A','B','A+B')
subplot(2,1,2)
plot(x,A,'--',x,B,':',x,Csub,'c')
title('Fuzzy Subtraction, A-B')
legend('A','B','A-B')

 fuzarith

8-89

Plot the multiplication and division results.

figure
subplot(2,1,1)
plot(x,A,'--',x,B,':',x,Cprod,'c')
title('Fuzzy Multiplication, A*B')
legend('A','B','A*B')
subplot(2,1,2)
plot(x,A,'--',x,B,':',x,Cdiv,'c')
title('Fuzzy Division, A/B')
legend('A','B','A/B')

8 Functions

8-90

Input Arguments
X — Universe of discourse
vector

Universe of discourse, specified as a vector.

A — Input fuzzy set
vector

Input fuzzy set, specified as a vector with the same length as X. Each element of A is the value of the
fuzzy set for the corresponding value of X.

A must be a convex fuzzy set. For more information, see “Algorithms” on page 8-92.

B — Input fuzzy set
vector

Input fuzzy set, specified as a vector with the same length as X. Each element of B is the value of the
fuzzy set for the corresponding value of X.

B must be a convex fuzzy set. For more information, see “Algorithms” on page 8-92.

operator — Fuzzy arithmetic operator
'sum' | 'sub' | 'prod' | 'div'

 fuzarith

8-91

Arithmetic operator, specified as one of the following:

• 'sum' — Fuzzy addition
• 'sub' — Fuzzy subtraction
• 'prod' — Fuzzy multiplication
• 'div' — Fuzzy division

For more information on fuzzy arithmetic operations, see “Algorithms” on page 8-92.

Note Fuzzy addition can generate the message "divide by zero". However, this warning does
not affect the accuracy of fuzarith.

Output Arguments
C — Output fuzzy set
column vector

Output fuzzy set, returned as a column vector with length equal to the length of X.

Algorithms
To perform fuzzy arithmetic operations, the fuzzy operands (input fuzzy sets A and B) must be convex
fuzzy sets. A fuzzy set is convex if, for each pair of points x1 and x2 in the universe of discourse X and
λ∈[0,1].

μ λx1 + 1 − λ x2 ≥ min μ x1 , μ x2

An α-cut of a fuzzy set is the region in the universe of discourse for which the fuzzy set has a specific
membership value, α. For a convex fuzzy set, every α-cut defines a continuous region in the universe
of discourse.

fuzarith uses the continuous regions defined by the α-cuts of fuzzy sets A and B to compute the
corresponding α-cut of the output fuzzy set C. To do so, fuzarith uses interval arithmetic.

The following table shows how to compute the left and right boundaries of the output interval. Here:

• [AL AR] is the interval defined by the α-cut of fuzzy set A.
• [BL BR] is the interval defined by the α-cut of fuzzy set B.
• [CL CR] is the interval defined by the α-cut of fuzzy set C.

Interval Arithmetic Operator Definition
Addition: C = A+B CL = AL + BL

CR = AR + BR

Subtraction: C = A-B CL = AL− BR
CR = AR− BL

Multiplication: C = A*B CL = min AL ⋅ BL, AL ⋅ BR, AR ⋅ BL, AR ⋅ BR
CR = max AL ⋅ BL, AL ⋅ BR, AR ⋅ BL, AR ⋅ BR

8 Functions

8-92

Interval Arithmetic Operator Definition
Division: C = A/B

CL = min
AL
BL

,
AL
BR

,
AR
BL

,
AR
BR

CR = max
AL
BL

,
AL
BR

,
AR
BL

,
AR
BR

Version History
Introduced before R2006a

See Also
Topics
“What Is Fuzzy Logic?” on page 1-3
“Foundations of Fuzzy Logic” on page 1-7

 fuzarith

8-93

gauss2mf
Gaussian combination membership function

Syntax
y = gauss2mf(x,params)

Description
This function computes fuzzy membership values using a combination of two Gaussian membership
functions. You can also compute this membership function using a fismf object. For more
information, see “fismf Object” on page 8-96.

y = gauss2mf(x,params) returns fuzzy membership values computed using a combination of two
Gaussian membership functions computed. Each Gaussian function defines the shape of one side of
the membership function and is given by:

f x; σ, c = e
− x− c 2

2σ2

To specify the standard deviation, σ, and mean, c, for each Gaussian function, use params.

Membership values are computed for each input value in x.

Examples

Gaussian Combination Membership Functions

Specify input values across the universe of discourse.

x = 0:0.1:10;

Evaluate several membership functions for the input values.

y1 = gauss2mf(x,[2 4 1 8]);
y2 = gauss2mf(x,[2 5 1 7]);
y3 = gauss2mf(x,[2 6 1 6]);

Plot the membership function.

plot(x,y1,x,y2,x,y3)
xlabel('x')
ylabel('Degree of Membership')
ylim([-0.05 1.05])
legend('P = [2 4 1 8]','P = [2 5 1 7]','P = [2 6 1 6]',...
 'Location','northwest')

8 Functions

8-94

Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length four

Membership function parameters, specified as the vector [σ1 c1 σ2 c2]. Here:

• σ1 and c1 are the standard deviation and mean of the left Gaussian function, respectively.
• σ2 and c2 are the standard deviation and mean of the right Gaussian function, respectively.

When c1 ≤ c2, the gauss2mf function reaches a maximum value of 1 over the range [c1, c2].

Otherwise, when c1> c2, the maximum value is less than one.

Output Arguments
y — Membership value
scalar | vector

 gauss2mf

8-95

Membership value, returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.

Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the gauss2mf membership function.

mf = fismf("gauss2mf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of gauss2mf, respectively.

Version History
Introduced before R2006a

R2018b: C and C++ code generation support

This function supports C and C++ code generation using MATLAB Coder.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
psigmf | sigmf | gaussmf | gbellmf | trimf | trapmf | linsmf | linzmf | pimf | smf | zmf |
dsigmf

Topics
“Membership Functions” on page 1-9

8 Functions

8-96

gaussmf
Gaussian membership function

Syntax
y = gaussmf(x,params)

Description
This function computes fuzzy membership values using a Gaussian membership function. You can also
compute this membership function using a fismf object. For more information, see “fismf Object” on
page 8-99.

A Gaussian membership function is not the same as a Gaussian probability distribution. For example,
a Gaussian membership function always has a maximum value of 1. For more information on
Gaussian probability distributions, see “Normal Distribution” (Statistics and Machine Learning
Toolbox).

y = gaussmf(x,params) returns fuzzy membership values computed using the following Gaussian
membership function:

f x; σ, c = e
− x− c 2

2σ2

To specify the standard deviation, σ, and mean, c, for the Gaussian function, use params.

Membership values are computed for each input value in x.

Examples

Gaussian Membership Function

Specify input values across the universe of discourse.

x = 0:0.1:10;

Evaluate membership function for the input values.

y = gaussmf(x,[2 5]);

Plot the membership function.

plot(x,y)
xlabel('gaussmf, P=[2 5]')
ylabel('Membership')
ylim([-0.05 1.05])

 gaussmf

8-97

Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length two

Membership function parameters, specified as the vector [σ c], where σ is the standard deviation and
c is the mean.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.

8 Functions

8-98

Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the gaussmf membership function.

mf = fismf("gaussmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of gaussmf, respectively.

Version History
Introduced before R2006a

R2018b: C and C++ code generation support

This function supports C and C++ code generation using MATLAB Coder.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
psigmf | sigmf | gauss2mf | gbellmf | trimf | trapmf | linsmf | linzmf | pimf | smf | zmf |
dsigmf

Topics
“Membership Functions” on page 1-9

 gaussmf

8-99

gbellmf
Generalized bell-shaped membership function

Syntax
y = gbellmf(x,params)

Description
This function computes fuzzy membership values using a generalized bell-shaped membership
function. You can also compute this membership function using a fismf object. For more
information, see “fismf Object” on page 8-102.

y = gbellmf(x,params) returns fuzzy membership values computed using the following
generalized bell-shaped membership function:

f x; a, b, c = 1
1 + x− c

a
2b

To configure the membership function, specify parameters, a, b, and c using params.

Membership values are computed for each input value in x.

Examples

Generalized Bell-Shaped Membership Function

Specify input values across the universe of discourse.

x = 0:0.1:10;

Evaluate membership function for the input values.

y = gbellmf(x,[2 4 6]);

Plot the membership function.

plot(x,y)
title('gbellmf, P=[2 4 6]')
xlabel('x')
ylabel('Degree of Membership')
ylim([-0.05 1.05])

8 Functions

8-100

Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length three

Membership function parameters, specified as the vector [a b c].

Here:

• a defines the width of the membership function, where a larger value creates a wider membership
function.

• b defines the shape of the curve on either side of the central plateau, where a larger value creates
a more steep transition.

• c defines the center of the membership function.

Output Arguments
y — Membership value
scalar | vector

 gbellmf

8-101

Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.

Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the gbellmf membership function.

mf = fismf("gbellmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of gbellmf, respectively.

Version History
Introduced before R2006a

R2018b: C and C++ code generation support

This function supports C and C++ code generation using MATLAB Coder.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
psigmf | sigmf | gaussmf | gauss2mf | trimf | trapmf | linsmf | linzmf | pimf | smf | zmf |
dsigmf

Topics
“Membership Functions” on page 1-9

8 Functions

8-102

genfis
Generate fuzzy inference system object from data

Syntax
fis = genfis(inputData,outputData)
fis = genfis(inputData,outputData,options)

Description
fis = genfis(inputData,outputData) returns a single-output Sugeno fuzzy inference system
(FIS) using a grid partition of the given input and output data.

fis = genfis(inputData,outputData,options) returns a FIS generated using the specified
input/output data and the options specified in options. You can generate fuzzy systems using grid
partitioning, subtractive clustering, or fuzzy c-means (FCM) clustering.

Examples

Generate Fuzzy Inference System Using Default Options

Define training data.

inputData = [rand(10,1) 10*rand(10,1)-5];
outputData = rand(10,1);

Generate a fuzzy inference system.

fis = genfis(inputData,outputData);

The generated system, fis, is created using grid partitioning with default options.

Generate FIS Using Grid Partitioning

Define training data.

inputData = [rand(10,1) 10*rand(10,1)-5];
outputData = rand(10,1);

Create a default genfisOptions option set for grid partitioning.

opt = genfisOptions('GridPartition');

Specify the following input membership functions for the generated FIS:

• 3 Gaussian membership functions for the first input variable
• 5 triangular membership functions for the second input variable

 genfis

8-103

opt.NumMembershipFunctions = [3 5];
opt.InputMembershipFunctionType = ["gaussmf" "trimf"];

Generate the FIS.

fis = genfis(inputData,outputData,opt);

Plot the input membership functions. Each input variable has the specified number and type of input
membership functions, evenly distributed over their input range.

[x,mf] = plotmf(fis,'input',1);
subplot(2,1,1)
plot(x,mf)
xlabel('input 1 (gaussmf)')
[x,mf] = plotmf(fis,'input',2);
subplot(2,1,2)
plot(x,mf)
xlabel('input 2 (trimf)')

Generate FIS Using Subtractive Clustering

Obtain input and output training data.

load clusterDemo.dat
inputData = clusterDemo(:,1:2);
outputData = clusterDemo(:,3);

8 Functions

8-104

Create a genfisOptions option set and specify the range of influence for each data dimension.
Specify 0.5 and 0.25 as the range of influence for the first and second input variables. Specify 0.3
as the range of influence for the output data.

opt = genfisOptions('SubtractiveClustering',...
 'ClusterInfluenceRange',[0.5 0.25 0.3]);

Generate the FIS.

fis = genfis(inputData,outputData,opt);

The generated FIS contains one rule for each cluster.

showrule(fis)

ans = 3x83 char array
 '1. If (in1 is in1cluster1) and (in2 is in2cluster1) then (out1 is out1cluster1) (1)'
 '2. If (in1 is in1cluster2) and (in2 is in2cluster2) then (out1 is out1cluster2) (1)'
 '3. If (in1 is in1cluster3) and (in2 is in2cluster3) then (out1 is out1cluster3) (1)'

Generate FIS Using FCM Clustering

Obtain the input and output data.

load clusterDemo.dat
inputData = clusterDemo(:,1:2);
outputData = clusterDemo(:,3);

Create a genfisOptions option set for FCM Clustering, specifying a Mamdani FIS type.

opt = genfisOptions('FCMClustering','FISType','mamdani');

Specify the number of clusters.

opt.NumClusters = 3;

Suppress the display of iteration information to the Command Window.

opt.Verbose = 0;

Generate the FIS.

fis = genfis(inputData,outputData,opt);

The generated FIS contains one rule for each cluster.

showrule(fis)

ans = 3x83 char array
 '1. If (in1 is in1cluster1) and (in2 is in2cluster1) then (out1 is out1cluster1) (1)'
 '2. If (in1 is in1cluster2) and (in2 is in2cluster2) then (out1 is out1cluster2) (1)'
 '3. If (in1 is in1cluster3) and (in2 is in2cluster3) then (out1 is out1cluster3) (1)'

Plot the input and output membership functions.

 genfis

8-105

[x,mf] = plotmf(fis,'input',1);
subplot(3,1,1)
plot(x,mf)
xlabel('Membership Functions for Input 1')
[x,mf] = plotmf(fis,'input',2);
subplot(3,1,2)
plot(x,mf)
xlabel('Membership Functions for Input 2')
[x,mf] = plotmf(fis,'output',1);
subplot(3,1,3)
plot(x,mf)
xlabel('Membership Functions for Output')

Create Type-2 Fuzzy Inference System from Data

To create a type-2 FIS from input/output data, you must first create a type-1 FIS using genfis.

Load training data and generate a FIS using subtractive clustering.

load clusterDemo.dat
inputData = clusterDemo(:,1:2);
outputData = clusterDemo(:,3);
opt = genfisOptions('SubtractiveClustering',...
 'ClusterInfluenceRange',[0.5 0.25 0.3]);

8 Functions

8-106

fisT1 = genfis(inputData,outputData,opt);
fisT1.Outputs

ans =
 fisvar with properties:

 Name: "out1"
 Range: [-0.1274 1.1458]
 MembershipFunctions: [1x3 fismf]

Convert the generated FIS to a type-2 FIS.

fisT2 = convertToType2(fisT1);

Since the initial type-1 FIS is a Sugeno system, only the input MFs are converted to type-2 MFs.

Input Arguments
inputData — Input data
array

Input data, specified as an N-column array, where N is the number of FIS inputs.

inputData and outputData must have the same number of rows.

outputData — Output data
array

Output data, specified as an M-column array, where M is the number of FIS outputs.

When using grid partitioning, outputData must have one column. If you specify more than one
column for grid partitioning, genfis uses the first column as the output data.

inputData and outputData must have the same number of rows.

options — FIS generation options
genfisOptions option set

FIS generation options, specified as a genfisOptions option set. If you do not specify options,
genfis uses a default grid partitioning option set.

You can generate fuzzy systems using one of the following methods, which you specify when you
create the option set.

• Grid partitioning — Generate input membership functions by uniformly partitioning the input
variable ranges, and create a single-output Sugeno fuzzy system. The fuzzy rule base contains one
rule for each input membership function combination.

options = genfisOptions("GridPartition");
• Subtractive clustering — Generate a Sugeno fuzzy system using membership functions and rules

derived from data clusters found using subtractive clustering of input and output data. For more
information on subtractive clustering, see subclust.

options = genfisOptions("SubtractiveClustering");

 genfis

8-107

• FCM Clustering — Generate a fuzzy system using membership function and rules derived from
data clusters found using FCM clustering of input and output data. For more information on FCM
clustering, see fcm.

options = genfisOptions("FCMClustering");

Output Arguments
fis — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, returned as a mamfis or sugfis object. The properties of fis depend on
the type of clustering used and the corresponding options.

Clus
teri
ng
Type

Fuzz
y
Syste
m
Type

Input Membership
Functions

Fuzzy Rules Output Membership
Functions

Grid
Parti
tioni
ng

Suge
no

Each input variable has
evenly distributed input
membership functions.
Specify the number of
membership functions using
options.NumMembership
Functions. Specify the
membership function type
using
options.InputMembersh
ipFunctionType.

One rule for each input
membership function
combination. The
consequent of each rule
corresponds to a different
output membership
function.

One output membership
function for each fuzzy rule.
Specify the membership
function type using
options.OutputMembers
hipFunctionType.

Subt
racti
ve
Clus
terin
g

Suge
no

Each input variable has one
"gaussmf" input
membership function for
each fuzzy cluster.

One rule for each fuzzy
cluster

Each output variable has
one "linear" output
membership function for
each fuzzy cluster.

FCM
Clus
terin
g

Mam
dani
or
Suge
no

Each input variable has one
"gaussmf" input
membership function for
each fuzzy cluster.

One rule for each fuzzy
cluster

Each output variable has
one output membership
function for each fuzzy
cluster. The membership
function type is "gaussmf"
for Mamdani systems and
"linear" for Sugeno
systems.

If fis is a single-output Sugeno system, you can tune the membership function parameters using the
anfis function.

Generating a type-2 FIS is not supported by genfis. Instead, generate a type-1 FIS and convert it to
a type-2 system using convertToType2.

8 Functions

8-108

Alternative Functionality
App

You can interactively create a FIS from data using the Fuzzy Logic Designer app.

Version History
Introduced in R2017a

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

R2017a: Replaces genfis1, genfis2, and genfis3

This function replaces genfis1, genfis2, and genfis3 for creating fuzzy inference systems.

See Also
genfisOptions | anfis | fcm | subclust

 genfis

8-109

genfis1
(To be removed) Generate fuzzy inference system from data using grid partition

Note genfis1 will be removed in a future release. Use genfis instead. For more information, see
“Compatibility Considerations”.

Syntax
fis = genfis1(data)
fis = genfis1(data,numMFs)
fis = genfis1(data,numMFs,inmftype)
fis = genfis1(data,numMFs,inmftype,outmftype)

Description
fis = genfis1(data) returns a single-output Sugeno fuzzy inference system (FIS) using a grid
partition of the given training data.

fis = genfis1(data,numMFs) specifies the number of membership functions to use for each
input variable.

fis = genfis1(data,numMFs,inmftype) specifies the type of membership function to use for
input variables.

fis = genfis1(data,numMFs,inmftype,outmftype) specifies the type of membership function
to use for output variables.

Examples

Generate FIS Using Grid Partitioning

Generate a FIS using grid partitioning.

data = [rand(10,1) 10*rand(10,1)-5 rand(10,1)];
numMFs = [3 7];
mfType = char('pimf','trimf');
fis = genfis1(data,numMFs,mfType);

To see the contents of fis, use showfis(fis).

Plot the FIS input membership functions.

[x,mf] = plotmf(fis,'input',1);
subplot(2,1,1)
plot(x,mf)
xlabel('input 1 (pimf)')
[x,mf] = plotmf(fis,'input',2);
subplot(2,1,2)

8 Functions

8-110

plot(x,mf)
xlabel('input 2 (trimf)')

Input Arguments
data — Training data
array

Training data, specified as an array with M + 1 columns. The first M columns represent input variable
values and the last column represents the output variable value. The number of rows is the number of
training data points.

numMFs — Number of membership functions for input variables
2 (default) | vector of positive integers | positive integer

Number of membership functions for input variables, specified as a vector of positive integers. Each
element of numMFs corresponds to a given input variable. To use the same number of membership
functions for all input variables, specify numMFs as a positive integer.

inmftype — Input variable membership function type
'gbellmf' (default) | string | character vector | character array

Input variable membership function type, specified as a string or character vector to use the same
membership function for all input variables, or as a character array to use different membership
functions for each input variable.

When you specify a character array, each row specifies the membership function type for one input
variable.

The following table lists possible membership functions.

Membership
function type

Description For more information

'gbellmf' Generalized bell-shaped membership
function

gbellmf

'gaussmf' Gaussian membership function gaussmf
'gauss2mf' Gaussian combination membership

function
gauss2mf

'trimf' Triangular membership function trimf
'trapmf' Trapezoidal membership function trapmf
'sigmf' Sigmoidal membership function sigmf
'dsigmf' Difference between two sigmoidal

membership functions
dsigmf

'psigmf' Product of two sigmoidal membership
functions

psigmf

'zmf' Z-shaped membership function zmf
'pimf' Pi-shaped membership function pimf
'smf' S-shaped membership function smf

 genfis1

8-111

outmftype — Output variable membership function type
'linear' (default) | 'constant'

Output variable membership function type, specified as either 'linear' or 'constant'. The
number of membership functions associated with the output is the same as the number of rules
generated by genfis1.

Output Arguments
fis — Fuzzy inference system
sugfis object

Fuzzy inference system, returned as a sugfis object.

The following table shows the default inference methods for this fuzzy system.

Inference Method Default
AND prod
OR max
Implication prod
Aggregation max
Defuzzification wtaver

Version History
Introduced before R2006a

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

R2017a: To be removed
Not recommended starting in R2017a

genfis1 will be removed in a future release. Use genfis instead. There are differences between
these functions that require updates to your code.

Update Code

To generate a fuzzy system using grid partitioning, first create a default genfisOptions set.

opt = genfisOptions('GridPartition');

You can modify the options using dot notation. Any options you do not modify remain at their default
values.

8 Functions

8-112

Then, update your code to use genfis. For example, suppose your code has the following form.

fis = genfis1(data,numMFs,inmftype,outmftype);

Use the following code instead.

opt = genfisOptions('GridPartition');
opt.NumMembershipFunctions = numMFs;
opt.InputMembershipFunctionType = inmftype;
opt.OutputMembershipFunctionType = outmftype;
inputData = data(:,end-1);
outputData = data(:,end);
fis = genfis(inputData,outputData,opt);

See Also
genfis | anfis | genfis2 | genfis3

 genfis1

8-113

genfis2
(To be removed) Generate fuzzy inference system from data using subtractive clustering

Note genfis2 will be removed in a future release. Use genfis instead. For more information, see
“Compatibility Considerations”.

Syntax
fis = genfis2(inputData,outputData,radii)
fis = genfis2(inputData,outputData,radii,xBounds)
fis = genfis2(inputData,outputData,radii,xBounds,options)
fis = genfis2(inputData,outputData,radii,xBounds,options,userCenters)

Description
fis = genfis2(inputData,outputData,radii) generates a Sugeno-type FIS object from
training data using subtractive clustering. Specify the range of influence of the cluster centers using
radii.

fis = genfis2(inputData,outputData,radii,xBounds) specifies data scale factors for
normalizing input and output data into a unit hyperbox.

fis = genfis2(inputData,outputData,radii,xBounds,options) specifies additional
clustering options.

fis = genfis2(inputData,outputData,radii,xBounds,options,userCenters) specifies
custom cluster centers.

Examples

Specify One Cluster Center Range of Influence For All Data Dimensions

Generate an FIS using subtractive clustering, and specify the cluster center range of influence.

Xin = [7*rand(50,1) 20*rand(50,1)-10];
Xout = 5*rand(50,1);
fis = genfis2(Xin,Xout,0.5);

fis uses a range of influence of 0.5 for all data dimensions.

To see the contents of fis, use showfis(fis).

Plot the input membership functions.

[x,mf] = plotmf(fis,'input',1);
subplot(2,1,1)
plot(x,mf)
xlabel('Membership Functions for input 1')
[x,mf] = plotmf(fis,'input',2);

8 Functions

8-114

subplot(2,1,2)
plot(x,mf)
xlabel('Membership Functions for input 2')

Specify Cluster Center Range of Influence For Each Data Dimension

Suppose the input data has two columns, and the output data has one column. Specify 0.5 and 0.25
as the range of influence for the first and second input data columns. Specify 0.3 as the range of
influence for the output data.

Xin = [7*rand(50,1) 20*rand(50,1)-10];
Xout = 5*rand(50,1);
fis = genfis2(Xin,Xout,[0.5 0.25 0.3]);

Specify Data Hyperbox Scaling Range

Suppose the input data has two columns, and the output data has one column. Specify the scaling
range for the inputs and outputs to normalize the data into the [0 1] range. The ranges for the first
and second input data columns and the output data are: [–10, 10], [–5, 5], and [0, 20].

Xin = [7*rand(50,1) 20*rand(50,1)-10];
Xout = 5*rand(50,1);
fis = genfis2(Xin,Xout,0.5,[-10 -5 0;10 5 20]);

Here, the third input argument, 0.5, specifies the range of influence for all data dimensions. The
fourth input argument specifies the scaling range for the input and output data.

Input Arguments
inputData — Input data
array

Input data, specified as an N-column array, where N is the number of FIS inputs.

inputData and outputData must have the same number of rows.

outputData — Output data
array

Output data, specified as an M-column array, where M is the number of FIS outputs.

inputData and outputData must have the same number of rows.

radii — Range of influence of the cluster center
0.5 (default) | scalar value in the range [0, 1] | vector

Range of influence of the cluster center for each input and output assuming the data falls within a
unit hyperbox.

• Scalar value in the range [0, 1] — Use the same influence range for all inputs and outputs.
• Vector — Use different influence ranges for each input and output.

 genfis2

8-115

Specifying a smaller range of influence usually creates more and smaller data clusters, producing
more fuzzy rules.

xBounds — Data scale factors
array

Data scale factors for normalizing input and output data into a unit hyperbox, specified as a 2-by-N
array, where N is the total number of inputs and outputs. Each column of DataScale specifies the
minimum value in the first row and the maximum value in the second row for the corresponding input
or output data set.

When xBounds is not specified, the genfis2 function uses the minimum and maximum values in the
data to be clustered.

options — Clustering options
vector

Clustering options, specified as a vector with the following elements.

Options(1) — Squash factor
1.25 (default) | positive scalar

Squash factor for scaling the range of influence of cluster centers, specified as a positive scalar. A
smaller squash factor reduces the potential for outlying points to be considered as part of a cluster,
which usually creates more and smaller data clusters.

Options(2) — Acceptance ratio
0.5 (default) | scalar value in the range [0, 1]

Acceptance ratio, defined as the fraction of the potential of the first cluster center above which
another data point is accepted as a cluster center, specified as a scalar value in the range [0, 1]. The
acceptance ratio must be greater than the rejection ratio.

Options(3) — Rejection ratio
0.15 (default) | scalar value in the range [0, 1]

Rejection ratio, defined as the fraction of the potential of the first cluster center below which another
data point is rejected as a cluster center, specified as a scalar value in the range [0, 1]. The rejection
ratio must be less than the acceptance ratio.

Options(4) — Information display flag
false (default) | true

Information display flag indicating whether to display progress information during clustering,
specified as one of the following:

• false — Do not display progress information.
• true — Display progress information.

userCenters — Custom cluster centers
array

Custom cluster centers, specified as a J-by-N array, where J is the number of clusters and N is the
total number of inputs and outputs.

8 Functions

8-116

Output Arguments
fis — Fuzzy inference system
sugfis object

Fuzzy inference system, returned as a sugfis object.

The input membership function type is 'gaussmf', and the output membership function type is
'linear'.

The following table shows the default inference methods for this fuzzy system.

Inference Method Default
AND prod
OR propor
Implication prod
Aggregation max
Defuzzification wtaver

Version History
Introduced before R2006a

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

R2017a: To be removed
Not recommended starting in R2017a

genfis2 will be removed in a future release. Use genfis instead. There are differences between
these functions that require updates to your code.

Update Code

To generate a fuzzy system using grid partitioning, first create a default genfisOptions set.

opt = genfisOptions('SubtractiveClustering');

You can modify the options using dot notation. Any options you do not modify remain at their default
values.

Then, update your code to use genfis. For example, suppose your code has the following form.

fis = genfis2(inputData,outputData,radii,xBounds,options,userCenters);

Use the following code instead.

 genfis2

8-117

opt = genfisOptions('SubtractiveClustering');
opt.ClusterInfluenceRange = radii;
opt.DataScale = xBounds;
opt.SquashFactor = options(1);
opt.AcceptRatio = options(2);
opt.RejectRatio = options(3);
opt.Verbose = options(4);
opt.CustomClusterCenters = userCenters;
fis = genfis(inputData,outputData,opt);

See Also
genfis | anfis | subclust | genfis1 | genfis3

8 Functions

8-118

genfis3
(To be removed) Generate fuzzy inference system from data using FCM clustering

Note genfis3 will be removed in a future release. Use genfis instead. For more information, see
“Compatibility Considerations”.

Syntax
fis = genfis3(inputData,outputData)
fis = genfis3(inputData,outputData,type)
fis = genfis3(inputData,outputData,type,numClusters)
fis = genfis3(inputData,outputData,type,numClusters,options)

Description
fis = genfis3(inputData,outputData) creates a Sugeno FIS using fuzzy c-means (FCM)
clustering by extracting a set of rules that models the training data behavior.

fis = genfis3(inputData,outputData,type) generates a FIS of the specified type, either
Mamdani or Sugeno.

fis = genfis3(inputData,outputData,type,numClusters) specifies the number of clusters
to use for the FCM clustering.

fis = genfis3(inputData,outputData,type,numClusters,options) specifies additional
clustering options.

Examples

Generate Sugeno-Type FIS and Specify Number of Clusters

Create the input and output data.

Xin = [7*rand(50,1) 20*rand(50,1)-10];
Xout = 5*rand(50,1);

Generate a Sugeno-type FIS with 3 clusters.

opt = NaN(4,1);
opt(4) = 0;
fis = genfis3(Xin,Xout,'sugeno',3,opt);

The fourth input argument specifies the number of clusters. The fifth input argument, opt, specifies
the options for the FCM algorithm. The NaN entries of opt specify default option values. Setting
opt(4) to 0 turns off the display of iteration information at the command line.

To see the contents of fis, use showfis(fis).

Plot the input membership functions.

 genfis3

8-119

[x,mf] = plotmf(fis,'input',1);
subplot(2,1,1)
plot(x,mf)
xlabel('Membership Functions for Input 1')
[x,mf] = plotmf(fis,'input',2);
subplot(2,1,2)
plot(x,mf)
xlabel('Membership Functions for Input 2')

Input Arguments
inputData — Input data
array

Input data, specified as an N-column array, where N is the number of FIS inputs.

inputData and outputData must have the same number of rows.

outputData — Output data
array

Output data, specified as an M-column array, where M is the number of FIS outputs.

When using grid partitioning, outputData must have one column. If you specify more than one
column for grid partitioning, genfis uses the first column as the output data.

inputData and outputData must have the same number of rows.

type — Fuzzy system type
'sugeno' (default) | 'mamdani'

Fuzzy system type, specified as either 'sugeno' or 'mamdani'.

numClusters — Number of FCM clusters
'auto' (default) | positive integer

Number of FCM clusters, specified as 'auto' or a positive integer.

The number of clusters determines the number of rules and membership functions in the generated
FIS. cluster_n must be an integer or 'auto'. When cluster_n is 'auto', the function uses the
subclust algorithm with a cluster range of influence of 0.5 and the minimum and maximum values
of inputData and outputData as data scale factors to find the number of clusters. See subclust
for more information.

options — Clustering options
vector

Clustering options, specified as a vector with the following elements:

8 Functions

8-120

Option Description Default
options(
1)

Exponent for the fuzzy partition matrix U, specified as a scalar greater
than 1.0. This option controls the amount of fuzzy overlap between
clusters, with larger values indicating a greater degree of overlap.

If your data set is wide with a lot of overlap between potential clusters,
then the calculated cluster centers might be very close to each other. In
this case, each data point has approximately the same degree of
membership in all clusters. To improve your clustering results, decrease
this value, which limits the amount of fuzzy overlap during clustering.

For an example of fuzzy overlap adjustment, see “Adjust Fuzzy Overlap in
Fuzzy C-Means Clustering” on page 4-9.

2.0

options(
2)

Maximum number of iterations, specified as a positive integer. 100

options(
3)

Minimum improvement in objective function between two consecutive
iterations, specified as a positive scalar.

1e-5

options(
4)

Information display flag indicating whether to display the objective
function value after each iteration, specified as one of the following:

• true — Display objective function.
• false — Do not display objective function.

true

If any element of options is NaN, the default value for that option is used.

The clustering process stops when the maximum number of iterations is reached or when the
objective function improvement between two consecutive iterations is less than the specified
minimum.

Output Arguments
fis — Fuzzy system
sugfis object | mamfis object

Fuzzy system, returned as a FIS object.

The input membership function type is 'gaussmf'. By default, the output membership function type
is 'linear'. However, if you specify type as 'mamdani', then the output membership function type
is 'gaussmf'.

The following table summarizes the default inference methods.

Inference Method Default
AND prod
OR probor
Implication prod
Aggregation sum
Defuzzification wtaver

 genfis3

8-121

Version History
Introduced before R2006a

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

R2017a: To be removed
Not recommended starting in R2017a

genfis3 will be removed in a future release. Use genfis instead. There are differences between
these functions that require updates to your code.

Update Code

To generate a fuzzy system using grid partitioning, first create a default genfisOptions set.

opt = genfisOptions('FCMClustering');

You can modify the options using dot notation. Any options you do not modify remain at their default
values.

Then, update your code to use genfis. For example, suppose your code has the following form.

fis = genfis3(inputData,outputData,type,cluster_n,fcmoptions);

Use the following code instead.

opt = genfisOptions('FCMClustering');
opt.FISType = type;
opt.NumClusters = cluster_n;
opt.Exponent = fcmoptions(1);
opt.MaxNumIteration = fcmoptions(2);
opt.MinImprovement = fcmoptions(3);
opt.Verbose = fcmoptions(4);
fis = genfis(inputData,outputData,opt);

See Also
genfis | anfis | fcm | genfis1 | genfis2

8 Functions

8-122

genfisOptions
Option set for genfis function

Syntax
opt = genfisOptions(clusteringType)
opt = genfisOptions(clusteringType,Name,Value)

Description
opt = genfisOptions(clusteringType) creates a default options object for generating a fuzzy
inference system using genfis. The options object, opt, contains different options that depend on
the specified clustering algorithm, clusteringType. Use dot notation to modify this option set for
your specific application. Options that you do not modify retain their default values.

opt = genfisOptions(clusteringType,Name,Value) creates an option set with options
specified by one or more Name,Value pair arguments.

Examples

Specify Options for FIS Generation

Create a default option set for the grid partitioning generation method.

opt = genfisOptions("GridPartition");

Modify the options using dot notation. For example, specify 3 membership functions for the first input
and 4 membership functions for the second input.

opt.NumMembershipFunctions = [3 4];

You can also specify options when creating the option set. For example, create an option set for FCM
clustering using 4 clusters.

opt2 = genfisOptions("FCMClustering","NumClusters",4);

Input Arguments
clusteringType — Clustering method
"GridPartition" | "SubtractiveClustering" | "FCMClustering"

Clustering method for defining membership functions and fuzzy rules, specified as one of the
following:

• "GridPartition" — Generate input membership functions by uniformly partitioning the input
variable ranges, and create a single-output Sugeno fuzzy system. The fuzzy rule base contains one
rule for each input membership function combination.

 genfisOptions

8-123

• "SubtractiveClustering" — Generate a Sugeno fuzzy system using membership functions
and rules derived from data clusters found using subtractive clustering of input and output data.
For more information on subtractive clustering, see subclust.

• "FCMClustering" — Generate a fuzzy system using membership function and rules derived from
data clusters found using FCM clustering of input and output data. For more information on FCM
clustering, see fcm.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: opt = genfis("GridPartition",NumMembershipFunctions=3)

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: opt = genfis("GridPartition","NumMembershipFunctions",3)

Grid Partitioning Options

NumMembershipFunctions — Number of input membership functions
2 (default) | integer greater than 1 | vector of integers greater than 1

Number of input membership functions for each input variable, specified as one of the following
values.

• Integer greater than 1 — Specify the same number of membership functions for all inputs.
• Vector of integer greater than 1 with length equal to the number of inputs — Specify a different

number of membership functions for each input.

InputMembershipFunctionType — Input membership function type
'gbellmf' (default) | 'gaussmf' | 'trimf' | 'trapmf' | character vector | string array | ...

Input membership function type, specified as one of the following values.

• Character vector or string — Specify one of the following membership function types for all
inputs.

Membership
function type

Description For more information

"gbellmf" Generalized bell-shaped
membership function

gbellmf

"gaussmf" Gaussian membership function gaussmf
"gauss2mf" Gaussian combination membership

function
gauss2mf

"trimf" Triangular membership function trimf
"trapmf" Trapezoidal membership function trapmf
"dsigmf" Difference between two sigmoidal

membership functions
dsigmf

8 Functions

8-124

Membership
function type

Description For more information

"psigmf" Product of two sigmoidal
membership functions

psigmf

"pimf" Pi-shaped membership function pimf

• Character array or string array — Specify a different membership function type for each input. For
example, specify different membership functions for a three-input system.

["gbellmf","gaussmf","trimf"]

OutputMembershipFunctionType — Output membership function type
"linear" (default) | "constant"

Output membership function type for a single-output Sugeno system, specified as one of the following
values.

• "linear" — The output of each rule is a linear function of the input variables, scaled by the
antecedent result value.

• "constant" — The output of each rule is a constant, scaled by the antecedent result value.

Subtractive Clustering Options

ClusterInfluenceRange — Range of influence of the cluster center
0.5 (default) | scalar value in the range [0, 1] | vector

Range of influence of the cluster center for each input and output assuming the data falls within a
unit hyperbox, specified as one of the following values.

• Scalar value in the range [0 1] — Use the same influence range for all inputs and outputs.
• Vector — Use different influence ranges for each input and output.

Specifying a smaller range of influence usually creates more and smaller data clusters, producing
more fuzzy rules.

DataScale — Data scale factors
"auto" (default) | 2-by-N array

Data scale factors for normalizing input and output data into a unit hyperbox, specified as a 2-by-N
array, where N is the total number of inputs and outputs. Each column of DataScale specifies the
minimum value in the first row and the maximum value in the second row for the corresponding input
or output data set.

When DataScale is "auto", the genfis command uses the actual minimum and maximum values in
the data to be clustered.

SquashFactor — Squash factor
1.25 (default) | positive scalar

Squash factor for scaling the range of influence of cluster centers, specified as a positive scalar. A
smaller squash factor reduces the potential for outlying points to be considered as part of a cluster,
which usually creates more and smaller data clusters.

AcceptRatio — Acceptance ratio
0.5 (default) | scalar value in the range [0, 1]

 genfisOptions

8-125

Acceptance ratio, defined as a fraction of the potential of the first cluster center, above which another
data point is accepted as a cluster center, specified as a scalar value in the range [0, 1]. The
acceptance ratio must be greater than the rejection ratio.

RejectRatio — Rejection ratio
0.15 (default) | scalar value in the range [0, 1]

Rejection ratio, defined as a fraction of the potential of the first cluster center, below which another
data point is rejected as a cluster center, specified as a scalar value in the range [0, 1]. The rejection
ratio must be less than acceptance ratio.

Verbose — Information display flag
false (default) | true

Information display flag indicating whether to display progress information during clustering,
specified as one of the following values.

• false — Do not display progress information.
• true — Display progress information.

CustomClusterCenters — Custom cluster centers
[] (default) | C-by-N array

Custom cluster centers, specified as a C-by-N array, where C is the number of clusters and N is the
total number of inputs and outputs.

FCM Clustering Options

FISType — Fuzzy inference system type
"sugeno' (default) | "mamdani"

Fuzzy inference system type, specified as one of the following values.

• "sugeno" — Sugeno-type fuzzy system
• "mamdani" — Mamdani-type fuzzy system

For more information on the types of fuzzy inference systems, see “Mamdani and Sugeno Fuzzy
Inference Systems” on page 2-2.

NumClusters — Number of clusters
"auto" (default) | integer greater than 1

Number of clusters to create, specified as "auto" or an integer greater than 1. When NumClusters
is "auto", the genfis command estimates the number of clusters using subtractive clustering with
a cluster influence range of 0.5.

NumClusters determines the number of rules and membership functions in the generated FIS.

Exponent — Exponent for fuzzy partition matrix
2.0 (default) | scalar greater than 1.0

Exponent for the fuzzy partition matrix, specified as a scalar greater than 1.0. This option controls
the amount of fuzzy overlap between clusters, with larger values indicating a greater degree of
overlap.

8 Functions

8-126

If your data set is wide with significant overlap between potential clusters, then the calculated cluster
centers can be very close to each other. In this case, each data point has approximately the same
degree of membership in all clusters. To improve your clustering results, decrease this value, which
limits the amount of fuzzy overlap during clustering.

For an example of fuzzy overlap adjustment, see “Adjust Fuzzy Overlap in Fuzzy C-Means Clustering”
on page 4-9.

MaxNumIteration — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as a positive integer.

MinImprovement — Minimum improvement in objective function
1e-5 (default) | positive scalar

Minimum improvement in objective function between two consecutive iterations, specified as a
positive scalar.

Verbose — Information display flag
true (default) | false

Information display flag indicating whether to display the objective function value after each
iteration, specified as one of the following values.

• true — Display objective function.
• false — Do not display objective function.

DistanceMetric — Method for computing distance
"euclidean" (default) | "mahalanobis"

Method for computing distance between data points and cluster centers, specified as one of the
following values.

• "euclidean" — Compute distance using a Euclidean distance metric, which corresponds to the
classical FCM algorithm.

• "mahalanobis" — Compute distance using a Mahalanobis distance metric, which corresponds to
the Gustafson-Kessel FCM algorithm.

Output Arguments
opt — Options for genfis function
GridPartitionOptions object | SubtractiveClusteringOptions object |
FCMClusteringOptions object

Options for genfis function, returned as one of the following objects.

• GridPartitionOptions — When clusteringType is "GridPartition"
• SubtractiveClusteringOptions — When clusteringType is "SubtractiveClustering"
• FCMClusteringOptions — When clusteringType is "FCMClustering"

 genfisOptions

8-127

Version History
Introduced in R2017a

See Also
genfis | fcm | subclust

8 Functions

8-128

gensurf
Generate fuzzy inference system output surface

Syntax
gensurf(fis)
gensurf(fis,options)
[X,Y,Z] = gensurf(___)

Description
gensurf(fis) generates the output surface for the fuzzy inference system, fis, plotting the first
output variable against the first two input variables. For fuzzy systems with more than two inputs, the
remaining input variables use the midpoints of their respective ranges as reference values.

gensurf(fis,options) generates the output surface using the specified options. To generate a
surface using different inputs or outputs, or to specify nondefault plotting options, use this syntax.

[X,Y,Z] = gensurf(___) returns the variables that define the output surface for any of the
previous syntaxes and suppresses the surface plot.

Examples

Generate FIS Output Surface

Load a fuzzy inference system.

fis = readfis('tipper');

This fuzzy system has two inputs and one output.

Generate the output surface for the system.

gensurf(fis)

 gensurf

8-129

Generate FIS Output Surface for Second Output

Load a fuzzy inference system with two inputs and two outputs.

fis = readfis('mam22.fis');

Create a surface generation option set, specifying the second output as the output to plot. By default,
this output is plotted against the first two input variables.

opt = gensurfOptions('OutputIndex',2);

Plot the surface, using the specified option set.

gensurf(fis,opt)

8 Functions

8-130

Specify Reference Inputs for Surface Plot

Load a fuzzy inference system with four inputs and one output.

fis = readfis('multiInput.fis');

Create a default gensurfOptions object..

opt = gensurfOptions;

Specify plotting options to:

• Plot the output against the second and third input variable.
• Use 20 grid points for both inputs.
• Fix the first and fourth inputs at -0.5 and 0.1 respectively. Set the reference values for the

second and third inputs to NaN.

opt.InputIndex = [2 3];
opt.NumGridPoints = 20;
opt.ReferenceInputs = [-0.5 NaN NaN 0.1];

Plot the output surface.

gensurf(fis,opt)

 gensurf

8-131

Return Surface Values and Suppress Plot

Load a fuzzy inference system.

fis = readfis('tipper');

Generate the output surface, returning the surface data.

[X,Y,Z] = gensurf(fis);

The output values, Z, are the FIS output evaluated at the corresponding X and Y grid points.

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system

8 Functions

8-132

• sugfistype2 object — Type-2 Sugeno fuzzy inference system

options — Surface generation options
gensurfOptions option set

Surface generation options, specified as a gensurfOptions option set.

Output Arguments
X — Grid values for first input variable
array | column vector

Grid values for first input variable, returned as one of the following:

• M-by-N array, where N and M are the number of grid points for the first and second inputs,
respectively; that is options.NumGridPoints = [N M]. Each column of X contains one grid
point value, repeated for every row.

• P-element column vector, where P is the number of grid points specified for a single input
variable; that is options.NumGridPoints = P. Each element of contains one grid point value.
This case applies when fis has only one input variable.

Y — Grid values for second input variable
array | []

Grid values for second input variable, returned as one of the following:

• M-by-N array, where N and M are the number of grid points for the first and second inputs
respectively; that is options.NumGridPoints = [N M]. Each row of Y contains one grid point
value, repeated for every column.

• [] when you specify only one input variable; that is, if you specify options.InputIndex as an
integer.

Z — Surface output values
array | vector

Surface output values for the output variable of fis specified by options.OutputIndex, returned
as one of the following:

• M-by-N array, where N and M are the number of grid points for the first and second inputs
respectively; that is options.NumGridPoints = [N M]. Each element of Z is the value of the
FIS output, evaluated at the corresponding X and Y input values. For example, for a two-input
system:

Z(i,j) = evalfis(fis,[X(i,j) Y(i,j)]);

• P-element column vector, where P is the number of grid points specified for a single input
variable; that is options.NumGridPoints = P. Each element of Z is the value of the FIS output
evaluated at the corresponding X input value.

When computing the value of Z, gensurf sets the values of any inputs not specified by
options.InputIndex to their corresponding reference values, as specified in
options.ReferenceInputs.

 gensurf

8-133

Alternative Functionality
App

You can interactively view the control surface for a FIS using the Fuzzy Logic Designer app.

Version History
Introduced before R2006a

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

R2017a: Specify options using gensurfOptions
Behavior changed in R2017a

To specify options for generating fuzzy inference system output surfaces , you now create a
gensurfOptions option set. You can then modify the options using dot notation. Any options you do
not modify remain at their default values.

Previously, to generate an output surface for a fuzzy inference system using gensurf, you specified
the generation options using optional input arguments.

gensurf(fis,inputs,output,grids,refInput,points);

Starting in R2017a, if your code uses gensurf, modify the code to use a gensurfOptions option
set.

opt = gensurfOptions;
opt.InputIndex = [1 3];
fis = gensurf(fis,opt);

The following table shows the mapping of the old gensurf input arguments to the new
gensurfOptions option set.

Old gensurf Input Argument New gensurfOptions Option
inputs InputIndex
output OutputIndex
grids NumGridPoints
refinput ReferenceInputs
points NumSamplePoints

See Also
gensurfOptions | evalfis | surfview

8 Functions

8-134

getfis
(To be removed) Get fuzzy system properties

Note getfis will be removed in a future release. Access fuzzy inference system properties using dot
notation instead. For more information, see “Compatibility Considerations”.

Syntax
getfis(sys)

fisInfo = getfis(sys)
fisInfo = getfis(sys,fisProperty)

varInfo = getfis(sys,varType,varIndex)
varInfo = getfis(sys,varType,varIndex,varProperty)

mfInfo = getfis(sys,varType,varIndex,'mf',mfIndex)
mfInfo = getfis(sys,varType,varIndex,'mf',mfIndex,mfProperty)

Description
getfis(sys) prints the properties of the fuzzy inference system sys, to the Command Window.

fisInfo = getfis(sys) returns the properties of the specified fuzzy inference system.

fisInfo = getfis(sys,fisProperty) returns the value of the specified property of the fuzzy
inference system.

varInfo = getfis(sys,varType,varIndex) returns the properties of the specified input or
output variable of a fuzzy inference system.

varInfo = getfis(sys,varType,varIndex,varProperty) returns the value of the specified
variable property.

mfInfo = getfis(sys,varType,varIndex,'mf',mfIndex) returns the properties of the
specified membership function of an input or output variable.

mfInfo = getfis(sys,varType,varIndex,'mf',mfIndex,mfProperty) returns the value of
the specified membership function property.

Examples

Display Properties of Fuzzy Inference System

Load a fuzzy inference system.

sys = readfis('tipper');

Display the system properties.

 getfis

8-135

getfis(sys)

 Name = tipper
 Type = mamdani
 NumInputs = 2
 InLabels =
 service
 food
 NumOutputs = 1
 OutLabels =
 tip
 NumRules = 3
 AndMethod = min
 OrMethod = max
 ImpMethod = min
 AggMethod = max
 DefuzzMethod = centroid

Obtain Fuzzy Inference System Properties

Load fuzzy system.

sys = readfis('tipper');

Obtain the system properties.

prop = getfis(sys);

To obtain the value of a given property, specify the property name. For example, obtain the type of the
fuzzy system.

type = getfis(sys,'type');

Obtain Variable Properties

Load fuzzy system.

sys = readfis('tipper');

Obtain the properties of the first input variable.

prop = getfis(sys,'input',1);

To obtain the value of a given property, specify the property name. For example, obtain the range of
the output variable.

range = getfis(sys,'output',1,'range');

Obtain Membership Function Properties

Load fuzzy system.

sys = readfis('tipper');

8 Functions

8-136

For the second input variable, obtain the properties of its first membership function.

prop = getfis(sys,'input',2,'mf',1);

To obtain the value of a given property, specify the property name. For example, obtain the
parameters of the second membership function of the output variable.

params = getfis(sys,'output',1,'mf',2,'params');

Input Arguments
sys — Fuzzy inference system
FIS structure

Fuzzy inference system, specified as an FIS structure.

fisProperty — Fuzzy inference system property
'name' | 'type' | 'numInputs' | 'numOutputs' | ...

Fuzzy inference system property, specified as one of the following:

• 'name' — FIS name
• 'type' — FIS type
• 'numInputs' — Number of inputs
• 'numOutputs'— Number of outputs
• 'numRules' — Number of fuzzy rules.
• 'andMethod' — And method
• 'orMethod' — Or method
• 'defuzzMethod' — Defuzzification method
• 'impMethod' — Implication method
• 'aggMethod' — Aggregation method
• 'ruleList' — List of fuzzy rules

varType — Variable type
'input' | 'output'

Variable type, specified as either 'input' or 'output', for input and output variables, respectively.

varIndex — Variable index
positive integer

Variable index, specified as a positive integer.

varProperty — Variable property
'name' | 'range' | 'nummfs'

Variable property, specified as one of the following:

• 'name' — Variable name
• 'range' — Variable value range

 getfis

8-137

• 'nummfs' — Number of membership functions

mfIndex — Membership function index
positive integer

Membership function index, specified as a positive integer.

mfProperty — Membership function property
'name' | 'type' | 'params'

Membership function property, specified as one of the following:

• 'name' — Membership function name
• 'type' — Membership function type
• 'params' — Membership function parameters

For more information on membership functions, see “Membership Functions” on page 1-9.

Output Arguments
fisInfo — Fuzzy inference system information
structure | character vector | nonnegative integer | array

Fuzzy inference system information, returned as a structure, character vector, nonnegative integer, or
array, depending on the value of fisProperty.

If you do not specify fisProperty, then fisInfo is returned as a structure with the following
fields.

Field Description
name FIS name, returned as a character vector.
type FIS type, returned as a character vector.
andMethod AND fuzzy operator method, returned as a character vector.
orMethod OR fuzzy operator method, returned as a character vector.
defuzzMethod Defuzzification method, returned as a character vector.
impMethod Implication method, returned as a character vector.
aggMethod Aggregation method, returned as a character vector.
input Input variable information, returned as a structure or structure array. Each

input variable structure contains the following fields:

• name — Variable name
• range — Variable range
• mf — Membership function names

8 Functions

8-138

Field Description
output Output variable information, returned as a structure or structure array. Each

output variable structure contains the following fields:

• name — Variable name
• range — Variable range
• mf — Membership function names

rule Fuzzy rule list, returned as a structure or structure array. Each rule structure
contains the following fields:

• antecedent — Input membership function indices
• consequent — Output membership function indices
• weight — Rule weight
• connection — Fuzzy operator: 1 (AND), 2 (OR)

Otherwise, the value of fisInfo depends on the value of fisProperty according to the following
table.

fisProperty fisInfo
'name' FIS name, returned as a character vector.
'type' FIS type, returned as one of the following:

• 'mamdani' — Mamdani-type fuzzy system
• 'sugeno' — Sugeno-type fuzzy system

'numinputs' Number of input variables, returned as a nonnegative integer.
'numiutputs' Number of output variables, returned as a nonnegative integer.
'numrules' Number of fuzzy rules, returned as a nonnegative integer.
'andmethod' AND fuzzy operator method, returned as one of the following:

• 'min' — Minimum of fuzzified input values
• 'prod' — Product of fuzzified input values
• Character vector — Name of a custom AND function in the current

working folder or on the MATLAB path
'ormethod' OR fuzzy operator method, returned as one of the following:

• 'max' — Maximum of fuzzified input values
• 'probor' — Probabilistic OR of fuzzified input values
• Character vector — Name of a custom OR function in the current working

folder or on the MATLAB path

 getfis

8-139

fisProperty fisInfo
'defuzzmethod' Defuzzification method for computing crisp output values, returned as one of

the following for Mamdani systems:

• 'centroid' — Centroid of the area under the output fuzzy set
• 'bisector' — Bisector of the area under the output fuzzy set
• 'mom' — Mean of the values for which the output fuzzy set is maximum
• 'lom' — Largest value for which the output fuzzy set is maximum
• 'som' — Smallest value for which the output fuzzy set is maximum

For Sugeno systems, specify the defuzzification method as one of the
following:

• 'wtaver' — Weighted average of all rule outputs
• 'wtsum' — Weighted sum of all rule outputs

The defuzzification method can also be returned as a character vector that
contains the name of a custom defuzzification function in the current
working folder or on the MATLAB path.

'impmethod' Implication method for computing consequent fuzzy set, returned as one of
the following:

• 'min' — Truncate the consequent membership function at the
antecedent result value.

• 'prod' — Scale the consequent membership function by the antecedent
result value.

• Character vector — Name of a custom implication function in the current
working folder or on the MATLAB path

'aggmethod' Aggregation method for combining rule consequents, returned as one of the
following:

• 'max' — Maximum of consequent fuzzy sets
• 'sum' — Sum of consequent fuzzy sets
• 'probor' — Probabilistic OR of consequent fuzzy sets
• Character vector — Name of a custom aggregation function in the current

working folder or on the MATLAB path.

8 Functions

8-140

fisProperty fisInfo
'rulelist' Fuzzy rule list, returned as an array. For each fuzzy rule, the rule list

contains one row with the following columns:

• Nu columns of input membership function indices, where Nu is the
number of inputs. If a given variable is not included in a rule, the
corresponding column entry is 0. Negative values indicate a NOT
operation.

• Ny columns of output membership function indices, where Ny is the
number of outputs. If a given variable is not included in a rule, the
corresponding column entry is 0. Negative values indicate a NOT
operation.

• Rule weight
• Fuzzy operator: 1 (AND), 2 (OR)

varInfo — Variable information
structure | character vector | nonnegative integer | row vector of length 2

Variable information, returned as a structure, nonnegative integer, character vector, or row vector,
depending on the value of varProperty.

If you do not specify varProperty, then varInfo is returned as a structure with the following
fields.

Field Description
Name Variable name, returned as a character vector.
NumMFs Number of membership functions, returned as a nonnegative integer.
mf1, mf2, ..., mfN Membership function names, returned as character vectors. mfInfo contains

one field for each membership function.
range Variable range, returned as a row vector of length 2.

Otherwise, the value of varInfo depends on the value of varProperty according to the following
table.

varProperty varInfo
'name' Variable name, returned as a character vector.
'nummfs' Number of membership functions, returned as a nonnegative integer.
'range' Variable range, returned as a row vector of length 2.

mfInfo — Membership function information
structure | character vector | row vector

Membership function information, returned as a structure, character vector, or row vector, depending
on the value of mfProperty.

If you do not specify mfProperty, then mfInfo is returned as a structure with the following fields.

 getfis

8-141

Field Description
Name Membership function name, returned as a character vector.
Type Membership function type, returned as a character vector.
params Membership function parameters, returned as a row vector.

Otherwise, the value of mfInfo depends on the value of mfProperty according to the following
table.

mfProperty mfInfo
'name' Membership function name, returned as a character vector.
'type' Membership function type, returned as a character vector.
'params' Membership function parameters, returned as a row vector.

For more information on membership function, see “Membership Functions” on page 1-9.

Version History
Introduced before R2006a

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

R2018b: To be removed
Not recommended starting in R2018b

getfis will be removed in a future release. Access fuzzy inference system properties using dot
notation instead. There are differences between these approaches that require updates to your code.
Update Code

This table shows some typical usages of getfis for accessing fuzzy inference system properties and
how to update your code to use dot notation instead.

If your code has this form: Use this code instead:
get(fis,'andmethod') fis.AndMethod
getfis(fis,'input',1) fis.Inputs(1)
getfis(fis,'input',1,'name') fis.Inputs(1).Name
getfis(fis,'input',2,'mf',1) fis.Inputs(2).MembershipFunctions(1)
getfis(fis,'input',2,'mf',1,...
 params)

fis.Inputs(2).MembershipFunctions(1).Parameters

Previously, fuzzy inference systems were represented as structures. Now, fuzzy inference systems are
represented as objects. Fuzzy inference system object properties have different names than the

8 Functions

8-142

corresponding structure fields. For more information on fuzzy inference system objects, see mamfis
and sugfis.

R2017a: Returns FIS properties in a structure
Behavior changed in R2017a

Starting in R2017a, the following getfis syntaxes have a new behavior.

Syntax Previous Behavior New Behavior
getfis(fis) Print formatted list of FIS properties

to Command Window, and return FIS
name.

Print formatted list of FIS properties
to Command Window.

getfis(fis,varTy
pe,varIndex)

Print formatted list variable properties
to Command Window, and return
structure that contains variable
properties.

Return structure that contains
variable properties.

getfis(fis,varTy
pe,varIndex,'mf'
,mfIndex)

Print formatted list membership
function properties to Command
Window, and return structure that
contains membership function
properties.

Return structure that contains
membership function properties.

See Also
setfis | showfis

 getfis

8-143

getFISCodeGenerationData
Create homogeneous fuzzy inference system structure

Syntax
fisOut = getFISCodeGenerationData(fisIn)

fisOut = getFISCodeGenerationData(fileName)
fisOut = getFISCodeGenerationData(fileName,"FuzzySetType","type2")

fisTreeOut = getFISCodeGenerationData(fisTreeIn)

Description
To generate code for evaluating a fuzzy inference system (FIS) using MATLAB Coder, you must
convert your fuzzy inference system object into a homogeneous structure using
getFISCodeGenerationData.

fisOut = getFISCodeGenerationData(fisIn) converts the FIS object fisIn into the
homogeneous structure fisOut. fisIn can be either a type-1 or type-2 FIS.

fisOut = getFISCodeGenerationData(fileName) creates a homogeneous structure for the
type-1 FIS stored in the file indicated by fileName.

fisOut = getFISCodeGenerationData(fileName,"FuzzySetType","type2") creates a
homogeneous structure for the type-2 FIS stored in the file indicated by fileName.

fisTreeOut = getFISCodeGenerationData(fisTreeIn) converts the FIS tree object
fisTreeIn into the homogeneous structure fisTreeOut.

Examples

Convert FIS Object into Homogeneous Structure

Create a fuzzy inference system. For this example, load a fuzzy system from a file.

fisObject = readfis('tipper');

Convert the resulting mamfis object into a homogeneous structure.

fisStructure = getFISCodeGenerationData(fisObject)

fisStructure = struct with fields:
 name: 'tipper'
 type: 'mamdani'
 andMethod: 'min'
 orMethod: 'max'
 defuzzMethod: 'centroid'
 impMethod: 'min'
 aggMethod: 'max'

8 Functions

8-144

 input: [1x2 struct]
 output: [1x1 struct]
 rule: [1x3 struct]

In this structure, if a field is a structure array, all the elements of that array are the same size. For
example, consider the elements of input variable array fisStructure.input.

fisStructure.input(1)

ans = struct with fields:
 name: 'service'
 origNameLength: 7
 range: [0 10]
 mf: [1x3 struct]
 origNumMF: 3

fisStructure.input(2)

ans = struct with fields:
 name: 'food '
 origNameLength: 4
 range: [0 10]
 mf: [1x3 struct]
 origNumMF: 2

The name fields are character vectors of the same length. Also, even though the second input variable
has only two membership functions, the mf fields both contain three membership function structures.
The original number of membership functions for a given input variable is stored in the origNumMF
field.

You can also convert a type-2 FIS into a homogeneous structure for code generation. For example,
convert fisObject into a type-2 system and create a corresponding homogeneous structure.

fisObject2 = convertToType2(fisObject);
fisStructure2 = getFISCodeGenerationData(fisObject2)

fisStructure2 = struct with fields:
 name: 'tipper'
 type: 'mamdani'
 andMethod: 'min'
 orMethod: 'max'
 defuzzMethod: 'centroid'
 impMethod: 'min'
 aggMethod: 'max'
 input: [1x2 struct]
 output: [1x1 struct]
 rule: [1x3 struct]
 typeReductionMethod: 'karnikmendel'

Load FIS from File into Homogeneous Structure

Load the type-1 FIS stored in the file tipper.fis into a homogeneous structure.

 getFISCodeGenerationData

8-145

fisData = getFISCodeGenerationData("tipper.fis");

You can also load a type-2 FIS from a file into a homogeneous structure. To do so, you must specify
that the FIS in the file is a type-2 system.

For example, create a type-2 FIS and save it to a file.

fis2 = mamfistype2("NumInputs",3,"NumOutputs",2);
writeFIS(fis2,"type2.fis");

Load the saved file into a homogeneous structure.

fisData2 = getFISCodeGenerationData("type2.fis","FuzzySetType","type2");

Convert FIS Tree Object into Homogeneous Structure

Create a type-1 Mamdani FIS and a type-2 Sugeno FIS.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfistype2('Name','fis2','NumInputs',2,'NumOutputs',1);

Create a FIS tree object where the output of fis1 connects to the first input of fis2.

con1 = ["fis1/output1" "fis2/input1"];
tree = fistree([fis1 fis2],con1);

Convert the FIS tree object into a homogeneous structure.

treeStructure = getFISCodeGenerationData(tree)

treeStructure = struct with fields:
 FIS: {[1x1 struct] [1x1 struct]}
 Connections: {'fis1/output1' 'fis2/input1'}
 Outputs: {'fis2/output1'}
 EvaluationFcn: [1x1 struct]

Input Arguments
fisIn — Input fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Input fuzzy inference system, specified as a mamfis, sugfis, mamfistype2, or sugfistype2
object.

getFISCodeGenerationData supports fuzzy inference system objects for simulation only.

When getFISCodeGenerationData loads a fuzzy system that uses custom functions, it writes
additional files to the current folder to support code generation for the custom functions.

fileName — Fuzzy inference system file name
string | character vector

8 Functions

8-146

Fuzzy inference system file name, specified as a string or character vector. The specified file must be
a .fis file in the current working folder or on the MATLAB path.

fisTreeIn — Input FIS tree
fistree object

Input FIS tree, specified as a fistree object. You can specify a FIS tree that contains any
combination of mamfis, sugfis, mamfistype2, or sugfistype2 objects.

Output Arguments
fisOut — Output fuzzy inference system
structure

Output fuzzy inference system, returned as a homogeneous structure. In the homogeneous structure,
if a field is a structure array, all the elements of that array are the same size. For example, in the
input variable array fisOut.input:

• The names of all the variables are character vectors of the same length.
• The lengths of the membership function arrays for all variables are the same.

For any character vectors or structure arrays that are padded to increase their lengths, the original
lengths of these elements are saved within the structure.

The fisOut structure is different from the structure created using convertToStruct.

Note Modifying the fields of fisOut can produce unexpected results. Instead, modify fisIn and call
getFISCodeGenerationData again.

fisTreeOut — Output FIS tree
structure

Output FIS tree, returned as a structure with the following fields.

• FIS — Homogeneous FIS structures
• Connections — Connections between FISs
• Outputs — FIS tree outputs
• EvaluationFcn — Generated function for evaluating the FIS tree

Note Modifying the fields of fisTreeOut can produce unexpected results. Instead, modify
fisTreeIn and call getFISCodeGenerationData again.

Version History
Introduced in R2018b

R2022b: C and C++ code generation support for evaluating FIS trees

 getFISCodeGenerationData

8-147

You can generate homogeneous structures for FIS trees. You can then use these structures for code
generation using MATLAB Coder. For more information, see “Generate Code for Fuzzy System Using
MATLAB Coder” on page 6-12.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• getFISCodeGenerationData supports FIS objects (mamfis, sugfis, mamfistype2, or
sugfistype2) for simulation only. To generate code for getFISCodeGenerationData, specify
the input fuzzy inference system using a file name.

• getFISCodeGenerationData supports fistree objects for simulation only.
• It is good practice to not use getFISCodeGenerationData within a MATLAB Function block.

This function is a utility function for generating code for evaluating a fuzzy inference system using
MATLAB Coder.

See Also
mamfis | sugfis | mamfistype2 | sugfistype2 | evalfis | evalfisOptions

8 Functions

8-148

getTunableSettings
Obtain tunable settings from fuzzy inference system

Syntax
in = getTunableSettings(fis)
[~,out] = getTunableSettings(fis)
[~,~,rule] = getTunableSettings(fis)
[in,out,rule] = getTunableSettings(fis)
[___] = getTunableSettings(fis,Name=Value)

Description
in = getTunableSettings(fis) returns tunable settings of input variables of the fuzzy system
fis.

[~,out] = getTunableSettings(fis) returns tunable settings of output variables of the fuzzy
system fis.

[~,~,rule] = getTunableSettings(fis) returns tunable settings of rules of the fuzzy system
fis.

[in,out,rule] = getTunableSettings(fis) returns tunable settings of inputs, outputs, and
rules of the fuzzy system fis.

[___] = getTunableSettings(fis,Name=Value) specifies tunable setting information using
name-value pair arguments. You can specify multiple name-value pairs.

Examples

Obtain Tunable Settings from FIS

Create a fuzzy inference system.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);

Obtain the tunable settings of the inputs, outputs, and rules of the fuzzy inference system.

[in,out,rule] = getTunableSettings(fis1);

You can use dot notation to specify tunable settings.

For the first membership function of input 1:

• Do not tune parameter 1.
• Set the minimum ranges of the last two parameters to 0.
• Set the maximum ranges of the last two parameters to 1.

 getTunableSettings

8-149

in(1).MembershipFunctions(1).Parameters.Free(1) = false;
in(1).MembershipFunctions(1).Parameters.Minimum(2:end) = 0;
in(1).MembershipFunctions(1).Parameters.Maximum(2:end) = 1;

For the first rule:

• Set the input 1 membership function index as nontunable.
• Allow NOT logic for input 2 membership function index.
• Do not ignore the output 1 membership function index.

rule(1).Antecedent.Free(1) = false;
rule(1).Antecedent.AllowNot(2) = true;
rule(1).Consequent.AllowEmpty(1) = false;

Obtain Tunable Settings of Input and Output Variables from FIS

Create a fuzzy inference system.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);

Obtain the tunable settings of input and output variables of the fuzzy inference system.

[in,out] = getTunableSettings(fis1);

You can use dot notation to specify the tunable settings of input and output variables.

For the first membership function of input 1, set the first and third parameters to tunable.

in(1).MembershipFunctions(1).Parameters.Free = [1 0 1];

For the first membership function of input 2, set the minimum parameter range to 0.

in(2).MembershipFunctions(1).Parameters.Minimum = 0;

For the first membership function of the output variable, set the maximum parameter range to 1.

out(1).MembershipFunctions(1).Parameters.Maximum = 1;

Obtain Tunable Settings of Input and Output Variables from Type-2 FIS

Create a type-2 fuzzy inference system.

fis = mamfistype2('Name','fis1','NumInputs',2,'NumOutputs',1);

Obtain the tunable settings of the input and output variables of the fuzzy inference system.

[in,out] = getTunableSettings(fis);

You can use dot notation to specify the tunable settings of the membership functions of the input and
output variables.

For the first membership function of input 1, set the first and third upper membership function
parameters as tunable.

8 Functions

8-150

in(1).MembershipFunctions(1).UpperParameters.Free = [1 0 1];

For the first membership function of input 2, set the tunable range of the lower membership function
scale to be between 0.7 and 0.9.

in(2).MembershipFunctions(1).LowerScale.Minimum = 0.7;
in(2).MembershipFunctions(1).LowerScale.Maximum = 0.9;

For the first membership function of output 1, set the tunable range of the lower membership
function lag to be between 0.1 and 0.4.

in(2).MembershipFunctions(1).LowerLag.Minimum = 0.1;
in(2).MembershipFunctions(1).LowerLag.Maximum = 0.4;

By default, the tunable settigns for a type-2 FIS produce symmetric lag results in the tuned system.
To allow for asymmetric lag results, specify the AsymmetricLag name-value argument.

[in2,out2] = getTunableSettings(fis,'AsymmetricLag',true);

Specify Tunability of Parameter Settings

Create a fuzzy inference system, and define the tunable parameter settings of inputs, outputs, and
rules.

Create a FIS, and obtain its tunable settings.

fis = mamfis("NumInputs",2,"NumOutputs",2);
[in,out,rule] = getTunableSettings(fis);

You can specify all the input variables, output variables, or rules as tunable or nontunable. For
example, set all the output variable settings as nontunable.

out = setTunable(out,0);

You can set the tunability of individual variables or rules. For example, set the first input variable as
nontunable.

in(1) = setTunable(in(1),0);

You can set individual membership functions as nontunable. For example, set the first membership
function of input 2 as nontunable.

in(2).MembershipFunctions(1) = setTunable(in(2).MembershipFunctions(1),0);

You can also specify the tunability of a subset of variables or rules. For example, set the first two rules
as nontunable.

rule(1:2) = setTunable(rule(1:2),0);

Get Tunable Settings for FIS in FIS Tree

Create a FIS tree that contains three FIS objects.

 getTunableSettings

8-151

fis1 = mamfis(Name="fis1",NumInputs=2,NumOutputs=1);
fis2 = mamfis(Name="fis2",NumInputs=2,NumOutputs=1);
fis3 = mamfis(Name="fis3",NumInputs=2,NumOutputs=1);

connections = [
 "fis1/output1" "fis3/input1";
 "fis2/output1" "fis3/input2"];

fisT = fistree([fis1 fis2 fis3],connections);

Obtain the tunable settings for the variables and rules in fis3.

[in3,out3,rule3] = getTunableSettings(fisT,FIS="fis3");

You can also obtain tunable settings for multiple FIS objects in a FIS tree. Obtain the unable settings
for the rules in fis1 and fis2.

[~,~,rule12] = getTunableSettings(fisT,FIS=["fis1" "fis2"]);

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object | fistree object

Fuzzy inference system, specified as a mamfis, sugfis, mamfistype2, sugfistype2, or fistree
object. The fuzzy system can be a fuzzy inference system or network of interconnected fuzzy
inference systems.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: FIS="fis1"

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "AsymmetricLag",true

FIS — Names of component FIS objects from FIS tree
string | string array

Names of component FIS objects from FIS tree, specified as a string or string array. When you specify
this argument, in, out, and rule contain the tunable settings for the variables and rules that apply
to the specified component FIS objects.

This argument is supported when fis is a fistree object.

AsymmetricLag — Option to use asymmetric lag
false (default) | true

Option to use asymmetric lag when tuning the membership functions of a type-2 FIS.

This argument is supported when fis is a:

8 Functions

8-152

• mamfistype2 or sugfistype2 object
• fistree with at least one component FIS that is a mamfistype2 or sugfistype2 object.

Output Arguments
in — Tunable settings of input variables
array of VariableSettings objects

Tunable settings for input variables, returned as an array of VariableSettings objects. Each
VariableSettings object contains tunability settings for the input variable indicated by its
FISName and VariableName properties.

Specify the tunability settings of the membership functions for this variable, using its
MembershipFunctions property.

out — Tunable settings of output variables
array of VariableSettings objects

Tunable settings for input variables, returned as an array of VariableSettings objects. Each
VariableSettings object contains tunability settings for the output variable indicated by its
FISName and VariableName properties.

Specify the tunability settings of the membership functions for this variable, using its
MembershipFunctions property.

rule — Tunable settings of rules
array of RuleSettings objects

Tunable settings for rules, returned as an array of RuleSettings object. Each RuleSettings
object contains tunability settings for a rule from the FIS indicated by its FISName property.

Specify the tunability settings of the antecedent and consequent for this variable, using its
Antecedent and Consequent properties, respectively.

Version History
Introduced in R2019a

See Also
setTunable | getTunableValues | setTunableValues | tunefis | VariableSettings |
RuleSettings

 getTunableSettings

8-153

getTunableValues
Obtain values of tunable parameters from fuzzy inference system

Syntax
paramvals = getTunableValues(fis,paramset)

Description
paramvals = getTunableValues(fis,paramset) returns tunable parameter values of the fuzzy
inference system fis. To specify the parameter values to return, use paramset.

Examples

Obtain Values of Tunable Parameters from FIS

Create a fuzzy inference system, and define the tunable parameter settings of inputs, outputs, and
rules.

fis = mamfis('NumInputs',2,'NumOutputs',1);
[in,out,rule] = getTunableSettings(fis);

Obtain tunable parameter values of the inputs, outputs, and rules of the fuzzy inference system.

paramVals = getTunableValues(fis,[in;out;rule]);

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object | fistree object

Fuzzy inference system, specified as a mamfis, sugfis, mamfistype2, sugfistype2, or fistree
object.

paramset — Tunable parameter settings
array

Tunable parameter settings, specified as an array of input, output, and rule parameter settings in the
input FIS. To obtain these parameter settings, use the getTunableSettings function with the input
fis.

paramset can be the input, output, or rule parameter settings, or any combination of these settings.

Output Arguments
paramvals — Tunable parameter values
array

8 Functions

8-154

Tunable parameter values, returned as an array. The order of the values in paramvals matches the
order of the parameters in paramset.

You can modify these parameter values, and then set them in your FIS using setTunableValues.

Version History
Introduced in R2019a

See Also
mamfis | sugfis | mamfistype2 | sugfistype2 | getTunableSettings | tunefis |
setTunableValues

 getTunableValues

8-155

linsmf
Linear s-shaped saturation membership function

Syntax
y = linsmf(x,params)

Description
This function computes fuzzy membership values using a linear s-shaped membership function. You
can also compute this membership function using a fismf object. For more information, see “fismf
Object” on page 8-265.

This membership function is related to the trimf, trapmf, and linzmf membership functions.

y = linsmf(x,params) returns fuzzy membership values computed using a linear s-shaped
saturation membership function.

• When a < b:

f x; a, b =

0, x < a
x− a
b− a , a ≤ x ≤ b

1, x > b
• When a = b:

f x; a, b =
0, x < a
1, x ≥ a

To define the membership function parameters, specify params as the vector [a b].

Membership values are computed for each input value in x.

Examples

Linear S-Shaped Membership Function

Specify input values across the universe of discourse.

x = 0:0.1:10;

Evaluate a linear s-shaped membership function for the input values.

y = linsmf(x,[4 6]);

Plot the membership function.

plot(x,y)
xlabel('linsmf, P = [4 6]')

8 Functions

8-156

ylabel('Membership')
ylim([-0.05 1.05])

Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length two

Membership function parameters, specified as the vector [a b]. Parameter a defines the foot of the
membership function, and b defines its shoulder. Setting a equal to b produces a crisp membership
function.

Output Arguments
y — Membership value
scalar | vector

Membership value, returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.

 linsmf

8-157

Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the linsmf membership function.

mf = fismf("linsmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of linsmf, respectively.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fismf | fismftype2 | psigmf | sigmf | gaussmf | gauss2mf | gbellmf | trimf | trapmf |
linzmf | pimf | smf | zmf | dsigmf

Topics
“Membership Functions” on page 1-9

8 Functions

8-158

linzmf
Linear z-shaped saturation membership function

Syntax
y = linzmf(x,params)

Description
This function computes fuzzy membership values using a linear z-shaped membership function. You
can also compute this membership function using a fismf object. For more information, see “fismf
Object” on page 8-265.

This membership function is related to the trimf, trapmf, and linsmf membership functions.

y = linzmf(x,params) returns fuzzy membership values computed using a linear z-shaped
saturation membership function.

• When a < b:

f x; a, b =

1, x < a
a− x
a− b , a ≤ x ≤ b

0, x > b
• When a = b:

f x; a, b =
1, x < a
0, x ≥ a

To define the membership function parameters, specify params as the vector [a b].

Membership values are computed for each input value in x.

Examples

Linear Z-Shaped Membership Function

Specify input values across the universe of discourse.

x = 0:0.1:10;

Evaluate a linear z-shaped membership function for the input values.

y = linzmf(x,[4 6]);

Plot the membership function.

plot(x,y)
xlabel('linzmf, P = [4 6]')

 linzmf

8-159

ylabel('Membership')
ylim([-0.05 1.05])

Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length two

Membership function parameters, specified as the vector [a b]. Parameter a defines the shoulder of
the membership function, and b defines its foot. Setting a equal to b produces a crisp membership
function.

Output Arguments
y — Membership value
scalar | vector

Membership value, returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.

8 Functions

8-160

Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the linsmf membership function.

mf = fismf("linzmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of linzmf, respectively.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fismf | fismftype2 | psigmf | sigmf | gaussmf | gauss2mf | gbellmf | trimf | trapmf |
linsmf | pimf | smf | zmf | dsigmf

Topics
“Membership Functions” on page 1-9

 linzmf

8-161

mam2sug
(To be removed) Transform Mamdani fuzzy inference system into Sugeno fuzzy inference system

Note mam2sug will be removed in a future release. Use convertToSugeno instead. For more
information, see “Compatibility Considerations”.

Syntax
sugFIS = mam2sug(mamFIS)

Description
sugFIS = mam2sug(mamFIS) transforms a Mamdani fuzzy inference system into a Sugeno fuzzy
inference system.

Examples

Transform Mamdani FIS into Sugeno FIS

Load a Mamdani fuzzy inference system.

mam_fismat = readfis('mam22.fis');

Convert this system to a Sugeno fuzzy inference system.

sug_fismat = mam2sug(mam_fismat);

Plot the output surfaces for both fuzzy systems.

subplot(2,2,1)
gensurf(mam_fismat)
title('Mamdani system (Output 1)')
subplot(2,2,2)
gensurf(sug_fismat)
title('Sugeno system (Output 1)')
subplot(2,2,3)
gensurf(mam_fismat,gensurfOptions('OutputIndex',2))
title('Mamdani system (Output 2)')
subplot(2,2,4)
gensurf(sug_fismat,gensurfOptions('OutputIndex',2))
title('Sugeno system (Output 2)')

8 Functions

8-162

The output surfaces for both systems are similar.

Input Arguments
mamFIS — Mamdani fuzzy inference system
structure

Mamdani fuzzy inference system, specified as a structure. Construct mamFIS at the command line or
using the Fuzzy Logic Designer. For more information, see “Build Fuzzy Systems at the Command
Line” on page 2-77 and “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15.

Output Arguments
sugFIS — Sugeno fuzzy inference system
structure

Sugeno fuzzy inference system, returned as a structure. sugFIS:

• Has constant output membership functions, whose values correspond to the centroids of the
output membership functions in mamFIS

• Uses the weighted-average defuzzification method
• Uses the product implication method
• Uses the sum aggregation method

 mam2sug

8-163

The remaining properties of sugFIS, including the input membership functions and rule definitions
remain unchanged from mamFIS.

Tips
• If you have a functioning Mamdani fuzzy inference system, consider using mam2sug to convert to

a more computationally efficient Sugeno structure to improve performance.
• If sugFIS has a single output variable and you have appropriate measured input/output training

data, you can tune the membership function parameters of sugFIS using anfis.

Version History
Introduced before R2006a

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

R2018b: To be removed
Not recommended starting in R2018b

mam2sug will be removed in a future release. Use convertToSugeno instead. To update your code,
change the function name from mam2sug to convertToSugeno. The syntaxes are equivalent.

See Also
convertToSugeno | Fuzzy Logic Designer

Topics
“Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2
“Build Fuzzy Systems at the Command Line” on page 2-77
“Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15

8 Functions

8-164

mf2mf
(To be removed) Translate parameters between membership functions

Note mf2mf will be removed in a future release. Convert membership functions using dot notation
on fismf objects instead. For more information, see “Compatibility Considerations”.

Syntax
outParams = mf2mf(inParams,inType,outType)

Description
outParams = mf2mf(inParams,inType,outType) converts the parameters for one type of
membership function into those of another membership function.

Occasionally this translation results in lost information, so that if the output parameters are
translated back into the original membership function type, the transformed membership function
does not look the same as the original function.

Examples

Translate Parameters Between Membership Functions

Create parameters for a generalized bell-shaped membership function, then convert them to
parameters for a triangular membership function. Plot both functions to compare.

x = 0:0.1:5;
mf1 = [1 2 3];
mf2 = mf2mf(mf1,'gbellmf','trimf');
plot(x,gbellmf(x,mf1),x,trimf(x,mf2))
legend('Generalized bell-shaped','Triangle-shaped','Location','South')
ylim([-0.05 1.05])

 mf2mf

8-165

Input Arguments
inParams — Initial membership function parameters
vector

Initial membership function parameters, specified as a vector.

inType — Initial membership function type
character vector | string

Initial membership function type, specified as one of the following membership functions.

Membership
function type

Description For more information

'gbellmf' Generalized bell-shaped membership
function

gbellmf

'gaussmf' Gaussian membership function gaussmf
'gauss2mf' Gaussian combination membership

function
gauss2mf

'trimf' Triangular membership function trimf
'trapmf' Trapezoidal membership function trapmf
'sigmf' Sigmoidal membership function sigmf

8 Functions

8-166

Membership
function type

Description For more information

'dsigmf' Difference between two sigmoidal
membership functions

dsigmf

'psigmf' Product of two sigmoidal membership
functions

psigmf

'zmf' Z-shaped membership function zmf
'pimf' Pi-shaped membership function pimf
'smf' S-shaped membership function smf

outType — Final membership function type
character vector | string

Final membership function type, specified as one of the following membership functions.

Membership
function type

Description For more information

'gbellmf' Generalized bell-shaped membership
function

gbellmf

'gaussmf' Gaussian membership function gaussmf
'gauss2mf' Gaussian combination membership

function
gauss2mf

'trimf' Triangular membership function trimf
'trapmf' Trapezoidal membership function trapmf
'sigmf' Sigmoidal membership function sigmf
'dsigmf' Difference between two sigmoidal

membership functions
dsigmf

'psigmf' Product of two sigmoidal membership
functions

psigmf

'zmf' Z-shaped membership function zmf
'pimf' Pi-shaped membership function pimf
'smf' S-shaped membership function smf

Output Arguments
outParams — Final membership function parameters
vector

Final membership function parameters, returned as a vector.

Version History
Introduced before R2006a

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

 mf2mf

8-167

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

R2018b: To be removed
Not recommended starting in R2018b

mf2mf will be removed in a future release. Convert membership functions using dot notation on
fismf objects instead. There are differences between these approaches that require updates to your
code.

Update Code

Previously, to change the type of a membership function in a fuzzy inference system, you converted
the parameters using mf2mf.

fis = readfis('tipper');
oldType = fis.input(1).mf(1).type;
oldParams = fis.input(1).mf(1).params;
fis.input(1).mf(1).type = newType;
fis.input(1).mf(1).params = mf2mf(oldParams,oldType,newType);

Now, when you change the type of membership function, the parameters are converted automatically.

fis = readfis('tipper');
fis.Inputs(1).MembershipFunctions(1).Type = newType;

Previously, membership functions were represented as structures within a fuzzy inference system
structure. Now, membership functions are represented as fismf objects within mamfis and sugfis
objects. For more information on fuzzy inference system objects, see mamfis and sugfis.

See Also
evalmf | gaussmf | gauss2mf | gbellmf | trimf | trapmf | pimf | smf | zmf | psigmf | sigmf |
dsigmf | trimf | trapmf

Topics
“Membership Functions” on page 1-9

8 Functions

8-168

mfedit
(To be removed) Open Membership Function Editor

Note mfedit will be removed in a future release. For more information, see “To be removed”.

Syntax
mfedit
mfedit(fis)
mfedit(fileName)

Description
Using the Membership Function Editor, you specify the range of each input and output variables.
Then, for each variable, you define the number of membership functions, the type of each
membership function, and the membership function parameters.

The Fuzzy Logic Designer app consists of several interactive interfaces for creating a fuzzy
inference system (FIS), including the Membership Function Editor. For more information on
interactively creating fuzzy systems, see “Build Fuzzy Systems Using Fuzzy Logic Designer” on page
2-15.

mfedit opens the Membership Function Editor with no fuzzy inference system loaded.

mfedit(fis) opens the Membership Function Editor and loads the fuzzy inference system fis.

mfedit(fileName) opens the Membership Function Editor and loads a fuzzy inference system from
the file specified by fileName.

Examples

Open Membership Function Editor

Load or create a fuzzy inference system object. For this example, load the fuzzy system from a file.

fis = readfis('tipper');

Open the Membership Function Editor for this fuzzy system.

mfedit(fis)

 mfedit

8-169

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, specified as either a mamfis or sugfis object in the MATLAB workspace.

fileName — File name
string | character vector

File name specified as a string or character vector with or without the .fis extension. This file must
be in the current working directory or on the MATLAB path.

Version History
Introduced before R2006a

R2022b: To be removed
Warns starting in R2022b

mfedit will be removed in a future release.

8 Functions

8-170

To interactively edit the rules of a fuzzy inference system, open the Fuzzy Logic Designer app using
the fuzzyLogicDesigner(fis) command. Then, select the Membership Function (MF) Editor
document.

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

See Also
Apps
Fuzzy Logic Designer

Functions
ruleedit | ruleview | surfview | addMF | plotmf

Topics
“Membership Functions” on page 1-9

 mfedit

8-171

newfis
(To be removed) Create new fuzzy inference system

Note newfis will be removed in a future release. Use mamfis or sugfis instead. For more
information, see “Compatibility Considerations”.

Syntax
fis = newfis(name)
fis = newfis(name,Name,Value)

Description
fis = newfis(name) returns a default Mamdani fuzzy inference system with the specified name.

fis = newfis(name,Name,Value) returns a fuzzy inference system with properties specified
using one or more Name,Value pair arguments.

Examples

Create Fuzzy Inference System

Create a default Mamdani fuzzy inference system with the name, 'fis'.

sys = newfis('fis')

sys = struct with fields:
 name: 'fis'
 type: 'mamdani'
 andMethod: 'min'
 orMethod: 'max'
 defuzzMethod: 'centroid'
 impMethod: 'min'
 aggMethod: 'max'
 input: []
 output: []
 rule: []

Create Sugeno Fuzzy Inference System

Create a default Sugeno fuzzy inference system with the name, 'fis'.

sys = newfis('fis','FISType','sugeno')

sys = struct with fields:
 name: 'fis'
 type: 'sugeno'

8 Functions

8-172

 andMethod: 'prod'
 orMethod: 'probor'
 defuzzMethod: 'wtaver'
 impMethod: 'prod'
 aggMethod: 'sum'
 input: []
 output: []
 rule: []

Specify Implication Methods for New Fuzzy Inference System

Create a Mamdani fuzzy inference system that uses 'bisector' defuzzification and 'prod'
implication.

sys = newfis('fis','DefuzzificationMethod','bisector',...
 'ImplicationMethod','prod');

Input Arguments
name — Fuzzy inference system name
character vector | string

Fuzzy inference system name, specified as a character vector or string.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'OrMethod','probor' configures the fuzzy OR operator as a probabilistic OR function.

FISType — Fuzzy inference system type
'mamdani' (default) | 'sugeno'

Fuzzy inference system type, specified as one of the following:

• 'mamdani' — Mamdani-type fuzzy system
• 'sugeno' — Sugeno-type fuzzy system

For more information on the types of fuzzy inference systems, see “Mamdani and Sugeno Fuzzy
Inference Systems” on page 2-2.

AndMethod — AND fuzzy operator method
'min' | 'prod' | character vector | string

AND fuzzy operator method, specified as one of the following:

• 'min' — Minimum of fuzzified input values. This method is the default when FISType is
'mamdani'.

 newfis

8-173

• 'prod' — Product of fuzzified input values. This method is the default when FISType is
'sugeno'.

• Character vector or string — Name of a custom AND function in the current working folder or on
the MATLAB path. For more information on using custom functions, see “Build Fuzzy Systems
Using Custom Functions” on page 2-86.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-19.

OrMethod — OR fuzzy operator method
'max' | 'probor' | character vector | string

OR fuzzy operator method, specified as one of the following:

• 'max' — Maximum of fuzzified input values. This method is the default when FISType is
'mamdani'.

• 'probor' — Probabilistic OR of fuzzified input values. For more information, see probor. This
method is the default when FISType is 'sugeno'.

• Character vector or string — Name of a custom OR function in the current working folder or on
the MATLAB path. For more information on using custom functions, see “Build Fuzzy Systems
Using Custom Functions” on page 2-86.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-19.

ImplicationMethod — Implication method
'min' | 'prod' | character vector | string

Implication method for computing consequent fuzzy set, specified as one of the following:

• 'min' — Truncate the consequent membership function at the antecedent result value. This
method is the default when FISType is 'mamdani'.

• 'prod' — Scale the consequent membership function by the antecedent result value. This method
is the default when FISType is 'sugeno'.

• Character vector or string — Name of a custom implication function in the current working folder
or on the MATLAB path. For more information on using custom functions, see “Build Fuzzy
Systems Using Custom Functions” on page 2-86.

Note No matter what implication method you specify, Sugeno systems always use 'prod'
aggregation.

For more information on implication and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-19.

AggregationMethod — Aggregation method
'max' | 'sum' | character vector | string

Aggregation method for combining rule consequents, specified as one of the following:

• 'max' — Maximum of consequent fuzzy sets. This method is the default when FISType is
'mamdani'.

8 Functions

8-174

• 'sum' — Sum of consequent fuzzy sets. This method is the default when FISType is 'sugeno'.
• 'probor' — Probabilistic OR of consequent fuzzy sets. For more information, see probor.
• Character vector or string — Name of a custom aggregation function in the current working folder

or on the MATLAB path. For more information on using custom functions, see “Build Fuzzy
Systems Using Custom Functions” on page 2-86.

Note No matter what aggregation method you specify, Sugeno systems always use 'sum'
aggregation.

For more information on aggregation and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-19.

DefuzzificationMethod — Defuzzification method
'centroid' | 'bisector' | 'mom' | 'lom' | 'som' | 'wtaver' | 'wtsum' | character vector |
string

Defuzzification method for computing crisp output values.

If FISType is 'mamdani', specify the defuzzification method as one of the following:

• 'centroid' — Centroid of the area under the output fuzzy set. This method is the default for
Mamdani systems.

• 'bisector' — Bisector of the area under the output fuzzy set
• 'mom' — Mean of the values for which the output fuzzy set is maximum
• 'lom' — Largest value for which the output fuzzy set is maximum
• 'som' — Smallest value for which the output fuzzy set is maximum

If FISType is 'sugeno', specify the defuzzification method as one of the following:

• 'wtaver' — Weighted average of all rule outputs. This method is the default for Sugeno systems.
• 'wtsum' — Weighted sum of all rule outputs

You can also specify the defuzzification method using a character vector or string that contains the
name of a custom function in the current working folder or on the MATLAB path. For more
information on using custom functions, see “Build Fuzzy Systems Using Custom Functions” on page
2-86.

For more information on defuzzification and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-19.

Output Arguments
fis — Fuzzy inference system
FIS structure

Fuzzy inference system with the specified name, returned as an FIS structure. The fuzzy system is
configured using the specified Name,Value pair arguments.

fis has no input variables, output variables, or rules. To add variables or rules to fis, use addvar or
addRule. You can also edit the fuzzy system using Fuzzy Logic Designer.

 newfis

8-175

Version History
Introduced before R2006a

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

R2018b: To be removed
Not recommended starting in R2018b

newfis will be removed in a future release. Use mamfis or sugfis instead. There are differences
between these functions that require updates to your code.

To create a Mamdani or Sugeno FIS, use mamfis or sugfis, respectively.

Update Code

This table shows some typical usages of newfis for creating fuzzy systems and how to update your
code to use mamfis or sugfis instead.

If your code has this form: Use this code instead:
fis = newfis(name) fis = mamfis('Name',name)
fis = newfis(name,'FISType','mamdani') fis = mamfis('Name',name)
fis = newfis(name,'FISType','sugeno') fis = sugfis('Name',name)
fis = newfis(name,...
 'FISType','mamdani',...
 'AndMethod','prod')

fis = mamfis('Name',name,...
 'AndMethod','prod')

fis = newfis(name,...
 'FISType','sugeno',...
 'OrMethod','probor')

fis = sugfis('Name',name,...
 'OrMethod','probor')

R2017a: Specify options using name-value pair arguments
Behavior changed in R2017a

To specify options for creating new fuzzy inference systems, you now use name-value pair arguments.
Any name-value pair arguments that you do not specify remain at their default values.

Previously, you specified options using optional input arguments.
fis = newfis('My FIS',fisType,andMethod,orMethod,impMethod,aggMethod,defuzzMethod);

Starting in R2017a, modify your code to use one or more name-value pair arguments. For example,
create a Mamdani FIS with default options.

fis = newfis('My FIS','FISType','mamdani');

The following table shows the mapping of the old input arguments to the new name-value pair
arguments.

8 Functions

8-176

Old Input Argument New Name-Value Argument
fisType 'FISType'
andMethod 'AndMethod'
orMethod 'OrMethod'
impMethod 'ImplicationMethod'
aggMethod 'AggregationMethod'
defuzzMethod 'DefuzzificationMethod'

See Also
mamfis | sugfis | readfis | writeFIS

Topics
“Foundations of Fuzzy Logic” on page 1-7
“Fuzzy Inference Process” on page 1-19

 newfis

8-177

parsrule
(To be removed) Parse fuzzy rules

Note parsrule will be removed in a future release. Use addRule instead. For more information,
see “Compatibility Considerations”.

Syntax
outFIS = parsrule(inFIS,ruleList)
outFIS = parsrule(inFIS,ruleList,Name,Value)

Description
outFIS = parsrule(inFIS,ruleList) returns a fuzzy inference system, outFIS, that is
equivalent to the input fuzzy system, inFIS, but with fuzzy rules replaced by the rules specified in
ruleList.

outFIS = parsrule(inFIS,ruleList,Name,Value) parses the rules in ruleList using options
specified by one or more Name,Value pair arguments.

Examples

Add Rules to Fuzzy Inference System

Load a fuzzy inference system (FIS).

fis = readfis('tipper');

Specify if-then rules using the default 'verbose' format.
rule1 = "If service is poor or food is rancid then tip is cheap";
rule2 = "If service is excellent and food is not rancid then tip is generous";
rules = [rule1 rule2];

Add the rules to the FIS.

fis2 = parsrule(fis,rules);

fis2 is equivalent to fis, except that the rule base is replaced with the specified rules.

Add Rules Using Symbolic Expressions

Load a fuzzy inference system (FIS).

fis = readfis('tipper');

Specify the following rules using symbols:

8 Functions

8-178

• If service is poor or food is rancid then tip is cheap.
• If service is excellent and food is not rancid then tip is generous.

rule1 = "service==poor | food==rancid => tip=cheap";
rule2 = "service==excellent & food~=rancid => tip=generous";
rules = [rule1 rule2];

Add the rules to the FIS using the 'symbolic' format.

fis2 = parsrule(fis,rules,'Format','symbolic');

Add Rules Using Membership Function Indices

Load fuzzy inference system (FIS).

fis = readfis('mam22.fis');

Specify the following rules using membership function indices:

• If angle is small and velocity is big, then force is negBig and force2 is posBig2.
• If angle is not small and velocity is small, then force is posSmall and force2 is

negSmall2.

rule1 = "1 2, 1 4 (1) : 1";
rule2 = "-1 1, 3 2 (1) : 1";
rules = [rule1 rule2];

Add rules to FIS using the 'indexed' format.

fis2 = parsrule(fis,rules,'Format','indexed');

Add Rules Using French Language

Load a fuzzy inference system (FIS).

fis = readfis('tipper');

Specify if-then rules using French keywords.
rule1 = "Si service est poor ou food est rancid alors tip est cheap";
rule2 = "Si service est excellent et food n''est_pas rancid alors tip est generous";
rules = [rule1 rule2];

Add the rules to the FIS.

fis2 = parsrule(fis,rules,'Language','francais');

Add Single Rule to Fuzzy Inference System

Load a fuzzy inference system (FIS).

a = readfis('tipper');

 parsrule

8-179

Add a rule to the FIS.

ruleTxt = 'If service is poor then tip is cheap';
a2 = parsrule(a,ruleTxt,'verbose');

Input Arguments
inFIS — Fuzzy inference system
FIS structure

Input fuzzy inference system, specified as an FIS structure. parsrule does not modify inFIS.

ruleList — Fuzzy rules
character array | string array | character vector | string

Fuzzy rules, specified as one of the following:

• Character array where each row corresponds to a rule. For example:
rule1 = 'If service is poor or food is rancid then tip is cheap';
rule2 = 'If service is good then tip is average';
rule3 = 'If service is excellent or food is delicious then tip is generous';
ruleList = char(rule1,rule2,rule3);

• String array, where each element corresponds to a rule. For example:
ruleList = ["If service is poor or food is rancid then tip is cheap";
 "If service is good then tip is average";
 "If service is excellent or food is delicious then tip is generous"];

• Character vector or string to specify a single rule.

You can change the rule format and language using the Format and Language options.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Format','symbolic' sets the rule format to symbolic expressions.

Format — Rule format
'verbose' (default) | 'symbolic' | 'indexed'

Rule format, specified as the comma-separated pair consisting 'Format' and one of the following:

• 'verbose' — Use linguistic expressions.

'If service is poor or food is rancid then tip is cheap 1'

Specify the rule weight at the end of the rule text. If you omit the weight, a default value of 1 is
used.

You can specify the rule language using the Language option.
• 'symbolic' — Use language-neutral symbolic expressions.

'service==poor | food==rancid => tip=cheap 1'

8 Functions

8-180

Specify symbolic expressions using the following symbols.

Rule Component Symbol
AND &
OR |
IS (in antecedent) ==
IS (in consequent) =
IS NOT ~=
Implication (then) =>

Specify the rule weight at the end of the rule text. If you omit the weight, a default value of 1 is
used.

• 'indexed' — Use input and output membership function (MF) indices.

Specify indexed rules in the following format:
'<input MFs>, <output MFs>, (<weight>) : <logical operator - 1(AND), 2(OR)>'

For example:

'1 1, 1 (1) : 2'

To indicate NOT operations for input and output membership functions, use negative indices. For
example, to specify “not the second membership function,” use -2.

To indicate a don’t care condition for an input or output membership function, use 0.

Language — Rule language
'english' (default) | 'francais' | 'deutsch'

Rule language for 'verbose' format, specified as one of the following:

• 'english' — Specify rules in English.

'If service is poor or food is rancid then tip is cheap'

• 'francais' — Specify rules in French.

'Si service est poor ou food est rancid alors tip est cheap'

• 'deutsch' — Specify rules in German.

'Wenn service ist poor oder food ist rancid dann tip ist cheap'

The software parses the rules in ruleList using the following keywords.

Rule Component English French German
Start of antecedent if si wenn
AND and et und
OR or ou oder
Start of consequent
(implication)

then alors dann

 parsrule

8-181

Rule Component English French German
IS is est ist
IS NOT is not n''est_pas ist nicht

Output Arguments
outFIS — Output fuzzy inference system
FIS structure

Fuzzy inference system, returned as an FIS structure. outFIS is the same as inFIS, except that the
rule list contains only the rules specified in ruleList.

Version History
Introduced before R2006a

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

R2018b: parsrule will be removed
Not recommended starting in R2018b

parsrule will be removed in a future release. Use addRule instead.

Update Code

If you previously added rules using linguistic or symbolic expressions with parsrule, you can specify
rules using the same expressions with addrule. addRule automatically detects the format of the
strings or character vectors in your rule list. Therefore, it is no longer necessary to specify the rule
format. To add a rule list using addRule, use the following command:

fis = addRule(fis,rules);

Previously, you could add rules using indexed expressions with parsrule.

rule1 = "1 2, 1 4 (1) : 1";
rule2 = "-1 1, 3 2 (1) : 1";
rules = [rule1 rule2];
fis = parsrule(fis,rules,'Format','indexed');

Now, specify these rules using arrays of indices.

rule1 = [1 2 1 4 1 1];
rule2 = [-1 1 3 2 1 1];
rules = [rule1; rule2];
fis = addRule(fis,rules);

8 Functions

8-182

If you previously specified rules using the 'Lanuage' name-value pair argument with parsrule, this
functionality has been removed and there is no replacement. Specify your rules using addRule a
different rule format.

Previously, parsrule replaced the entire rule list in your fuzzy system. addRule appends your
specified rules to the rule list.

R2017a: Specify options using name-value pair arguments
Behavior changed in R2017a

To specify options for creating new fuzzy inference systems, you now use name-value pair arguments.
Any name-value pair arguments that you do not specify remain at their default values.

Previously, you specified options using optional input arguments ruleFormat and lang.

outFIS = parsrule(inFIS,ruleList,ruleFormat,lang);

Starting in R2017a, modify your code to use one or more name-value pair arguments. For example,
add a list of rules in 'symbolic' format.

fis = parsrule(inFIS,ruleList,'Format','symbolic');

The following table shows the mapping of the old input arguments to the new name-value pair
arguments.

Old Input Argument New Name-Value Argument
ruleFormat 'Format'
lang 'Language'

See Also
addRule | ruleedit | showrule

 parsrule

8-183

pimf
Pi-shaped membership function

Syntax
y = pimf(x,params)

Description
This function computes fuzzy membership values using a spline-based pi-shaped membership
function. You can also compute this membership function using a fismf object. For more
information, see “fismf Object” on page 8-185.

This membership function is related to the smf and zmf membership functions.

y = pimf(x,params) returns fuzzy membership values computed using a spline-based pi-shaped
membership function. This membership function is the product of an smf function and a zmf
function, and is given by:

f (x; a, b, c, d) =

0, x ≤ a

2 x− a
b− a

2
, a ≤ x ≤ a + b

2

1−2 x− b
b− a

2
, a + b

2 ≤ x ≤ b

1, b ≤ x ≤ c

1 − 2 x− c
d− c

2
, c ≤ x ≤ c + d

2

2 x− d
d− c

2
, c + d

2 ≤ x ≤ d

0, x ≥ d

To define the membership function parameters, specify params as the vector [a b c c].

Membership values are computed for each input value in x.

Examples

Pi-Shaped Membership Function

Specify input values across the universe of discourse.

x = 0:0.1:10;

Evaluate membership function for the input values.

y = pimf(x,[1 4 5 10]);

Plot the membership function.

8 Functions

8-184

plot(x,y)
title('pimf, P = [1 4 5 10]')
xlabel('x')
ylabel('Degree of Membership')
ylim([-0.05 1.05])

Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length two

Membership function parameters, specified as the vector [a b c d]. Parameters a and d define the feet
of the membership function, and b and c define its shoulders.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.

Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the pimf membership function.

 pimf

8-185

mf = fismf("pimf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of pimf, respectively.

Version History
Introduced before R2006a

R2018b: C and C++ code generation support

This function supports C and C++ code generation using MATLAB Coder.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fismf | fismftype2 | psigmf | sigmf | gaussmf | gauss2mf | gbellmf | trimf | trapmf |
linsmf | linzmf | smf | zmf | dsigmf

Topics
“Membership Functions” on page 1-9

8 Functions

8-186

plotfis
Display fuzzy inference system

Syntax
plotfis(fis)

plotfis(tree)
plotfis(tree,Legend="on")

Description
FIS Object

plotfis(fis) displays a high-level diagram of a type-1 or type-2 fuzzy inference system (FIS). The
center of the display shows the name, type, and rule count for the FIS. The input variables with their
associated membership functions are displayed on the left, and the outputs with their associated
membership functions are displayed on the right.

FIS Tree

plotfis(tree) displays a high-level diagram of a tree of interconnected FIS objects. The display
shows the inputs, outputs, component FIS objects, and connections of the specified fistree object.

plotfis(tree,Legend="on") displays information about the inputs, outputs, and connections of
the specified fistree object by adding a legend to the display.

Examples

Display Fuzzy Inference System

Create a fuzzy inference system (FIS). For this example, read the FIS from the tipper.fis file.

fis = readfis('tipper');

Display the fuzzy system.

plotfis(fis)

 plotfis

8-187

The figure shows the FIS name and type, along with the number of rules. Also, for each input and
output variable, the name and membership function configuration are shown.

Display Tree of Fuzzy Inference Systems

Create a fistree object from three fuzzy inference systems and their connections.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',2);
fis3 = sugfis('Name','fis3','NumInputs',3,'NumOutputs',1);
con1 = ["fis1/output1" "fis3/input1"];
con2 = ["fis2/output1" "fis3/input2"];
con3 = ["fis1/input2" "fis2/input1"];

tree = fistree([fis1 fis2 fis3],[con1; con2; con3]);

Display the fistree object with a legend.

plotfis(tree,Legend="on")

8 Functions

8-188

In this display, free inputs are the inputs without any incoming connections. You must specify these
inputs when you evaluate the FIS tree. The free and intermediate output values are returned when
you evaluate the FIS tree.

You can also plot the FIS tree without a legend.

plotfis(tree)

 plotfis

8-189

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

tree — Tree of interconnected fuzzy inference systems
fistree object

Tree of interconnected fuzzy inference systems, specified as a fistree object.

Alternative Functionality
App

You can interactively view the high-level structure of a FIS using the Fuzzy Logic Designer app.

8 Functions

8-190

Version History
Introduced before R2006a

R2021b: Visual representation of FIS trees
Behavior changed in R2021b

Starting in R2021b, the plotfis function displays a visual representation of a FIS tree. Previously,
plotfis displayed a summary of the FIS tree properties in the MATLAB Command Window. This
information is no longer available in the Command Window when using plotfis.

To obtain information about the FIS tree components, inputs, outputs, and connections, access the
properties of the fistree object using dot notation.

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

See Also
mamfis | sugfis | mamfistype2 | sugfistype2 | readfis | evalmf | plotmf | fistree

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77

 plotfis

8-191

plotmf
Plot membership functions for input or output variable

Syntax
plotmf(fis,variableType,variableIndex)
plotmf(___ ,numPoints)

[xOut,mfOut] = plotmf(___)

[xOut,umfOut,lmfOut] = plotmf(___)

Description
plotmf(fis,variableType,variableIndex) plots the membership functions for an input or
output variable in the fuzzy inference system fis.

plotmf(___ ,numPoints) specifies the number of data points to plot for each membership
function.

[xOut,mfOut] = plotmf(___) returns the universe of discourse (xOut) and membership
function (mfOut) values without plotting them. Use this syntax when fis is a type-1 fuzzy inference
system.

[xOut,umfOut,lmfOut] = plotmf(___) returns the universe of discourse (xOut), upper
membership function (umfOut), and lower membership function (lmfOut) values without plotting
them. Use this syntax when fis is a type-2 fuzzy inference system.

Examples

Plot Membership Functions for Input Variable

Create a fuzzy inference system.

fis = readfis('tipper');

Plot the membership functions for the first input variable.

plotmf(fis,'input',1)

8 Functions

8-192

Specify Number of Points for Membership Function Plot

Create a fuzzy inference system.

fis = readfis('tipper');

Plot the membership functions for the first output variable using 101 data points for each
membership function.

plotmf(fis,'output',1,101)

 plotmf

8-193

Obtain Membership Function Plot Data

Create a fuzzy inference system.

fis = readfis('tipper');

Obtain the x-axis and y-axis data for the membership functions of the second input variable.

[xOut,yOut] = plotmf(fis,'input',2);

You can then, for example, plot a single membership function using this data.

plot(xOut(:,2),yOut(:,2))
xlabel('food')
ylabel('delicious membership')

8 Functions

8-194

Plot Membership Functions for Type-2 FIS

Create a type-2 fuzzy inference system.

fis = mamfistype2('NumInputs',3,'NumOutputs',1);

Plot the membership functions for the second input variable.

plotmf(fis,'input',1)

 plotmf

8-195

The type-2 membership functions have a footprint of uncertainty (FOU) between their upper and
lower membership functions.

You can also obtain the plotting data without generating a plot.

[xOut,umfOut,lmfOut] = plotmf(fis,'input',1);

You can then plot individual membership functions or plot the data using your own custom
formatting. For example, plot the upper and lower membership functions for only the second
membership function of the first input variable.

plot(xOut(:,2),umfOut(:,2),'r',xOut(:,2),lmfOut(:,2),'b')
xlabel('input1')
ylabel('delicious membership')

8 Functions

8-196

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

plotmf does not support plotting output membership functions of Sugeno systems.

variableType — Variable type
'input' | 'output'

Variable type, specified as one of the following:

• 'input' — Input variable
• 'output' — Output variable

variableIndex — Variable index
positive integer

 plotmf

8-197

Variable index, specified as a positive integer. If variableType is:

• 'input', then variableIndex must be less than or equal to the number of input variables in
fis

• 'output', then variableIndex must be less than or equal to the number of output variables in
fis

numPoints — Number of data points to plot
181 (default) | positive integer

Number of data points to plot, specified as a positive integer.

Output Arguments
xOut — Universe of discourse data
array

Universe of discourse data, returned as a numPoints-by-NMF array, where NMF is the number of
membership functions for the variable specified by variableType and variableIndex.

mfOut — Membership function data
array

Membership function data for a type-1 membership function, returned as a numPoints-by-NMF array,
where NMF is the number of membership functions for the variable specified by variableType and
variableIndex.

umfOut — Upper membership function data
array

Upper membership function data for a type-2 membership function, returned as a numPoints-by-NMF
array, where NMF is the number of membership functions for the variable specified by variableType
and variableIndex.

lmfOut — Lower membership function data
array

Lower membership function data for a type-2 membership function, returned as a numPoints-by-NMF
array, where NMF is the number of membership functions for the variable specified by variableType
and variableIndex.

Alternative Functionality
App

You can interactively view the membership functions for the input and output variables of a FIS using
the Fuzzy Logic Designer app.

Version History
Introduced before R2006a

8 Functions

8-198

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

See Also
Functions
evalmf | plotfis

 plotmf

8-199

probor
Probabilistic OR

Syntax
y = probor(x)

Description
y = probor(x) returns the probabilistic OR (also known as the algebraic sum) of the columns in x.
Within the fuzzy inference process, the probor function is used as either a fuzzy operator when
evaluating rule antecedents or an aggregation operator when combining the output fuzzy sets from
all the rules.

Examples

Compute Probabilistic OR Between Two Membership Functions

Define the universe of discourse (input values) for the membership functions.

x = 0:0.1:10;

Define two Gaussian membership functions with different means and variances.

y1 = gaussmf(x,[0.5 4]);
y2 = gaussmf(x,[2 7]);

Compute the probabilistic OR between these membership functions.

y = probor([y1;y2]);

Plot the results.

plot(x,[y1;y2;y])
legend('y1','y2','y')
ylim([-0.05 1.05])
ylabel('Membership')
xlabel('Input Value')

8 Functions

8-200

Input Arguments
x — Fuzzy input values
array | row vector

Fuzzy input values, specified as an array or a row vector.

Output Arguments
y — Probabilistic OR values
row vector

Probabilistic OR values, returned as a row vector with the same number of columns as x. Each
element of y contains the probabilistic OR value for the corresponding column in x.

If x has one row, then y = x.

If x = [A;B], where A and B are row vectors, then the ith element of y is the following algebraic
sum.

y(i) = A(i) + B(i) - A(i)*B(i);

If x has more than two rows, the probabilistic OR is calculated for the first two rows. Then, the
probabilistic OR is computed between the result and the next row. This process repeats for each
subsequent row.

 probor

8-201

x = [A;B;C;D]
y(i) = A(i) + B(i) - A(i)*B(i);
y(i) = y(i) + C(i) - y(i)*C(i);
y(i) = y(i) + D(i) - y(i)*D(i);

Version History
Introduced before R2006a

R2018b: C and C++ code generation support

This function supports C and C++ code generation using MATLAB Coder.

See Also
Topics
“Fuzzy Inference Process” on page 1-19

8 Functions

8-202

psigmf
Product of two sigmoidal membership functions

Syntax
y = psigmf(x,params)

Description
This function computes fuzzy membership values using the product of two sigmoidal membership
functions. You can also compute this membership function using a fismf object. For more
information, see “fismf Object” on page 8-205.

This membership function is related to the sigmf and dsigmf membership functions.

y = psigmf(x,params) returns fuzzy membership values computed using the product of two
sigmoidal membership functions. Each sigmoidal function is given by:

f x; ak, ck = 1
1 + e−ak(x− ck)

To define the membership function parameters, specify params as the vector [a1 c1 a2 c2].

Membership values are computed for each input value in x.

Examples

Product of Two Sigmoidal Membership Functions

Specify input values across the universe of discourse.

x = 0:0.1:10;

Evaluate membership function for the input values.

y = psigmf(x,[2 3 -5 8]);

Plot the membership function.

plot(x,y)
title('psigmf, P = [2 3 -5 8]')
xlabel('x')
ylabel('Degree of Membership')
ylim([-0.05 1.05])

 psigmf

8-203

Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length four

Membership function parameters, specified as the vector [a1 c1 a2 c2]. Here, a1 and c1 are the
parameters of the first sigmoidal function, and a2 and c2 are the parameters of the second sigmoidal
function.

For each sigmoidal function, to open the function to the left or right, specify a negative or positive
value for a, respectively. The magnitude of a defines the width of the transition area, and parameter c
defines the center of the transition area.

To define a unimodal membership function with a maximum value of 1, specify opposite signs for a1
and a2, and select c values far enough apart to allow for both transition areas to reach 1.

8 Functions

8-204

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.

Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the psigmf membership function.

mf = fismf("psigmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of psigmf, respectively.

Version History
Introduced before R2006a

R2018b: C and C++ code generation support

This function supports C and C++ code generation using MATLAB Coder.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fismf | fismftype2 | sigmf | gaussmf | gauss2mf | gbellmf | trimf | trapmf | linsmf |
linzmf | pimf | smf | zmf | dsigmf

Topics
“Membership Functions” on page 1-9

 psigmf

8-205

readfis
Load fuzzy inference system from file

Syntax
fis = readfis(fileName)
fis = readfis

Description
You can load a fuzzy inference system (FIS) from a FIS file (*.fis) using the readfis function. To
save a FIS to a file, use the writeFIS function.

Note Do not manually edit the contents of a FIS file. Doing so can produce unexpected results when
loading the file using a function, such as readfis and getCodeGenerationData, or an app, such as
Fuzzy Logic Designer.

fis = readfis(fileName) reads a FIS from the file specified by fileName.

fis = readfis opens a dialog box for selecting and reading a FIS file.

Examples

Load Fuzzy Inference System from File

Load the fuzzy system stored in the file tipper.fis.

fis = readfis('tipper')

fis =
 mamfis with properties:

 Name: "tipper"
 AndMethod: "min"
 OrMethod: "max"
 ImplicationMethod: "min"
 AggregationMethod: "max"
 DefuzzificationMethod: "centroid"
 DisableStructuralChecks: 0
 Inputs: [1x2 fisvar]
 Outputs: [1x1 fisvar]
 Rules: [1x3 fisrule]

 See 'getTunableSettings' method for parameter optimization.

8 Functions

8-206

Input Arguments
fileName — File name
string | character vector

File name, specified as a string or character vector either with or without the .fis extension. This
file must be in the current working directory or on the MATLAB path.

Output Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, returned as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

Version History
Introduced before R2006a

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

See Also
writeFIS

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77

 readfis

8-207

removeInput
Remove input variable from fuzzy inference system

Syntax
fisOut = removeInput(fisIn,inputName)

Description
fisOut = removeInput(fisIn,inputName) removes the input variable with the name
inputName from fuzzy inference system fisIn and returns the resulting fuzzy system in fisOut.

Examples

Remove Input Variable from Fuzzy Inference System

Load fuzzy system.

fis = readfis("tipper");

View the input variables of fis.

fis.Inputs

ans =
 1x2 fisvar array with properties:

 Name
 Range
 MembershipFunctions

 Details:
 Name Range MembershipFunctions
 _________ _______ ___________________

 1 "service" 0 10 {1x3 fismf}
 2 "food" 0 10 {1x2 fismf}

View the rules of fis.

fis.Rules

ans =
 1x3 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

8 Functions

8-208

 Details:
 Description
 __

 1 "service==poor | food==rancid => tip=cheap (1)"
 2 "service==good => tip=average (1)"
 3 "service==excellent | food==delicious => tip=generous (1)"

Remove the service input variable.

fis = removeInput(fis,"service");

View the updated input variables.

fis.Inputs

ans =
 fisvar with properties:

 Name: "food"
 Range: [0 10]
 MembershipFunctions: [1x2 fismf]

View the updated rules.

fis.Rules

ans =
 1x2 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 Details:
 Description

 1 "food==rancid => tip=cheap (1)"
 2 "food==delicious => tip=generous (1)"

service has been removed from the variables and rules of fis.

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following objects.

• mamfis object — Mamdani fuzzy inference system

 removeInput

8-209

• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

inputName — Input variable name
string | character vector

Input variable name, specified as a string or character vector.

Output Arguments
fisOut — Updated fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Updated fuzzy inference system, returned as one of the following objects.

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

fisOut has the same properties as fisIn except:

• The input variable with the specified name is removed.
• The specified input variable is removed from any fuzzy rules. If a rule has only the specified input

variable in its antecedent, then the entire rule is removed. If a rule has more than one input
variable in its antecedent, then the specified input variable is removed from the antecedent.

Version History
Introduced in R2018b

R2018b: Replaces rmvar

This function replaces rmvar for removing input variables from a fuzzy inference system.

See Also
addInput | fisvar

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77

8 Functions

8-210

removeMF
Remove membership function from fuzzy variable

Syntax
fisOut = removeMF(fisIn,varName,mfName)
fisOut = removeMF(fisIn,varName,mfName,'VariableType',varType)

varOut = removeMF(varIn,varName,mfName)

Description
fisOut = removeMF(fisIn,varName,mfName) removes the membership function mfName from
the input or output variable varName in the fuzzy inference system fisIn and returns the resulting
fuzzy system in fisOut. To use this syntax, varName must be a unique variable name within fisIn.

fisOut = removeMF(fisIn,varName,mfName,'VariableType',varType) removes the
membership function from either an input or output variable as specified by varType. Use this
syntax when your FIS has an input variable with the same name as an output variable.

varOut = removeMF(varIn,varName,mfName) removes the membership function mfName from
the fuzzy variable varIn and returns the resulting fuzzy variable in varOut.

Examples

Remove Membership Function from Fuzzy Inference System

Create a Mamdani fuzzy inference system with two inputs and one output. By default, when you
specify the number of inputs and outputs, mamfis adds three membership functions to each variable.

fis = mamfis('NumInputs',3,'NumOutputs',1)

fis =
 mamfis with properties:

 Name: "fis"
 AndMethod: "min"
 OrMethod: "max"
 ImplicationMethod: "min"
 AggregationMethod: "max"
 DefuzzificationMethod: "centroid"
 DisableStructuralChecks: 0
 Inputs: [1x3 fisvar]
 Outputs: [1x1 fisvar]
 Rules: [1x27 fisrule]

 See 'getTunableSettings' method for parameter optimization.

Name the variables. For this example, give the second input variable and the output variable the
same name.

 removeMF

8-211

fis.Inputs(1).Name = "speed";
fis.Inputs(2).Name = "throttle";
fis.Inputs(3).Name = "distance";
fis.Outputs(1).Name = "throttle";

View the membership functions for the first input variable.

plotmf(fis,"input",1)

Remove the second membership function, mf2, from the first input variable.

fis = removeMF(fis,"speed","mf2");

View the membership functions again. The specified membership function has been removed.

plotmf(fis,"input",1)

8 Functions

8-212

If your system has an input variable with the same name as an output variable, you must specify the
variable type when removing a membership function. For example, remove the mf3 membership
function from the output variable.

fis = removeMF(fis,"throttle","mf3",'VariableType',"output");

View the membership functions of the output variable.

plotmf(fis,"output",1)

 removeMF

8-213

Remove Membership Function from Fuzzy Variable

Create a fuzzy variable with a specified range and add three membership functions

var = fisvar([0 10]);
var = addMF(var,"trimf",[0 2.5 5],"Name","small");
var = addMF(var,"trimf",[2.5 5 7.5],"Name","medium");
var = addMF(var,"trimf",[5 7.5 10],"Name","large");

View the membership functions.

var.MembershipFunctions

ans =
 1x3 fismf array with properties:

 Type
 Parameters
 Name

 Details:
 Name Type Parameters
 ________ _______ _________________

 1 "small" "trimf" 0 2.5 5

8 Functions

8-214

 2 "medium" "trimf" 2.5 5 7.5
 3 "large" "trimf" 5 7.5 10

Remove the medium membership function from the variable.

var = removeMF(var,"medium");

Verify that the membership was removed.

var.MembershipFunctions

ans =
 1x2 fismf array with properties:

 Type
 Parameters
 Name

 Details:
 Name Type Parameters
 _______ _______ _______________

 1 "small" "trimf" 0 2.5 5
 2 "large" "trimf" 5 7.5 10

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following objects.

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

varName — Variable name
string | character vector

Variable name, specified as a string or character vector. You can specify the name of either an input
or output variable in your FIS.

mfName — Membership function name
string | character vector

Membership function name, specified as a string or character vector.

varType — Variable type
string | character vector

Variable type, specified as one of the following:

 removeMF

8-215

• "input" — Input variable
• "output" — Output variable

If your system has an input variable with the same name as an output variable, specify which variable
to remove the membership function from using varType.

varIn — Fuzzy variable
fisvar object

Fuzzy variable, specified as a fisvar object.

Output Arguments
fisOut — Updated fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Update fuzzy inference system, returned as one of the following objects.

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

fisOut has the same properties as fisIn except:

• The membership function with the specified name is removed from the specified variable.
• The specified membership function is removed from any fuzzy rules. If a rule has only the
specified membership function in its antecedent, then the entire rule is removed. If a rule has
more than one membership function in its antecedent, then the specified membership function is
removed from the antecedent.

varOut — Fuzzy variable
fisvar object

Fuzzy variable, returned as a fisvar object. varOut has the same properties as varIn except the
membership function with the specified name is removed.

Version History
Introduced in R2018b

R2018b: Replaces rmmf

This function replaces rmmf for removing membership functions from fuzzy inference systems.

See Also
addMF

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77

8 Functions

8-216

removeOutput
Remove output variable from fuzzy inference system

Syntax
fisOut = removeOutput(fisIn,outputName)

Description
fisOut = removeOutput(fisIn,outputName) removes the output variable with the name
outputName from fuzzy inference system fisIn and returns the resulting fuzzy system in fisOut.

Examples

Remove Output Variable from Fuzzy Inference System

Load fuzzy system.

fis = readfis("mam22");

View the output variables of fis.

fis.Outputs

ans =
 1x2 fisvar array with properties:

 Name
 Range
 MembershipFunctions

 Details:
 Name Range MembershipFunctions
 ________ ________ ___________________

 1 "force" -5 5 {1x4 fismf}
 2 "force2" -5 5 {1x4 fismf}

View the rules of fis.

fis.Rules

ans =
 1x4 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 removeOutput

8-217

 Details:
 Description
 __

 1 "angle==small & velocity==small => force=negBig, force2=posBig2 (1)"
 2 "angle==small & velocity==big => force=negSmall, force2=posSmall2 (1)"
 3 "angle==big & velocity==small => force=posSmall, force2=negSmall2 (1)"
 4 "angle==big & velocity==big => force=posBig, force2=negBig2 (1)"

Remove the forceBig output variable.

fis = removeOutput(fis,"force2");

View the updated output variables.

fis.Outputs

ans =
 fisvar with properties:

 Name: "force"
 Range: [-5 5]
 MembershipFunctions: [1x4 fismf]

View the updated rules.

fis.Rules

ans =
 1x4 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 Details:
 Description
 __

 1 "angle==small & velocity==small => force=negBig (1)"
 2 "angle==small & velocity==big => force=negSmall (1)"
 3 "angle==big & velocity==small => force=posSmall (1)"
 4 "angle==big & velocity==big => force=posBig (1)"

force2 has been removed from the variables and rules of fis.

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following objects.

8 Functions

8-218

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

outputName — Output variable name
string | character vector

Output variable name, specified as a string or character vector.

Output Arguments
fisOut — Updated fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Updated fuzzy inference system, returned as one of the following objects.

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

fisOut has the same properties as fisIn except:

• The input variable with the specified name is removed.
• The specified input variable is removed from any fuzzy rules. If a rule has only the specified input

variable in its antecedent, then the entire rule is removed. If a rule has more than one input
variable in its antecedent, then the specified input variable is removed from the antecedent.

Version History
Introduced in R2018b

R2018b: Replaces rmvar

This function replaces rmvar for removing output variables from a fuzzy inference system.

See Also
addOutput | fisvar

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77

 removeOutput

8-219

rmmf
(To be removed) Remove membership function from fuzzy inference system

Note rmmf will be removed in a future release. Use removeMF instead. For more information, see
“Compatibility Considerations”.

Syntax
outfis = rmmf(infis,varType,varIndex,'mf',mfIndex)

Description
outfis = rmmf(infis,varType,varIndex,'mf',mfIndex) Removes the specified membership
function from a given input or output variable of the fuzzy system infis.

Examples

Remove Membership Function From Variable

Create a fuzzy inference system.

fis = newfis('mysys');

Add an input variable with a single membership function to the system.

fis = addvar(fis,'input','temperature',[0 100]);
fis = addmf(fis,'input',1,'cold','trimf',[0 30 60]);

View the variable properties.

getfis(fis,'input',1)

ans = struct with fields:
 Name: 'temperature'
 NumMFs: 1
 mf1: 'cold'
 range: [0 100]

Remove the membership function. To do so, remove membership function 1 from input 1.

fis = rmmf(fis,'input',1,'mf',1);

View the variable properties.

getfis(fis,'input',1)

ans = struct with fields:
 Name: 'temperature'
 NumMFs: 0

8 Functions

8-220

 range: [0 100]

The variable now has no membership function.

Input Arguments
infis — Fuzzy system
mamfis object | sugfis object

Fuzzy system, specified as a FIS object.

varType — Variable type
'input' | 'output'

Variable type, specified as either 'input' or 'output'.

varIndex — Variable index
positive integer

Variable index, specified as a positive integer.

mfIndex — Membership function index
positive integer

Membership function index, specified as a positive integer.

Output Arguments
outfis — Updated fuzzy system
mamfis object | sugfis object

Updated fuzzy system, returned as a FIS object.

Version History
Introduced before R2006a

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

R2018b: To be removed
Not recommended starting in R2018b

rmmf will be removed in a future release. Use removeMF instead. There are differences between
these functions that require updates to your code.

 rmmf

8-221

Update Code

The following table shows some typical usages of rmmf and how to update your code to use
removeMF instead. Previously, you specified the index of the variable from which you wanted to
remove the membership function and the index of the membership function that you wanted to
remove. Now, to remove a membership function, specify the variable name and the membership
function name.

If your code has this form: Use this code instead:
fis = rmmf(fis,'input',1,'mf',1) fis = removeMF(fis,"service","poor")
fis = rmmf(fis,'output',1,'mf',1) fis = removeMF(fis,"tip","cheap")

See Also
removeMF | addMF | addRule | addvar | plotmf | rmvar

Topics
“Membership Functions” on page 1-9

8 Functions

8-222

rmvar
(To be removed) Remove variables from fuzzy inference system

Note rmvar will be removed in a future release. Use removeInput or removeOutput instead. For
more information, see “Compatibility Considerations”.

Syntax
outfis = rmvar(infis,varType,varIndex)
[outfis,errorStr] = rmvar(___)

Description
outfis = rmvar(infis,varType,varIndex) removes the input or output variable with the
specified index from the fuzzy system infis.

This command automatically alters the rule list to keep its size consistent with the current number of
variables. You must delete from the FIS any rule that contains a variable you want to remove before
removing it. You cannot remove a fuzzy variable currently in use in the rule list.

[outfis,errorStr] = rmvar(___) returns any errors as a character vector.

Examples

Remove Membership Function From Variable

Create a fuzzy inference system.

fis = newfis('mysys');

Add an input variable with a single membership function to the system.

fis = addvar(fis,'input','temperature',[0 100]);
fis = addmf(fis,'input',1,'cold','trimf',[0 30 60]);

View the variable properties.

getfis(fis,'input',1)

ans = struct with fields:
 Name: 'temperature'
 NumMFs: 1
 mf1: 'cold'
 range: [0 100]

Remove the membership function. To do so, remove membership function 1 from input 1.

fis = rmmf(fis,'input',1,'mf',1);

 rmvar

8-223

View the variable properties.

getfis(fis,'input',1)

ans = struct with fields:
 Name: 'temperature'
 NumMFs: 0
 range: [0 100]

The variable now has no membership function.

Input Arguments
infis — Fuzzy system
mamfis object | sugfis object

Fuzzy system, specified as a FIS object.

varType — Variable type
'input' | 'output'

Variable type, specified as either 'input' or 'output'.

varIndex — Variable index
positive integer

Variable index, specified as a positive integer.

Output Arguments
outfis — Updated fuzzy system
mamfis object | sugfis object

Updated fuzzy system, returned as a FIS object.

errorStr — Error messages
character vector

Error messages, returned as a character vector.

Version History
Introduced before R2006a

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

8 Functions

8-224

R2018b: To be removed
Not recommended starting in R2018b

rmvar will be removed in a future release. To remove input or output variables from a fuzzy system,
use removeInput or removeOutput, respectively, instead. There are differences between these
functions that require updates to your code.

Update Code

This table shows some typical usages of rmvar and how to update your code to use removeInput or
removeOutput instead. Previously, you specified the index of the variable that you wanted to
remove. Now, to remove a variable, specify the variable name.

If your code has this form: Use this code instead:
fis = rmvar(fis,'input',1) fis = removeInput(fis,"service")
fis = rmvar(fis,'output',1) fis = removeOutput(fis,"tip")

Previously, you had to delete any rules from your fuzzy system that contained the variable you wanted
to remove. removeInput and removeOutput automatically remove these variables from the rule set
of your fuzzy system.

See Also
removeInput | removeOutput | addMF | addRule | addvar | rmmf

 rmvar

8-225

ruleedit
(To be removed) Open Rule Editor

Note ruleedit will be removed in a future release. For more information, see “To be removed”.

Syntax
ruleedit(fis)
ruleedit(fileName)

Description
Use the Rule Editor to view or modify the rules of your fuzzy system. To define rules, you must specify
the input and output variables of your FIS and their corresponding membership functions.

The Fuzzy Logic Designer app consists of several interactive interfaces for creating a fuzzy
inference system (FIS), including the Rule Editor. For more information on interactively creating
fuzzy systems, see “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15.

ruleedit(fis) opens the Rule Editor and loads the fuzzy inference system fis.

ruleedit(fileName) opens the Rule Editor and loads a fuzzy inference system from the file
specified by fileName.

Examples

Open Rule Editor

Load or create a fuzzy inference system object. For this example, load the fuzzy system from a file.

fis = readfis('tipper');

Open the Rule Editor for this fuzzy system.

ruleedit(fis)

8 Functions

8-226

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, specified as either a mamfis or sugfis object in the MATLAB workspace.

fileName — File name
string | character vector

File name specified as a string or character vector with or without the .fis extension. This file must
be in the current working directory or on the MATLAB path.

Version History
Introduced before R2006a

R2022b: To be removed
Warns starting in R2022b

ruleedit will be removed in a future release.

 ruleedit

8-227

To interactively view the rules for a fuzzy inference system, open the Fuzzy Logic Designer app
using the fuzzyLogicDesigner(fis) command. Then, select the Rule Editor document.

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

See Also
Apps
Fuzzy Logic Designer

Functions
addRule | showrule | mfedit | ruleview | surfview

8 Functions

8-228

ruleview
(To be removed) Open Rule Viewer

Note ruleview will be removed in a future release. For more information, see “To be removed”.

Syntax
ruleview(fis)
ruleview(fileName)

Description
Use the Rule Viewer to view the inference process for your fuzzy system. You can adjust the input
values and view the corresponding output of each fuzzy rule, the aggregated output fuzzy set, and the
defuzzified output value. To view the inference process, you must specify the input and output
variables of your FIS, their corresponding membership functions, and the fuzzy rules for your system.

The Fuzzy Logic Designer app consists of several interactive interfaces for creating a fuzzy
inference system (FIS), including the Rule Viewer. For more information on interactively creating
fuzzy systems, see “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15.

ruleview(fis) opens the Rule Viewer and loads the fuzzy inference system fis.

ruleview(fileName) opens the Rule Viewer and loads a fuzzy inference system from the file
specified by fileName.

Examples

Open Rule Viewer

Load or create a fuzzy inference system object. For this example, load the fuzzy system from a file.

fis = readfis('tipper');

Open the Rule Viewer for this fuzzy system.

ruleview(fis)

 ruleview

8-229

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, specified as either a mamfis or sugfis object in the MATLAB workspace.

fileName — File name
string | character vector

File name specified as a string or character vector with or without the .fis extension. This file must
be in the current working directory or on the MATLAB path.

Version History
Introduced before R2006a

R2022b: To be removed
Warns starting in R2022b

ruleview will be removed in a future release.

8 Functions

8-230

To interactively view the rules for a fuzzy inference system, open the Fuzzy Logic Designer app
using the fuzzyLogicDesigner(fis) command. Then, on the Design tab, in the Simulation
section, click Rule Inference.

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

See Also
Apps
Fuzzy Logic Designer

Functions
ruleedit | addRule | showrule | mfedit | surfview

 ruleview

8-231

setfis
(To be removed) Set fuzzy system properties

Note setfis will be removed in a future release. Set fuzzy inference system properties using dot
notation instead. For more information, see “Compatibility Considerations”.

Syntax
outfis = setfis(infis,fisPropName,fisPropValue)
outfis = setfis(infis,varType,varIndex,varPropName,varPropValue)
outfis = setfis(infis,varType,varIndex,'mf',mfIndex,mfPropName,mfPropValue)

Description
outfis = setfis(infis,fisPropName,fisPropValue) sets the specified property of the fuzzy
system infis to the specified value.

outfis = setfis(infis,varType,varIndex,varPropName,varPropValue) sets the specified
property of a variable in a fuzzy system.

outfis = setfis(infis,varType,varIndex,'mf',mfIndex,mfPropName,mfPropValue)
sets the specified property of a membership function for an input or output variable in a fuzzy system.

Examples

Set Fuzzy Inference System Properties

Load a fuzzy inference system.

fis = readfis('tipper');

Set the defuzzification method to the bisector method.

fis = setfis(fis,'defuzzmethod','bisector');

View the defuzzification method of the updated FIS.

getfis(fis,'defuzzmethod')

ans =
'bisector'

Set Variable Properties in FIS

Load a fuzzy inference system.

fis = readfis('tipper');

8 Functions

8-232

Set the name of the first input variable to 'help'.

fis = setfis(fis,'input',1,'name','help');

View the name of the variable in the updated system.

getfis(fis,'input',1,'name')

ans =
'help'

Set Membership Function Properties in FIS

Load a fuzzy inference system.

fis = readfis('tipper');

Change the type of the second membership function of the first input variable to a triangular
membership function.

fis = setfis(fis,'input',1,'mf',2,'type','trimf');

When changing the type of a membership function, you must also set the parameters accordingly. To
convert the original Gaussian membership function parameters to triangular membership function
parameters, use the mf2mf command.

gaussParams = getfis(fis,'input',1,'mf',2,'params');
triParams = mf2mf(gaussParams,'gaussmf','trimf');

Set the membership function parameters to the converted values.

fis = setfis(fis,'input',1,'mf',2,'params',triParams);

View the updated membership function properties.

getfis(fis,'input',1,'mf',2)

ans = struct with fields:
 Name: 'good'
 Type: 'trimf'
 params: [1.4680 5 8.5320]

Input Arguments
infis — Fuzzy system
mamfis object | sugfis object

Fuzzy system, specified as a FIS object.

fisPropName — Fuzzy system property name
string | character vector

Fuzzy system, specified as one of the following values.

 setfis

8-233

• 'name'
• 'type'
• 'andmethod'
• 'ormethod'
• 'impmethod'
• 'aggmethod'
• 'defuzzmethod'

fisPropValue — Fuzzy system property value
string | character vector

Fuzzy system property value, specified as a string or character vector.

varType — Variable type
'input' | 'output'

Variable type, specified as either 'input' or 'output'.

varIndex — Variable index
positive integer

Variable index, specified as a positive integer.

varPropName — Variable property name
'name' | 'range'

Variable property name, specified as either 'name' or 'range'.

varPropValue — Variable property value
string | character vector | two-element row vector

Variable property value, specified as a character vector or string (when varPropName is 'name') or
a two-element row vector (when varPropName is 'range').

mfIndex — Membership function index
positive integer

Membership function index, specified as a positive integer.

mfPropName — Membership function property name
'name' | 'type' | 'params'

Membership function property name, specified as 'name', 'type', or 'params'.

mfPropValue — Membership function property value
string | character vector | row vector

Membership function property value, specified as a character vector or string (when mfPropName is
'name' or 'type') or a two-element row vector (when mfPropName is 'params').

8 Functions

8-234

Output Arguments
outfis — Updated fuzzy system
mamfis object | sugfis object

Updated fuzzy system, returned as a FIS object.

Version History
Introduced before R2006a

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

R2018b: To be removed
Not recommended starting in R2018b

setfis will be removed in a future release. Set fuzzy inference system properties using dot notation
instead. There are differences between these approaches that require updates to your code.

Update Code

This table shows some typical usages of setfis for setting fuzzy inference system properties and
how to update your code to use dot notation instead.

If your code has this form: Use this code instead:
fis = setfis(fis,'andmethod','prod') fis.AndMethod = 'prod'
fis = setfis(fis,'input',1,...
 'name','service')

fis.Inputs(1).Name = "service"

fis = setfis(fis,'input',2,...
 'mf',1,...
 params,[5 10 15])

fis.Inputs(2).MembershipFunctions(1).Parameters = ...
 [5 10 15]

Previously, fuzzy inference systems were represented as structures. Now, fuzzy inference systems are
represented as objects. Fuzzy inference system object properties have different names than the
corresponding structure fields. For more information on fuzzy inference system objects, see mamfis
and sugfis.

See Also
getfis

 setfis

8-235

setTunable
Package: fuzzy.tuning

Set specified parameter settings as tunable or nontunable

Syntax
paramsOut = setTunable(paramsIn,tunableFlag)

Description
paramsOut = setTunable(paramsIn,tunableFlag) sets the paramsIn parameters as tunable
or nontunable using tunableFlag. The modified tunable parameter settings are returned in
paramsOut.

Examples

Specify Tunability of Parameter Settings

Create a fuzzy inference system, and define the tunable parameter settings of inputs, outputs, and
rules.

Create a FIS, and obtain its tunable settings.

fis = mamfis("NumInputs",2,"NumOutputs",2);
[in,out,rule] = getTunableSettings(fis);

You can specify all the input variables, output variables, or rules as tunable or nontunable. For
example, set all the output variable settings as nontunable.

out = setTunable(out,0);

You can set the tunability of individual variables or rules. For example, set the first input variable as
nontunable.

in(1) = setTunable(in(1),0);

You can set individual membership functions as nontunable. For example, set the first membership
function of input 2 as nontunable.

in(2).MembershipFunctions(1) = setTunable(in(2).MembershipFunctions(1),0);

You can also specify the tunability of a subset of variables or rules. For example, set the first two rules
as nontunable.

rule(1:2) = setTunable(rule(1:2),0);

8 Functions

8-236

Input Arguments
paramsIn — Tunable parameter settings
array | VariableSettings object | RuleSettings object | MembershipFunctionSettings
object | MembershipFunctionSettingsType2 object

Tunable parameter settings, specified as one of the following:

• VariableSettings object or an array of such objects
• RuleSettingsObject object or an array of such objects
• MembershipFunctionSettings object or an array of such objects
• MembershipFunctionSettingsType2 object or an array of such objects

array of input, output, and rule parameter settings of a fuzzy system. To obtain these parameter
settings, use getTunableSettings with the input FIS. paramsetIn can be the input parameter, the
output parameter, the rule parameter, or some combination of these parameters as an array. The
contents of the array depend on which parameters you would like to set.

tunableFlag — Parameter tunability
true or 1 | false or 0

Parameter tunability for the parameters specified in paramsIn, specified as a logical 1 (tunable) or 0
(nontunable).

Output Arguments
paramsOut — Modified tunable parameter settings
VariableSettings object | RuleSettings object | MembershipFunctionSettings object |
MembershipFunctionSettingsType2 object | vector

Modified unable parameter settings, returned as one of the following:

• VariableSettings object or an array of such objects
• RuleSettingsObject object or an array of such objects
• MembershipFunctionSettings object or an array of such objects
• MembershipFunctionSettingsType2 object or an array of such objects

paramsOut is the same as paramsetIn, except with all tunable parameters set to the value specified
in tunableFlag.

Version History
Introduced in R2019a

See Also
mamfis | sugfis | getTunableSettings | tunefis

 setTunable

8-237

setTunableValues
Specify tunable parameter values of a fuzzy inference system

Syntax
fisOut = setTunableValues(fisIn,paramset,paramvals)
___ = setTunableValues(___ ,'IgnoreInvalidParameters',ignoreInvalid)

Description
fisOut = setTunableValues(fisIn,paramset,paramvals) sets the tunable parameter values
of fuzzy inference system fisIn and returns the resulting fuzzy system in fisOut. To specify the
parameters to set, use paramset. Specify the new parameter values using paramvals.

___ = setTunableValues(___ ,'IgnoreInvalidParameters',ignoreInvalid) sets a flag
for ignoring invalid parameters values.

Examples

Specify Tunable Parameter Values of a FIS

Create a fuzzy inference system and define the tunable parameter settings of inputs, outputs, and
rules.

fis = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
[in,out,rule] = getTunableSettings(fis);

Obtain tunable parameter values of the inputs, outputs, and rules of the fuzzy inference system.

paramVals = getTunableValues(fis,[in;out;rule]);

Redefine some of the values and update the tunable parameter values of the FIS.

paramVals(1:3) = [0 0 1];
fis = setTunableValues(fis,[in;out;rule],paramVals);

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object | fistree object

Fuzzy inference system, specified as a mamfis, sugfis, mamfistype2, sugfistype2, or fistree
object.

paramset — Tunable parameter settings
array

8 Functions

8-238

Tunable parameter settings, specified as an array of input, output, and rule parameter settings in the
input FIS. To obtain these parameter settings, use the getTunableSettings function with the input
fis.

paramset can be the input, output, or rule parameter settings, or any combination of these settings.

paramvals — Tunable parameter values
array

Tunable parameter values, specified as an array. The order of the values in paramvals matches the
order of the parameters in paramset. To obtain the array of parameter values for a FIS, use
getTunableValues.

ignoreInvalid — Flag to ignore invalid parameters
array

Flag to ignore invalid parameters, specified as either true or false. If true, invalid paramvals are
replaced with the existing parameter values of a fuzzy system.

Output Arguments
fisOut — Modified fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object | fistree object

Modified fuzzy inference system, returned as a mamfis, sugfis, mamfistype2, or sugfistype2, or
fistree object.

fisOut is the same as fisIn except that the parameters specified by paramset have the values
specified by paramvals.

Version History
Introduced in R2019a

See Also
mamfis | sugfis | mamfistype2 | sugfistype2 | getTunableSettings | getTunableValues |
tunefis

 setTunableValues

8-239

showfis
(To be removed) Display annotated fuzzy inference system

Note showfis will be removed in a future release. View the properties of your FIS directly instead.
For more information, see “Compatibility Considerations”.

Syntax
showfis(fis)

Description
showfis(fis) prints a version of the fuzzy inference system, fis, allowing you to see the properties
of the system.

Examples

Display FIS Information

Display information for the 'tipper' fuzzy system.

a = readfis('tipper');
showfis(a)

1. Name tipper
2. Type mamdani
3. Inputs/Outputs [2 1]
4. NumInputMFs [3 2]
5. NumOutputMFs 3
6. NumRules 3
7. AndMethod min
8. OrMethod max
9. ImpMethod min
10. AggMethod max
11. DefuzzMethod centroid
12. InLabels service
13. food
14. OutLabels tip
15. InRange [0 10]
16. [0 10]
17. OutRange [0 30]
18. InMFLabels poor
19. good
20. excellent
21. rancid
22. delicious
23. OutMFLabels cheap
24. average
25. generous
26. InMFTypes gaussmf

8 Functions

8-240

27. gaussmf
28. gaussmf
29. trapmf
30. trapmf
31. OutMFTypes trimf
32. trimf
33. trimf
34. InMFParams [1.5 0 0 0]
35. [1.5 5 0 0]
36. [1.5 10 0 0]
37. [0 0 1 3]
38. [7 9 10 10]
39. OutMFParams [0 5 10 0]
40. [10 15 20 0]
41. [20 25 30 0]
42. Rule Antecedent [1 1]
43. [2 0]
44. [3 2]
42. Rule Consequent 1
43. 2
44. 3
42. Rule Weight 1
43. 1
44. 1
42. Rule Connection 2
43. 1
44. 2

Input Arguments
fis — Fuzzy system
mamfis object | sugfis object

Fuzzy system, specified as a FIS object.

Version History
Introduced before R2006a

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

R2018b: To be removed
Not recommended starting in R2018b

showfis will be removed in a future release. View the properties of your FIS directly instead.

Previously, you could view the properties of your fuzzy system, myFIS, using the showfis function.

 showfis

8-241

showfis(myFIS)

Now, you can view the properties directly instead.

myFIS

To view additional FIS properties, use dot notation. For example, view information about the
membership functions of the first input variable.

myFIS.Inputs(1).MembershipFunctions

For more information on fuzzy inference systems and their properties, see mamfis and sugfis.

See Also
getfis

8 Functions

8-242

showrule
Display fuzzy inference system rules

Syntax
showrule(fis)
showrule(fis,Name,Value)

Description
showrule(fis) displays the rules in the fuzzy inference system fis.

showrule(fis,Name,Value) displays rules using options specified by one or more Name,Value
arguments.

Examples

Display All Rules for a Fuzzy Inference System

Load fuzzy inference system.

fis = readfis('tipper');

Display rules using linguistic expressions.

showrule(fis)

ans = 3x78 char array
 '1. If (service is poor) or (food is rancid) then (tip is cheap) (1) '
 '2. If (service is good) then (tip is average) (1) '
 '3. If (service is excellent) or (food is delicious) then (tip is generous) (1)'

Display rules using symbolic expressions.

showrule(fis,'Format','symbolic')

ans = 3x65 char array
 '1. (service==poor) | (food==rancid) => (tip=cheap) (1) '
 '2. (service==good) => (tip=average) (1) '
 '3. (service==excellent) | (food==delicious) => (tip=generous) (1)'

Display rules using membership function indices.

showrule(fis,'Format','indexed')

ans = 3x15 char array
 '1 1, 1 (1) : 2 '
 '2 0, 2 (1) : 1 '
 '3 2, 3 (1) : 2 '

 showrule

8-243

Select Fuzzy Rules to Display

Load fuzzy inference system.

fis = readfis('tipper');

Display the first and third rules.

showrule(fis,'RuleIndex',[1 3])

ans = 2x78 char array
 '1. If (service is poor) or (food is rancid) then (tip is cheap) (1) '
 '3. If (service is excellent) or (food is delicious) then (tip is generous) (1)'

Display Fuzzy Rules in German Language

Load fuzzy inference system.

fis = readfis('tipper');

Display the rules in German using the 'deutsch' language.

showrule(fis,'Language','deutsch')

ans = 3x85 char array
 '1. Wenn (service ist poor) oder (food ist rancid) dann (tip ist cheap) (1) '
 '2. Wenn (service ist good) dann (tip ist average) (1) '
 '3. Wenn (service ist excellent) oder (food ist delicious) dann (tip ist generous) (1)'

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

8 Functions

8-244

Example: showrule(fis,"Format","symbolic")

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: showrule(fis,Format="symbolic")

RuleIndex — Rules to display
positive integer | vector of positive integers

Rules to display, specified as one of the following values.

• Positive integer — Index of a single rule to display
• Vector of positive integers — Indices of multiple rules to display

The default vector includes the indices for all the rules in fis.

Format — Rule format
"verbose" (default) | "symbolic" | "indexed"

Rule format, specified as one of the following values.

• "verbose" — Use linguistic expressions.

'If (service is poor) or (food is rancid) then (tip is cheap) (1)'

The rule weight is displayed in parentheses at the end of the rule.

You can specify the rule language using the Language option.
• "symbolic" — Use language-neutral symbolic expressions.

'(service==poor) | (food==rancid) => (tip=cheap) (1)'

The symbolic rules use the following symbols.

Rule Component Symbol
AND &
OR |
IS (in antecedent) ==
IS (in consequent) =
IS NOT ~=
Implication (then) =>

The rule weight is displayed in parentheses at the end of the rule.
• "indexed" — Use input and output membership function (MF) indices and integer representation

of fuzzy operators.

The indexed rules display in the following format:
'<input MFs>, <output MFs>, (<weight>) : <logical operator - 1 (AND), 2 (OR)>'

For example:

'1 1, 1 (1) : 2'

 showrule

8-245

To indicate NOT operations for input and output membership functions, the software uses
negative indices. For example, to indicate "not the second membership function," the software
uses -2.

To indicate a don’t care condition for an input or output membership function, the software uses
0.

Language — Rule language
"english" (default) | "francais" | "deutsch"

Rule language for "verbose" format, specified as one of the following values.

• "english" — Display rules in English.

'If (service is poor) or (food is rancid) then (tip is cheap) (1)'
• "francais" — Display rules in French.

'Si (service est poor) ou (food est rancid) alors (tip est cheap) (1)'
• "deutsch" — Display rules in German.

'Wenn (service ist poor) oder (food ist rancid) dann (tip ist cheap) (1)'

The software displays the FIS rules using the following keywords.

Rule Component English French German
Start of antecedent if si wenn
AND and et und
OR or ou oder
Start of consequent
(implication)

then alors dann

IS is est ist
IS NOT is not n''est_pas ist nicht

Version History
Introduced before R2006a

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

R2017a: Specify options using name-value pair arguments
Behavior changed in R2017a

To specify options for viewing the rules of a fuzzy inference system, you now use name-value pair
arguments. Any name-value pair arguments that you do not specify remain at their default values.

8 Functions

8-246

Previously, you specified options using optional input arguments indexList, format, and lang.

showrule(fis,indexList,format,lang);

Starting in R2017a, modify your code to use one or more name-value pair arguments. For example,
view the first fuzzy rule in fis.

showrule(fis,'RuleIndex',1);

The following table shows the mapping of the old input arguments to the new name-value pair
arguments.

Old showrule Input Argument New Name-Value Argument
indexList 'RuleIndex'
format 'Format'
lang 'Language'

See Also
addRule | ruleedit

 showrule

8-247

sigmf
Sigmoidal membership function

Syntax
y = sigmf(x,params)

Description
This function computes fuzzy membership values using a sigmoidal membership function. You can
also compute this membership function using a fismf object. For more information, see “fismf
Object” on page 8-250.

This membership function is related to the dsigmf and psigmf membership functions.

y = sigmf(x,params) returns fuzzy membership values computed using the sigmoidal
membership function given by:

f x; ak, ck = 1
1 + e−ak(x− ck)

To define the membership function parameters, specify params as the vector [a c].

Membership values are computed for each input value in x.

Examples

Sigmoidal Membership Function

Specify input values across the universe of discourse.

x = 0:0.1:10;

Evaluate membership function for the input values.

y = sigmf(x,[2 4]);

Plot the membership function.

plot(x,y)
title('sigmf, P = [2 4]')
xlabel('x')
ylabel('Degree of Membership')
ylim([-0.05 1.05])

8 Functions

8-248

Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length four

Membership function parameters, specified as the vector [a c]. To open the membership function to
the left or right, specify a negative or positive value for a, respectively. The magnitude of a controls
the width of the transition area, and c defines the center of the transition area.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.

 sigmf

8-249

Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the sigmf membership function.

mf = fismf("sigmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of sigmf, respectively.

Version History
Introduced before R2006a

R2018b: C and C++ code generation support

This function supports C and C++ code generation using MATLAB Coder.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fismf | fismftype2 | psigmf | gaussmf | gauss2mf | gbellmf | trimf | trapmf | linsmf |
linzmf | pimf | smf | zmf | dsigmf

Topics
“Membership Functions” on page 1-9

8 Functions

8-250

smf
S-shaped membership function

Syntax
y = smf(x,params)

Description
This function computes fuzzy membership values using a spline-based S-shaped membership
function. You can also compute this membership function using a fismf object. For more
information, see “fismf Object” on page 8-253.

This membership function is related to the zmf and pimf membership functions.

y = smf(x,params) returns fuzzy membership values computed using the spline-based S-shaped
membership function given by:

f (x; a, b) =

0, x ≤ a

2 x− a
b− a

2
, a ≤ x ≤ a + b

2

1−2 x− b
b− a

2
, a + b

2 ≤ x ≤ b

1, x ≥ b

To define the membership function parameters, specify params as the vector [a b].

Membership values are computed for each input value in x.

Examples

S-Shaped Membership Function

Specify input values across the universe of discourse.

x = 0:0.1:10;

Evaluate membership function for the input values.

y = smf(x,[1 8]);

Plot the membership function.

plot(x,y)
title('smf, P = [1 8]')
xlabel('x')
ylabel('Degree of Membership')
ylim([-0.05 1.05])

 smf

8-251

Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length two

Membership function parameters, specified as the vector [a b]. Parameter a defines the foot of the
membership function, and b defines its shoulder.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.

8 Functions

8-252

Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the smf membership function.

mf = fismf("smf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of smf, respectively.

Version History
Introduced before R2006a

R2018b: C and C++ code generation support

This function supports C and C++ code generation using MATLAB Coder.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fismf | fismftype2 | psigmf | sigmf | gaussmf | gauss2mf | gbellmf | trimf | trapmf |
linsmf | linzmf | pimf | zmf | dsigmf

Topics
“Membership Functions” on page 1-9

 smf

8-253

subclust
Find cluster centers using subtractive clustering

Syntax
centers = subclust(data,clusterInfluenceRange)
centers = subclust(data,clusterInfluenceRange,Name,Value)
[centers,sigma] = subclust(___)

Description
centers = subclust(data,clusterInfluenceRange) clusters input data using subtractive
clustering with the specified cluster influence range, and returns the computed cluster centers. The
subtractive clustering algorithm on page 8-258 estimates the number of clusters in the input data.

centers = subclust(data,clusterInfluenceRange,Name,Value) clusters data using
algorithm options specified by one or more Name,Value arguments.

[centers,sigma] = subclust(___) returns the sigma values specifying the range of influence
of a cluster center in each of the data dimensions.

Examples

Find Cluster Centers Using Subtractive Clustering

Load data set.

load clusterDemo.dat

Find cluster centers using the same range of influence for all dimensions.

C = subclust(clusterDemo,0.6);

Each row of C contains one cluster center.

C

C = 3×3

 0.5779 0.2355 0.5133
 0.7797 0.8191 0.1801
 0.1959 0.6228 0.8363

Specify Bounds for Subtractive Clustering

Load data set.

load clusterDemo.dat

8 Functions

8-254

Define minimum and maximum normalization bounds for each data dimension. Use the same bounds
for each dimension.

dataScale = [-0.2 -0.2 -0.2;
 1.2 1.2 1.2];

Find cluster centers.

C = subclust(clusterDemo,0.5,'DataScale',dataScale);

Specify Options for Subtractive Clustering

Load data set.

load clusterDemo.dat

Specify the following clustering options:

• Squash factor of 2.0 - Only find clusters that are far from each other.
• Accept ratio 0.8 - Only accept data points with a strong potential for being cluster centers.
• Reject ratio of 0.7 - Reject data points if they do not have a strong potential for being cluster

centers.
• Verbosity flag of 0 - Do not print progress information to the command window.

options = [2.0 0.8 0.7 0];

Find cluster centers, using a different range of influence for each dimension and the specified
options.

C = subclust(clusterDemo,[0.5 0.25 0.3],'Options',options);

Obtain Cluster Influence Range for Each Data Dimension

Load data set.

load clusterDemo.dat

Cluster data, returning cluster sigma values, S.

[C,S] = subclust(clusterDemo,0.5);

Cluster sigma values indicate the range of influence of the computed cluster centers in each data
dimension.

Input Arguments
data — Data set to be clustered
M-by-N array

 subclust

8-255

Data to be clustered, specified as an M-by-N array, where M is the number of data points and N is the
number of data dimensions.

clusterInfluenceRange — Range of influence of the cluster center
scalar value in the range [0, 1] | vector

Range of influence of the cluster center for each input and output assuming the data falls within a
unit hyperbox, specified as one of the following:

• Scalar value in the range [0 1] — Use the same influence range for all inputs and outputs.
• Vector — Use different influence ranges for each input and output.

Specifying a smaller range of influence usually creates more and smaller data clusters, producing
more fuzzy rules.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: centers = subclust(data,0.5,DataScale=10)

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: centers = subclust(data,0.5,"DataScale",10)

DataScale — Data scale factors
"auto" (default) | 2-by-N array

Data scale factors for normalizing input and output data into a unit hyperbox, specified as a 2-by-N
array, where N is the total number of inputs and outputs. Each column of DataScale specifies the
minimum value in the first row and the maximum value in the second row for the corresponding input
or output data set.

When DataScale is "auto", the subclust function uses the actual minimum and maximum values
in the data to be clustered.

Options — Clustering options
vector

Clustering options, specified as a vector with the following elements.

Options(1) — Squash factor
1.25 (default) | positive scalar

Squash factor for scaling the range of influence of cluster centers, specified as a positive scalar. A
smaller squash factor reduces the potential for outlying points to be considered as part of a cluster,
which usually creates more and smaller data clusters.

Options(2) — Acceptance ratio
0.5 (default) | scalar value in the range [0, 1]

8 Functions

8-256

Acceptance ratio, defined as a fraction of the potential of the first cluster center, above which another
data point is accepted as a cluster center, specified as a scalar value in the range [0, 1]. The
acceptance ratio must be greater than the rejection ratio.

Options(3) — Rejection ratio
0.15 (default) | scalar value in the range [0, 1]

Rejection ratio, defined as a fraction of the potential of the first cluster center, below which another
data point is rejected as a cluster center, specified as a scalar value in the range [0, 1]. The rejection
ratio must be less than acceptance ratio.

Options(4) — Information display flag
false (default) | true

Information display flag indicating whether to display progress information during clustering,
specified as one of the following:

• false — Do not display progress information.
• true — Display progress information.

Output Arguments
centers — Cluster centers
J-by-N array

Cluster centers, returned as a J-by-N array, where J is the number of clusters and N is the number of
data dimensions.

sigma — Range of influence of cluster centers
N-element row vector

Range of influence of cluster centers for each data dimension, returned as an N-element row vector.
All cluster centers have the same set of sigma values.

Tips
• To generate a fuzzy inference system using subtractive clustering, use the genfis command. For

example, suppose you cluster your data using the following syntax:
C = subclust(data,clusterInfluenceRange,"DataScale",dataScale,"Options",options);

where the first M columns of data correspond to input variables, and the remaining columns
correspond to output variables.

You can generate a fuzzy system using the same training data and subtractive clustering
configuration. To do so:

1 Configure clustering options.

opt = genfisOptions("SubtractiveClustering");
opt.ClusterInfluenceRange = clusterInfluenceRange;
opt.DataScale = dataScale;
opt.SquashFactor = options(1);
opt.AcceptRatio = options(2);

 subclust

8-257

opt.RejectRatio = options(3);
opt.Verbose = options(4);

2 Extract input and output variable data.

inputData = data(:,1:M);
outputData = data(:,M+1:end);

3 Generate FIS structure.

fis = genfis(inputData,outputData,opt);

The fuzzy system, fis, contains one fuzzy rule for each cluster, and each input and output
variable has one membership function per cluster. You can generate only Sugeno fuzzy systems
using subtractive clustering. For more information, see genfis and genfisOptions.

Algorithms
Subtractive clustering assumes that each data point is a potential cluster center. The algorithm does
the following:

1 Calculate the likelihood that each data point would define a cluster center, based on the density
of surrounding data points.

2 Choose the data point with the highest potential to be the first cluster center.
3 Remove all data points near the first cluster center. The vicinity is determined using

clusterInfluenceRange.
4 Choose the remaining point with the highest potential as the next cluster center.
5 Repeat steps 3 and 4 until all the data is within the influence range of a cluster center.

The subtractive clustering method is an extension of the mountain clustering method proposed in [2].

Version History
Introduced before R2006a

R2017a: Specify options using name-value pair arguments
Behavior changed in R2017a

To specify options for subtractive, you now use name-value pair arguments. Any name-value pair
arguments that you do not specify remain at their default values.

Previously, you specified options using optional input arguments xBounds and options.

fisOut = subclust(fisIn,radii,xBounds,options);

Starting in R2017a, modify your code to use one or more name-value pair arguments. For example,
specify clustering options.

fisOut = subclust(fisIn,radii,'Options',options);

The following table shows the mapping of the old input arguments to the new name-value pair
arguments.

8 Functions

8-258

Old subclust Input Argument New Name-Value Argument
xBounds 'DataScale'
options 'Options'

References
[1] Chiu, Stephen L. “Fuzzy Model Identification Based on Cluster Estimation.” Journal of Intelligent

and Fuzzy Systems 2, no. 3 (1994): 267–78. https://doi.org/10.3233/IFS-1994-2306.

[2] Yager, Ronald R., and Dimitar P. Filev. “Generation of Fuzzy Rules by Mountain Clustering.”
Journal of Intelligent and Fuzzy Systems 2, no. 3 (1994): 209–19. https://doi.org/10.3233/
IFS-1994-2301.

See Also
genfis

Topics
“Fuzzy Clustering” on page 4-2
“Model Suburban Commuting Using Subtractive Clustering and ANFIS” on page 4-30

 subclust

8-259

https://doi.org/10.3233/IFS-1994-2306
https://doi.org/10.3233/IFS-1994-2301
https://doi.org/10.3233/IFS-1994-2301

surfview
(To be removed) Open Surface Viewer

Note surfview will be removed in a future release. For more information, see “To be removed”.

Syntax
surfview(fis)
surfview(fileName)

Description
Use the Surface Viewer to view the output surface for your fuzzy system. To view the output surface,
you must specify the input and output variables of your FIS, their corresponding membership
functions, and the fuzzy rules for your system.

The Fuzzy Logic Designer app consists of several interactive interfaces for creating a fuzzy
inference system (FIS), including the Surface Viewer. For more information on interactively creating
fuzzy systems, see “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-15.

surfview(fis) opens the Surface Viewer and loads the fuzzy inference system fis.

surfview(fileName) opens the Surface Viewer and loads a fuzzy inference system from the file
specified by fileName.

Examples

Open Surface Viewer

Load or create a fuzzy inference system object. For this example, load the fuzzy system from a file.

fis = readfis('tipper');

Open the Surface Viewer for this fuzzy system.

surfview(fis)

8 Functions

8-260

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

Note The Surface Viewer is the only interface of the Fuzzy Logic Designer app that supports type-2
fuzzy inference systems.

fileName — File name
string | character vector

File name specified as a string or character vector with or without the .fis extension. This file must
be in the current working directory or on the MATLAB path.

 surfview

8-261

Tips
• For systems with more than two input variables, you can view the output surface for any

combination of two inputs. You must specify constant reference values for any other input signals
using the Ref. Input value.

• By default, the surface plot updates automatically when you change the input or output variable
selections or the number of grid points. To disable automatic plot updates, in the Options menu,
clear the Always evaluate option. When this option is disabled, to update the plot, click
Evaluate.

• To create a smoother plot, increase the Plot points value.
• To view the surface from different angles, click and drag on the plot area.

Version History
Introduced before R2006a

R2022b: To be removed
Warns starting in R2022b

surfview will be removed in a future release.

To interactively view the surface plot for a fuzzy inference system, open the Fuzzy Logic Designer
app using the fuzzyLogicDesigner(fis) command. Then, on the Design tab, in the Simulation
section, click Control Surface.

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

See Also
Apps
Fuzzy Logic Designer

Functions
gensurf | ruleedit | ruleview | mfedit

8 Functions

8-262

trapmf
Trapezoidal membership function

Syntax
y = trapmf(x,params)

Description
This function computes fuzzy membership values using a trapezoidal membership function. You can
also compute this membership function using a fismf object. For more information, see “fismf
Object” on page 8-265.

This membership function is related to the trimf, linsmf, and linzmf membership functions.

y = trapmf(x,params) returns fuzzy membership values computed using the following trapezoidal
membership function:

f x; a, b, c, d = max min x− a
b− a , 1, d− x

d− c , 0

To define the membership function parameters, specify params as the vector [a b c d].

Membership values are computed for each input value in x.

Examples

Trapezoid-Shaped Membership Function

Specify input values across the universe of discourse.

x = 0:0.1:10;

Evaluate membership function for the input values.

y = trapmf(x,[1 5 7 8]);

Plot the membership function.

plot(x,y)
title('trapmf, P = [1 5 7 8]')
xlabel('x')
ylabel('Degree of Membership')
ylim([-0.05 1.05])

 trapmf

8-263

Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length two

Membership function parameters, specified as the vector [a b c d]. Parameters b and c define the
shoulders of the membership function, and a and d define its feet.

The shape of the membership function depends on the relative values of b and c.

• When c is greater than b, the resulting membership function is trapezoidal.
• When b is equal to c, the resulting membership function is equivalent to a triangular membership

function with parameters [a b d].
• When c is less than b, the resulting membership function is triangular with a maximum value less

than 1.

8 Functions

8-264

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.

Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the trapmf membership function.

mf = fismf("trapmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of trapmf, respectively.

Version History
Introduced before R2006a

R2018b: C and C++ code generation support

This function supports C and C++ code generation using MATLAB Coder.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fismf | fismftype2 | psigmf | sigmf | gaussmf | gauss2mf | gbellmf | trimf | linsmf |
linzmf | pimf | smf | zmf | dsigmf

Topics
“Membership Functions” on page 1-9

 trapmf

8-265

trimf
Triangular membership function

Syntax
y = trimf(x,params)

Description
This function computes fuzzy membership values using a triangular membership function. You can
also compute this membership function using a fismf object. For more information, see “fismf
Object” on page 8-268.

This membership function is related to the trapmf, linsmf, and linzmf membership functions.

y = trimf(x,params) returns fuzzy membership values computed using the following triangular
membership function:

f x; a, b, c =

0, x ≤ a
x− a
b− a , a ≤ x ≤ b

c− x
c− b , b ≤ x ≤ c

0, c ≤ x

or, more compactly:

f x; a, b, c = max min x− a
b− a , c− x

c− b , 0

To define the membership function parameters, specify params as the vector [a b c].

Membership values are computed for each input value in x.

Examples

Triangle-Shaped Membership Function

Specify input values across the universe of discourse.

x = 0:0.1:10;

Evaluate membership function for the input values.

y = trimf(x,[3 6 8]);

Plot the membership function.

plot(x,y)
title('trimf, P = [3 6 8]')

8 Functions

8-266

xlabel('x')
ylabel('Degree of Membership')
ylim([-0.05 1.05])

Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length three

Membership function parameters, specified as the vector [a b c]. Parameters a and c define the feet
of the membership function, and b defines its peak.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.

 trimf

8-267

Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the trimf membership function.

mf = fismf("trimf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of trimf, respectively.

Version History
Introduced before R2006a

R2018b: C and C++ code generation support

This function supports C and C++ code generation using MATLAB Coder.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fismf | fismftype2 | psigmf | sigmf | gaussmf | gauss2mf | gbellmf | trapmf | linsmf |
linzmf | pimf | smf | zmf | dsigmf

Topics
“Membership Functions” on page 1-9

8 Functions

8-268

tunefis
Tune fuzzy inference system or tree of fuzzy inference systems

Syntax
fisout = tunefis(fisin,paramset,in,out)
fisout = tunefis(fisin,paramset,custcostfcn)
fisout = tunefis(___ ,options)
[fisout,summary] = tunefis(___)

Description
fisout = tunefis(fisin,paramset,in,out) tunes the fuzzy inference system fisin using the
tunable parameter settings specified in paramset and the training data specified by in and out.

fisout = tunefis(fisin,paramset,custcostfcn) tunes the fuzzy inference system using a
function handle to a custom cost function, custcostfcn.

fisout = tunefis(___ ,options) tunes the fuzzy inference system with additional options from
the object options created using tunefisOptions.

[fisout,summary] = tunefis(___) tunes the fuzzy inference system and returns additional
information about the tuning algorithm in summary.

Examples

Tune a Fuzzy Inference System

Create the initial fuzzy inference system using genfis.

x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);
options = genfisOptions('GridPartition');
options.NumMembershipFunctions = 5;
fisin = genfis(x,y,options);

Obtain the tunable settings of inputs, outputs, and rules of the fuzzy inference system.

[in,out,rule] = getTunableSettings(fisin);

Tune the membership function parameters with "anfis".

fisout = tunefis(fisin,[in;out],x,y,tunefisOptions("Method","anfis"));

ANFIS info:
 Number of nodes: 24
 Number of linear parameters: 10
 Number of nonlinear parameters: 15
 Total number of parameters: 25
 Number of training data pairs: 101
 Number of checking data pairs: 0

 tunefis

8-269

 Number of fuzzy rules: 5

Start training ANFIS ...

1 0.0694086
2 0.0680259
3 0.066663
4 0.0653198
Step size increases to 0.011000 after epoch 5.
5 0.0639961
6 0.0626917
7 0.0612787
8 0.0598881
Step size increases to 0.012100 after epoch 9.
9 0.0585193
10 0.0571712

Designated epoch number reached. ANFIS training completed at epoch 10.

Minimal training RMSE = 0.0571712

Tune Specific Parameter Setting of Fuzzy Inference System

Create the initial fuzzy inference system using genfis.

x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);
options = genfisOptions('GridPartition');
options.NumMembershipFunctions = 5;
fisin = genfis(x,y,options);

Obtain the tunable settings of inputs, outputs, and rules of the fuzzy inference system.

[in,out,rule] = getTunableSettings(fisin);

Tune the rule parameter only. In this example, the pattern search method is used.

fisout = tunefis(fisin,rule,x,y,tunefisOptions("Method","patternsearch"));

Iter Func-count f(x) MeshSize Method
 0 1 0.346649 1
 1 15 0.346649 0.5 Refine Mesh
 2 33 0.346649 0.25 Refine Mesh
 3 51 0.346649 0.125 Refine Mesh
 4 69 0.346649 0.0625 Refine Mesh
 5 87 0.346649 0.03125 Refine Mesh
 6 105 0.346649 0.01562 Refine Mesh
 7 123 0.346649 0.007812 Refine Mesh
 8 141 0.346649 0.003906 Refine Mesh
 9 159 0.346649 0.001953 Refine Mesh
 10 177 0.346649 0.0009766 Refine Mesh
 11 195 0.346649 0.0004883 Refine Mesh
 12 213 0.346649 0.0002441 Refine Mesh
 13 231 0.346649 0.0001221 Refine Mesh
 14 249 0.346649 6.104e-05 Refine Mesh

8 Functions

8-270

 15 267 0.346649 3.052e-05 Refine Mesh
 16 285 0.346649 1.526e-05 Refine Mesh
 17 303 0.346649 7.629e-06 Refine Mesh
 18 321 0.346649 3.815e-06 Refine Mesh
 19 339 0.346649 1.907e-06 Refine Mesh
 20 357 0.346649 9.537e-07 Refine Mesh
Optimization terminated: mesh size less than options.MeshTolerance.

Tune a Fuzzy Inference System with Custom Parameter Settings

Create the initial fuzzy inference system using genfis.

x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);
options = genfisOptions('GridPartition');
options.NumMembershipFunctions = 5;
fisin = genfis(x,y,options);

Obtain the tunable settings of inputs, outputs, and rules of the fuzzy inference system.

[in,out,rule] = getTunableSettings(fisin);

You can tune with custom parameter settings using setTunable or dot notation.

Do not tune input 1.

in(1) = setTunable(in(1),false);

For output 1:

• do not tune membership functions 1 and 2,
• do not tune membership function 3,
• set the minimum parameter range of membership function 4 to -2,
• and set the maximum parameter range of membership function 5 to 2.

out(1).MembershipFunctions(1:2) = setTunable(out(1).MembershipFunctions(1:2),false);
out(1).MembershipFunctions(3).Parameters.Free = false;
out(1).MembershipFunctions(4).Parameters.Minimum = -2;
out(1).MembershipFunctions(5).Parameters.Maximum = 2;

For the rule settings,

• do not tune rules 1 and 2,
• set the antecedent of rule 3 to non-tunable,
• allow NOT logic in the antecedent of rule 4,
• and do not ignore any outputs in rule 3.

rule(1:2) = setTunable(rule(1:2),false);
rule(3).Antecedent.Free = false;
rule(4).Antecedent.AllowNot = true;
rule(3).Consequent.AllowEmpty = false;

Set the maximum number of iterations to 20 and tune the fuzzy inference system.

 tunefis

8-271

opt = tunefisOptions("Method","particleswarm");
opt.MethodOptions.MaxIterations = 20;
fisout = tunefis(fisin,[in;out;rule],x,y,opt);

 Best Mean Stall
Iteration f-count f(x) f(x) Iterations
 0 90 0.3265 1.857 0
 1 180 0.3265 4.172 0
 2 270 0.3265 3.065 1
 3 360 0.3265 3.839 2
 4 450 0.3265 3.386 3
 5 540 0.3265 3.249 4
 6 630 0.3265 3.311 5
 7 720 0.3265 2.901 6
 8 810 0.3265 2.868 7
 9 900 0.3181 2.71 0
 10 990 0.3181 2.068 1
 11 1080 0.3181 2.692 2
 12 1170 0.3165 2.146 0
 13 1260 0.3165 1.869 1
 14 1350 0.3165 2.364 2
 15 1440 0.3165 2.07 0
 16 1530 0.3164 1.678 0
 17 1620 0.2978 1.592 0
 18 1710 0.2977 1.847 0
 19 1800 0.2954 1.666 0
 20 1890 0.2947 1.608 0
Optimization ended: number of iterations exceeded OPTIONS.MaxIterations.

Prevent Overfitting Using K-Fold Cross-Validation

To prevent the overfitting of your tuned FIS to your training data using k-fold cross validation.

Load training data. This training data set has one input and one output.

load fuzex1trnData.dat

Create a fuzzy inference system for the training data.

opt = genfisOptions('GridPartition');
opt.NumMembershipFunctions = 4;
opt.InputMembershipFunctionType = "gaussmf";
inputData = fuzex1trnData(:,1);
outputData = fuzex1trnData(:,2);
fis = genfis(inputData,outputData,opt);

For reproducibility, set the random number generator seed.

rng('default')

Configure the options for tuning the FIS. Use the default tuning method with a maximum of 30
iterations.

tuningOpt = tunefisOptions;
tuningOpt.MethodOptions.MaxGenerations = 30;

8 Functions

8-272

Configure the following options for using k-fold cross validation.

• Use a k-fold value of 3.
• Compute the moving average of the validation cost using a window of length 2.
• Stop each training-validation iteration when the average cost is 5% greater than the current

minimum cost.

tuningOpt.KFoldValue = 3;
tuningOpt.ValidationWindowSize = 2;
tuningOpt.ValidationTolerance = 0.05;

Obtain the settings for tuning the membership function parameters of the FIS.

 [in,out] = getTunableSettings(fis);

Tune the FIS.

[outputFIS,info] = tunefis(fis,[in;out],inputData,outputData,tuningOpt);

Single objective optimization:
16 Variable(s)

Options:
CreationFcn: @gacreationuniform
CrossoverFcn: @crossoverscattered
SelectionFcn: @selectionstochunif
MutationFcn: @mutationadaptfeasible

 Best Mean Stall
Generation Func-count f(x) f(x) Generations
 1 400 0.2257 0.534 0
Optimization terminated: Validation tolerance exceeded.

Cross validation iteration 1: Minimum validation cost 0.307868 found at training cost 0.262340

Single objective optimization:
16 Variable(s)

Options:
CreationFcn: @gacreationuniform
CrossoverFcn: @crossoverscattered
SelectionFcn: @selectionstochunif
MutationFcn: @mutationadaptfeasible

 Best Mean Stall
Generation Func-count f(x) f(x) Generations
 1 400 0.26 0.5522 0
 2 590 0.222 0.4914 0
Optimization terminated: Validation tolerance exceeded.

Cross validation iteration 2: Minimum validation cost 0.253280 found at training cost 0.259991

Single objective optimization:
16 Variable(s)

Options:
CreationFcn: @gacreationuniform

 tunefis

8-273

CrossoverFcn: @crossoverscattered
SelectionFcn: @selectionstochunif
MutationFcn: @mutationadaptfeasible

 Best Mean Stall
Generation Func-count f(x) f(x) Generations
 1 400 0.2588 0.4969 0
 2 590 0.2425 0.4366 0
 3 780 0.2414 0.4006 0
Optimization terminated: Validation tolerance exceeded.

Cross validation iteration 3: Minimum validation cost 0.199193 found at training cost 0.242533

Evaluate the FIS for each of the training input values.

outputTuned = evalfis(outputFIS,inputData);

Plot the output of the tuned FIS along with the expected training output.

plot([outputData,outputTuned])
legend("Expected Output","Tuned Output","Location","southeast")
xlabel("Data Index")
ylabel("Output value")

8 Functions

8-274

Input Arguments
fisin — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object | fistree object

Fuzzy inference system, specified as one of the following objects.

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system
• fistree object — Tree of interconnected fuzzy inference systems

paramset — Tunable parameter settings
array

Tunable parameter settings, specified as an array of input, output, and rule parameter settings in the
input FIS. To obtain these parameter settings, use the getTunableSettings function with the input
fisin.

paramset can be the input, output, or rule parameter settings, or any combination of these settings.

in — Input training data
matrix

Input training data, specified as an m-by-n matrix, where m is the total number of input datasets and
n is the number of inputs. The number of input and output datasets must be the same.

out — Output training data
matrix

Output training data, specified as an m-by-q matrix, where m is the total number of output datasets
and q is the number of outputs. The number of input and output datasets must be the same.

options — FIS tuning options
tunefisOptions option set

FIS tuning options, specified as a tunefisOptions object. You can specify the tuning algorithm
method and other options for the tuning process.

custcostfcn — custom cost functions
function handle

Custom cost function, specified as a function handle. The custom cost function evaluates fisout to
calculate its cost with respect to an evaluation criterion, such as input/output data. custcostfcn
must accept at least one input argument for fisout and returns a cost value. You can provide an
anonymous function handle to attach additional data for cost calculation, as described in this
example:

function fitness = custcost(fis,trainingData)
 ...
end
custcostfcn = @(fis)custcost(fis,trainingData);

 tunefis

8-275

Output Arguments
fisout — Tuned fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object | fistree object

Tuned fuzzy inference system, returned as one of the following objects.

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system
• fistree object — Tree of interconnected fuzzy inference systems

fisout is the same type of FIS as fisin.

summary — Tuning algorithm summary
structure

Tuning algorithm summary, specified as a structure containing the following fields:

• tuningOutputs — Algorithm-specific tuning information
• totalFunctionCount — Total number of evaluations of the optimization cost function
• totalRuntime — Total execution time of the tuning process in seconds
• errorMessage — Any error message generated when updating fisin with new parameter

values

tuningOutputs is a structure that contains tuning information for the algorithm specified in
options. The fields in tuningOutputs depend on the specified tuning algorithm. When using k-fold
cross validation, tuningOutputs is an array of k structures, each containing the tuning information
for one training-validation iteration.

When using k-fold validation, totalFunctionCount and totalRuntime the total function cost
function evaluations and total run time across all k training-validation iterations.

Alternative Functionality
Fuzzy Logic Designer App

Starting in R2023a, you can interactively tune fuzzy inference systems using the Fuzzy Logic
Designer app. For an example, see “Tune Fuzzy Inference System Using Fuzzy Logic Designer” on
page 3-6.

Version History
Introduced in R2019a

R2020a: K-fold cross validation

To prevent overfitting of your fuzzy inference system (FIS) parameters to your training data, you can
use k-fold cross validation. K-fold validation randomly partitions your training data into k subsets of

8 Functions

8-276

approximately equal size. The function then performs k training-validation iterations. For each
iteration, one data subset is used as validation data with the remaining k-1 subsets used as training
data.

See Also
getTunableSettings | tunefisOptions

 tunefis

8-277

update
Update fuzzy rule using fuzzy inference system

Syntax
ruleOut = update(ruleIn,fis)

Description
ruleOut = update(ruleIn,fis) updates the fuzzy rule ruleIn using the information in fuzzy
inference system fis and returns the resulting fuzzy rule in ruleOut.

Examples

Create Fuzzy Rule Using Text Description

Create a fuzzy rule using a verbose text description.

rule = fisrule("if service is poor and food is delicious then tip is average (1)");

Alternatively, you can specify the same rule using a symbolic text description.

rule = fisrule("service==poor & food==delicious => tip=average")

rule =
 fisrule with properties:

 Description: "service==poor & food==delicious => tip=average (1)"
 Antecedent: []
 Consequent: []
 Weight: 1
 Connection: 1

Before using rule with a fuzzy system, update the rule Antecedent and Consequent properties
using the update function.

fis = readfis("tipper");
rule = update(rule,fis)

rule =
 fisrule with properties:

 Description: "service==poor & food==delicious => tip=average (1)"
 Antecedent: [1 2]
 Consequent: 2
 Weight: 1
 Connection: 1

8 Functions

8-278

Create Fuzzy Rule Using Numeric Description

Create a fuzzy rule using a numeric description. Specify that the rule has two input variables.

rule = fisrule([1 2 2 0.5 1],2)

rule =
 fisrule with properties:

 Description: "input1==mf1 & input2==mf2 => output1=mf2 (0.5)"
 Antecedent: [1 2]
 Consequent: 2
 Weight: 0.5000
 Connection: 1

Before using rule with a fuzzy system, update the rule Description property using the update
function.

fis = readfis("tipper");
rule = update(rule,fis)

rule =
 fisrule with properties:

 Description: "service==poor & food==delicious => tip=average (0.5)"
 Antecedent: [1 2]
 Consequent: 2
 Weight: 0.5000
 Connection: 1

Input Arguments
ruleIn — Fuzzy rule
fisrule object | array of fisrule objects

Fuzzy rule, specified as a fisrule object or an array of fisrule objects. If ruleIn was created
using a:

• Text description, its Antecedent and Consequent properties are updated using the input and
output membership function indices in fis that correspond to the membership function names in
the Description property of ruleIn

• Numeric description, its Description property is updated using the input and output
membership function names in fis that correspond to the membership function indices in the
Antecedent and Consequent properties of ruleIn

If you specify ruleIn as an array of fisrule objects, then all of the rules are updated accordingly.

fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system

 update

8-279

• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

Output Arguments
ruleOut — Fuzzy rule
fisrule object | array of fisrule objects

Fuzzy rule, returned as a fisrule object or an array of fisrule objects.

Version History
Introduced in R2018b

See Also
fisrule

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77

8 Functions

8-280

writeFIS
Save fuzzy inference system to file

Syntax
writeFIS(fis,fileName)

writeFIS(fis)
writeFIS(fis,fileName,"dialog")

Description
You can save a fuzzy inference system (FIS) in a FIS file (*.fis) using the writeFIS function. To
load the saved file, use the readfis function.

Note Do not manually edit the contents of a FIS file. Doing so can produce unexpected results when
loading the file using a function, such as readfis and getCodeGenerationData, or an app, such as
Fuzzy Logic Designer.

writeFIS(fis,fileName) saves the fuzzy inference system fis to the current working folder
using file name fileName.

writeFIS(fis) opens a dialog box for saving a FIS. In this dialog box, specify the name and
location of the FIS file.

writeFIS(fis,fileName,"dialog") opens a dialog box for saving a FIS, setting the name of the
file in the dialog box to fileName. In the dialog box, specify the location for the file.

Examples

Save Fuzzy Inference System to File

Create a fuzzy inference system and add an input variable with membership functions.

fis = mamfis("Name","tipper");
fis = addInput(fis,[0 10],"Name","service");
fis = addMF(fis,"service","gaussmf",[1.5 0],"Name","poor");
fis = addMF(fis,"service","gaussmf",[1.5 5],"Name","good");
fis = addMF(fis,"service","gaussmf",[1.5 10],"Name","excellent");

Save the fuzzy system in the current working folder.

writeFIS(fis,fis.Name);

 writeFIS

8-281

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• mamfistype2 object — Type-2 Mamdani fuzzy inference system
• sugfistype2 object — Type-2 Sugeno fuzzy inference system

fileName — File name
string | character vector

File name, specified as a string or character vector. If you do not specify the .fis extension in the
file name, writeFIS adds the extension.

Note writeFIS changes the name of the saved FIS to match the specified file name.

Version History
Introduced in R2018b

R2018b: writefis is now writeFIS
Behavior changed in R2018b

writefis is now writeFIS. To update your code, change the function name from writefis to
writeFIS. The syntaxes are equivalent.

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this function
issues a warning starting in R2019b.

R2018b: Renamed to writeFIS
Behavior changed in R2018b

writefis is now writeFIS. To update your code, change the function name of the function. The
syntaxes are equivalent.

See Also
readfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77

8 Functions

8-282

zmf
Z-shaped membership function

Syntax
y = zmf(x,params)

Description
This function computes fuzzy membership values using a spline-based Z-shaped membership
function. You can also compute this membership function using a fismf object. For more
information, see “fismf Object” on page 8-285.

This membership function is related to the smf and pimf membership functions.

y = zmf(x,params) returns fuzzy membership values computed using the spline-based Z-shaped
membership function given by:

f x; a, b =

1, x ≤ a

1 − 2 x− a
b− a

2
, a ≤ x ≤ a + b

2

2 x− b
b− a

2
, a + b

2 ≤ x ≤ b

0 x ≥ b

To define the membership function parameters, specify params as the vector [a b].

Membership values are computed for each input value in x.

Examples

Z-Shaped Membership Function

Specify input values across the universe of discourse.

x = 0:0.1:10;

Evaluate membership function for the input values.

y = zmf(x,[3 7]);

Plot the membership function.

plot(x,y)
title('zmf, P = [3 7]')
xlabel('x')
ylabel('Degree of Membership')
ylim([-0.05 1.05])

 zmf

8-283

Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length two

Membership function parameters, specified as the vector [a b]. Parameter a defines the shoulder of
the membership function, and b defines its foot.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the dimensions of x.
Each element of y is the membership value computed for the corresponding element of x.

8 Functions

8-284

Alternative Functionality
fismf Object

You can create and evaluate a fismf object that implements the zmf membership function.

mf = fismf("zmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of zmf, respectively.

Version History
Introduced before R2006a

R2018b: C and C++ code generation support

This function supports C and C++ code generation using MATLAB Coder.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fismf | fismftype2 | psigmf | sigmf | gaussmf | gauss2mf | gbellmf | trimf | trapmf |
linsmf | linzmf | pimf | smf | dsigmf

Topics
“Membership Functions” on page 1-9

 zmf

8-285

Objects

9

anfisOptions
Option set for anfis function

Description
Use an anfisOptions object to specify options for tuning fuzzy systems using the anfis function.
You can specify options such as the initial FIS structure to tune and number of training epochs.

Creation

Syntax
opt = anfisOptions
opt = anfisOptions(Name,Value)

Description

opt = anfisOptions creates a default option set for tuning a Sugeno fuzzy inference system using
anfis. Use dot notation to modify this option set for your specific application. Any options that you
do not modify retain their default values.

opt = anfisOptions(Name,Value) sets properties on page 9-2 using one or more name-value
arguments. Enclose the property name in quotes. For example, "EpochNumber",50 sets the number
of training epochs to 50.

Properties
InitialFIS — Initial FIS structure
2 (default) | positive integer greater than 1 | vector of positive integers | FIS structure

Initial FIS structure to tune, specified as one of the following values.

• Positive integer greater than 1 specifying the number of membership functions for all input
variables. anfis generates an initial FIS structure with the specified number of membership
functions using genfis with grid partitioning.

• Vector of positive integers with length equal to the number of input variables specifying the
number of membership functions for each input variable. anfis generates an initial FIS structure
with the specified numbers of membership functions using genfis with grid partitioning.

• FIS structure generated using genfis command with grid partitioning or subtractive clustering.
The specified system must have the following properties:

• Single output, obtained using weighted average defuzzification.
• First or zeroth order Sugeno-type system; that is, all output membership functions must be the

same type and be either 'linear' or 'constant'.
• No rule sharing. Different rules cannot use the same output membership function; that is, the

number of output membership functions must equal the number of rules.

9 Objects

9-2

• Unity weight for each rule.
• No custom membership functions or defuzzification methods.

EpochNumber — Maximum number of training epochs
10 (default) | positive integer

Maximum number of training epochs, specified as a positive integer. The training process stops when
it reaches the maximum number of training epochs.

ErrorGoal — Training error goal
0 (default) | scalar

Training error goal, specified as a scalar. The training process stops when the training error is less
than or equal to ErrorGoal.

InitialStepSize — Initial training step size
0.01 (default) | positive scalar

Initial training step size, specified as a positive scalar.

The anfis training algorithm tunes the FIS parameters using gradient descent optimization
methods. The training step size is the magnitude of each gradient transition in the parameter space.
Typically, you can increase the rate of convergence of the training algorithm by increasing the step
size. During optimization, anfis automatically updates the step size using StepSizeIncreaseRate
and StepSizeDecreaseRate.

Generally, the step-size profile during training is a curve that increases initially, reaches some
maximum, and then decreases for the remainder of the training. To achieve this ideal step-size
profile, adjust the initial step-size and the increase and decrease rates
(opt.StepSizeDecreaseRate, opt.StepSizeIncreaseRate).

StepSizeDecreaseRate — Step-size decrease rate
0.9 (default) | positive scalar less than 1

Step-size decrease rate, specified as a positive scalar less than 1. If the training error undergoes two
consecutive combinations of an increase followed by a decrease, then anfis scales the step size by
the decrease rate.

StepSizeIncreaseRate — Step-size increase rate
1.1 (default) | scalar greater than 1

Step-size increase rate, specified as a scalar greater than 1. If the training error decreases for four
consecutive epochs, then anfis scales the step size by the increase rate.

DisplayANFISInformation — Flag for showing ANFIS information
1 (default) | 0

Flag for showing ANFIS information at the start of the training process, specified as one of the
following values.

• 1 — Display the following information about the ANFIS system and training data:

• Number of nodes in the ANFIS system
• Number of linear parameters to tune

 anfisOptions

9-3

• Number of nonlinear parameters to tune
• Total number of parameters to tune
• Number of training data pairs
• Number of checking data pairs
• Number of fuzzy rules

• 0 — Do not display the information.

DisplayErrorValues — Flag for showing training error values
1 (default) | 0

Flag for showing training error values after each training epoch, specified as one of the following
values.

• 1 — Display the training error.
• 0 — Do not display the training error.

DisplayStepSize — Flag for showing step size
1 (default) | 0

Flag for showing step size whenever the step size changes, specified as one of the following values.

• 1 — Display the step size.
• 0 — Do not display the step size.

DisplayFinalResults — Flag for displaying final results
1 (default) | 0

Flag for displaying final results after training, specified as one of the following values.

• 1 — Display the results.
• 0 — Do not display the results.

ValidationData — Validation data
[] (default) | array

Validation data for preventing overfitting to the training data, specified as an array. For a fuzzy
system with N inputs, specify ValidationData as an array with N+1 columns. The first N columns
contain input data and the final column contains output data. Each row of ValidationData contains
one data point.

At each training epoch, the training algorithm validates the FIS using the validation data.

Generally, validation data should fully represent the features of the data the FIS is intended to model,
while also being sufficiently different from the training data to test training generalization.

OptimizationMethod — Optimization method
1 (default) | 0

Optimization method used in membership function parameter training, specified as one of the
following values.

9 Objects

9-4

• 1 — Use a hybrid method, which uses a combination of backpropagation to compute input
membership function parameters, and least squares estimation to compute output membership
function parameters.

• 0 — Use backpropagation gradient descent to compute all parameters.

Object Functions
anfis Tune Sugeno-type fuzzy inference system using training data

Examples

Create Option Set for ANFIS Training

Create a default option set.

opt = anfisOptions;

Specify training options using dot notation. For example, specify the following options:

• Initial FIS with 4 membership functions for each input variable
• Maximum number of training epochs equal to 30.

opt.InitialFIS = 4;
opt.EpochNumber = 30;

You can also specify options when creating the option set using one or more Name,Value pair
arguments.

opt2 = anfisOptions('InitialFIS',4,'EpochNumber',30);

Version History
Introduced in R2017a

See Also
anfis | genfis

 anfisOptions

9-5

ClauseParameters
Parameter settings for rule clauses

Description
A ClauseParameters object contains tunable settings for either the antecedent or consequent of a
fuzzy rule.

Creation
Create a ClauseParameters object using the getTunableSettings function. The third output of
getTunableSettings contains RuleSettings objects. The Antecedent and Consequent
properties of each RuleSettings object are ClauseParameter objects for specifying the tunable
settings of the corresponding rule.

Properties
Free — Clause parameter values available for tuning
1 | 0 | array of logical values

Clause parameter values available for tuning, specified as a logical 1 or 0, or an array of logical
values. To apply different settings to each clause parameter, specify an array of logical values. To
apply the same setting to all clause parameter values, specify a scalar logical value.

When the ClauseParameters object represents a rule antecedent, the clause parameter values are
the membership functions corresponding to each input variable.

When the ClauseParameters object represents a rule consequent, the clause parameter values are
the membership functions corresponding to each output variable.

AllowNot — Flag indicating whether to allow NOT logic in rule clauses
1 | 0 | array of logical values

Flag indicating whether to allow NOT logic in rule clauses, specified as a logical 1 or 0, or an array of
logical values. To apply different settings to each clause parameter, specify an array of logical values.
To apply the same setting to all clause parameter values, specify a scalar logical value.

AllowEmpty — Flag indicating whether to allow ignoring inputs and outputs in rule clauses
1 | 0 | array of logical values

Flag indicating whether to allow ignoring inputs and outputs in rule clauses, specified as a logical 1
or 0, or an array of logical values. To apply different settings to each clause parameter, specify an
array of logical values. To apply the same setting to all clause parameter values, specify a scalar
logical value.

Examples

9 Objects

9-6

Obtain Tunable Settings of Rules from FIS

Create two fuzzy inference systems, and define the connection between the two.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);
con = ["fis1/output1" "fis2/input1"];

Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],con);

Obtain the tunable settings of rules of the fuzzy inference system.

[~,~,rule] = getTunableSettings(tree)

rule=18×1 object
 16x1 RuleSettings array with properties:

 Index
 Antecedent
 Consequent
 FISName
 ⋮

You can use dot notation to specify the tunable settings of rules.

For the first rule, do not tune input 1 membership function index and do not ignore output 1
membership function index.

rule(1).Antecedent.Free(1) = false;
rule(1).Consequent.AllowEmpty(1) = false;

For the second rule, allow NOT logic for input 2 membership function index.

rule(2).Antecedent.AllowNot(2) = true;

Version History
Introduced in R2019a

See Also
getTunableSettings | RuleSettings | VariableSettings

 ClauseParameters

9-7

evalfisOptions
Option set for evalfis function

Description
Use an evalfisOptions object to specify options for the evalfis function.

Creation

Syntax
opt = evalfisOptions
opt = evalfisOptions(Name,Value)

Description

opt = evalfisOptions creates an option set for the evalfis function with default options. To
modify the properties of this option set, use dot notation.

opt = evalfisOptions(Name,Value) sets properties using name-value pairs. For example,
evalfisOptions('NumSamplePoints',51) creates an option set and sets the number of output
fuzzy set samples to 51. You can specify multiple name-value pairs. Enclose each property name in
single quotes.

Properties
NumSamplePoints — Number of sample points in output fuzzy sets
101 (default) | integer greater than 1

Number of sample points in output fuzzy sets, specified as an integer greater than 1.

To reduce memory usage while evaluating a Mamdani FIS, specify fewer samples. Doing so sacrifices
the accuracy of the defuzzified output value.

Reducing the number of samples can make the output area for defuzzification zero. In this case, the
defuzzified output value is the midpoint of the output variable range.

Note evalfis ignores this property when evaluating a Sugeno FIS.

OutOfRangeInputValueMessage — Diagnostic message behavior when an input is out of
range
"warning" (default) | "error" | "none"

Diagnostic message behavior when an input is out of range, specified as one of the following:

9 Objects

9-8

• "warning" — Report the diagnostic message as a warning.
• "error" — Report the diagnostic message as an error.
• "none" — Do not report the diagnostic message.

When an input value is out of range, corresponding rules in the fuzzy system can have unexpected
firing strengths.

NoRuleFiredMessage — Diagnostic message behavior when no rules fire
"warning" (default) | "error" | "none"

Diagnostic message behavior when no rules fire, specified as one of the following:

• "warning" — Report the diagnostic message as a warning.
• "error" — Report the diagnostic message as an error.
• "none" — Do not report the diagnostic message.

When NoRuleFiredMessage is "warning" or "none" and no rules fire for a given output, the
defuzzified output value is set to its mean range value.

EmptyOutputFuzzySetMessage — Diagnostic message behavior when an output fuzzy set is
empty
"warning" (default) | "error" | "none"

Diagnostic message behavior when an output fuzzy set is empty, specified as one of the following:

• "warning" — Report the diagnostic message as a warning.
• "error" — Report the diagnostic message as an error.
• "none" — Do not report the diagnostic message.

When EmptyOutputFuzzySetMessage is "warning" or "none" and an output fuzzy set is empty,
the defuzzified value for the corresponding output is set to its mean range value.

This diagnostic message applies only to Mamdani systems.

Object Functions
evalfis Evaluate fuzzy inference system

Examples

Create Option Set for Evaluating FIS

Create option set object, specifying the number of sample points for output fuzzy sets.

options = evalfisOptions('NumSamplePoints',51)

options =
 EvalFISOptions with properties:

 NumSamplePoints: 51
 OutOfRangeInputValueMessage: "warning"
 NoRuleFiredMessage: "warning"

 evalfisOptions

9-9

 EmptyOutputFuzzySetMessage: "warning"

Alternatively, create a default option set, and configure properties using dot notation.

options = evalfisOptions;
options.NumSamplePoints = 51;

Version History
Introduced in R2018a

R2018b: C and C++ code generation support

You can generate code for loading and evaluating a fuzzy inference system (FIS) using MATLAB
Coder. For an example, see “Generate Code for Fuzzy System Using MATLAB Coder” on page 6-12.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• When used for code generation, an evalfisOptions object stores its
OutOfRangeInputValueMessage, NoRuleFiredMessage, and
EmptyOutputFuzzySetMessage properties as character vectors rather than strings.

• When evaluating a fuzzy inference system in Simulink, it is recommended to not use evalfis or
evalfisOptions within a MATLAB Function block. Instead, evaluate your fuzzy inference system
using the Fuzzy Logic Controller block.

See Also
Functions
evalfis

9 Objects

9-10

fcmOptions
FCM clustering options

Description
Use an fcmOptions object to specify options for clustering data using the fcm function. You can
specify options such as the number of clusters, the clustering exponent, and the distance metric.

Creation

Syntax
opt = fcmOptions
opt = fcmOptions(Name=Value)

Description

opt = fcmOptions returns a default option object for FCM clustering.

opt = fcmOptions(Name=Value) specifies options using one or more name-value pair arguments.
For example, to compute three clusters, use NumClusters=3.

Properties
NumClusters — Number of clusters
"auto" (default) | integer greater than 1

Number of clusters to create, specified as "auto" or an integer greater than 1.

When NumClusters is "auto", the fcm function computes two clusters.

Exponent — Exponent for fuzzy partition matrix
2.0 (default) | scalar greater than 1.0

Exponent for the fuzzy partition matrix, specified as a scalar greater than 1.0. This option controls
the amount of fuzzy overlap between clusters, with larger values indicating a greater degree of
overlap.

If your data set is wide with significant overlap between potential clusters, then the calculated cluster
centers can be very close to each other. In this case, each data point has approximately the same
degree of membership in all clusters. To improve your clustering results, decrease this value, which
limits the amount of fuzzy overlap during clustering.

For an example of fuzzy overlap adjustment, see “Adjust Fuzzy Overlap in Fuzzy C-Means Clustering”
on page 4-9.

MaxNumIteration — Maximum number of iterations
100 (default) | positive integer

 fcmOptions

9-11

Maximum number of iterations, specified as a positive integer.

MinImprovement — Minimum improvement in objective function
1e-5 (default) | positive scalar

Minimum improvement in objective function between two consecutive iterations, specified as a
positive scalar.

Verbose — Information display flag
true (default) | false

Information display flag indicating whether to display the objective function value after each
iteration, specified as one of the following values.

• true — Display objective function.
• false — Do not display objective function.

DistanceMetric — Method for computing distance
"euclidean" (default) | "mahalanobis"

Method for computing distance between data points and cluster centers, specified as one of the
following values.

• "euclidean" — Compute distance using a Euclidean distance metric, which corresponds to the
classical FCM algorithm.

• "mahalanobis" — Compute distance using a Mahalanobis distance metric, which corresponds to
the Gustafson-Kessel FCM algorithm.

Object Functions
fcm Fuzzy c-means clustering

Examples

Specify Options for FCM Clustering

Create an fcmOptions object for computing three clusters using a maximum of 200 iterations.

opt = fcmOptions(...
 NumClusters=3,...
 MaxNumIteration=200);

You can also specify options using dot notation. For example, disable the command-window output of
the objective function value for each FCM iteration.

opt.Verbose = false;

Version History
Introduced in R2023a

9 Objects

9-12

See Also
fcm

Topics
“Adjust Fuzzy Overlap in Fuzzy C-Means Clustering” on page 4-9
“Fuzzy C-Means Clustering” on page 4-12

 fcmOptions

9-13

fismf
Fuzzy membership function

Description
Use a fismf object to represent a type-1 fuzzy membership function. For each input and output
variable in a fuzzy inference system (FIS), one or more membership functions define the possible
linguistic sets for that variable. For more information on membership functions, see “Foundations of
Fuzzy Logic” on page 1-7.

Creation

Syntax
mf = fismf
mf = fismf(type,parameters)
mf = fismf('Name',name)
mf = fismf(type,parameters,"Name",name)

Description

mf = fismf creates a fuzzy membership function (MF) with default type, parameters, and name. To
change the membership function properties, use dot notation.

mf = fismf(type,parameters) sets the Type and Parameters properties.

mf = fismf('Name',name) sets the Name property.

mf = fismf(type,parameters,"Name",name) sets the Type, Parameters, and Name
properties.

Properties
Name — Membership function name
"mf" (default) | string | character vector

Membership function name, specified as a string or character vector.

Type — Membership function type
"trimf" (default) | string | character vector | function handle

Membership function type, specified as a string or character vector that contains the name of a
function in the current working folder or on the MATLAB path. You can also specify a handle to such a
function. When you specify Type, you must also specify Parameters.

This table describes the values that you can specify for Type.

9 Objects

9-14

Membership
Function Type

Description For More Information

"gbellmf" Generalized bell-shaped membership
function

gbellmf

"gaussmf" Gaussian membership function gaussmf
"gauss2mf" Gaussian combination membership

function
gauss2mf

"trimf" Triangular membership function trimf
"trapmf" Trapezoidal membership function trapmf
"linsmf" Linear s-shaped saturation

membership function
linsmf

"linzmf" Linear z-shaped saturation
membership function

linzmf

"sigmf" Sigmoidal membership function sigmf
"dsigmf" Difference between two sigmoidal

membership functions
dsigmf

"psigmf" Product of two sigmoidal membership
functions

psigmf

"zmf" Z-shaped membership function zmf
"pimf" Pi-shaped membership function pimf
"smf" S-shaped membership function smf
"constant" Constant membership function for

Sugeno output membership functions
“Sugeno Fuzzy Inference Systems” on
page 2-3

"linear" Linear membership function for
Sugeno output membership functions

String or character
vector

Name of a custom membership
function in the current working folder
or on the MATLAB path. Custom
output membership functions are not
supported for Sugeno systems.

“Build Fuzzy Systems Using Custom
Functions” on page 2-86

Function handle Handle to a custom membership
function in the current working folder
or on the MATLAB path. Custom
output membership functions are not
supported for Sugeno systems.

Note When you change Type using dot notation, the values in Parameters are automatically
converted for the new membership function type.

Parameters — Membership function parameters
[0 0.5 1] (default) | vector

Membership function parameters, specified as a vector. The length of the parameter vector depends
on the membership function type. When you specify Parameters, you must also specify Type.

 fismf

9-15

Object Functions
evalmf Evaluate fuzzy membership function

Examples

Create Membership Function

Create fuzzy membership function with default settings.

mf = fismf;

To modify the membership function settings, use dot notation. For example, specify a Gaussian
membership function with a standard deviation of 2 and a mean of 10.

mf.Type = "gaussmf";
mf.Parameters = [2 10];

Create Membership Function with Specified Parameters

Create a trapezoidal membership function with specified parameters.

mf = fismf("trapmf",[10 15 20 25]);

Create Membership Function with Specified Name

Create a membership function with the name "large".

mf = fismf("Name","large");

Version History
Introduced in R2018b

See Also
mamfis | sugfis | fisvar | fisrule

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77

9 Objects

9-16

fismftype2
Interval type-2 fuzzy membership function

Description
Use a fismftype2 object to represent an interval type-2 fuzzy membership function (MF), which
introduces additional uncertainty into a fuzzy inference system.

An interval type-2 membership function is represented by an upper and a lower membership function.
The values of the upper membership function are always greater than or equal to the corresponding
lower membership function values. The area enclosed by these membership functions is the footprint
of uncertainty (FOU). For example, the following plot shows three type-2 membership functions for a
given input variable.

For more information on type-2 membership functions, see “Type-2 Fuzzy Inference Systems” on
page 2-8.

 fismftype2

9-17

Creation

Syntax
mf = fismftype2
mf = fismftype2(type,upperParameters)
mf = fismftype2(___ ,Name,Value)

Description

mf = fismftype2 creates a type-2 fuzzy membership function with default name, type, upper MF
parameters, and lower MF configuration. To change the membership function properties, use dot
notation.

mf = fismftype2(type,upperParameters) sets the Type and UpperParameters properties of
the membership function.

mf = fismftype2(___ ,Name,Value) sets the Name, LowerScale, or LowerLag properties of the
membership function using one or more name-value pair arguments for any of the other syntaxes.

Properties
Name — Membership function name
"mf" (default) | string | character vector

Membership function name, specified as a string or character vector.

Type — Membership function type
"trimf" (default) | string | character vector | function handle

Membership function type for both the upper and lower membership function, specified as a string or
character vector that contains the name of a function in the current working folder or on the MATLAB
path. You can also specify a handle to such a function. When you specify Type, you must also specify
UpperParameters.

This table describes the values that you can specify for Type.

Membership
Function Type

Description For More Information

"gbellmf" Generalized bell-shaped membership
function

gbellmf

"gaussmf" Gaussian membership function gaussmf
"gauss2mf" Gaussian combination membership

function
gauss2mf

"trimf" Triangular membership function trimf
"trapmf" Trapezoidal membership function trapmf
"linsmf" Linear s-shaped saturation

membership function
linsmf

9 Objects

9-18

Membership
Function Type

Description For More Information

"linzmf" Linear z-shaped saturation
membership function

linzmf

"sigmf" Sigmoidal membership function sigmf
"dsigmf" Difference between two sigmoidal

membership functions
dsigmf

"psigmf" Product of two sigmoidal membership
functions

psigmf

"zmf" Z-shaped membership function zmf
"pimf" Pi-shaped membership function pimf
"smf" S-shaped membership function smf
String or character
vector

Name of a custom membership
function in the current working folder
or on the MATLAB path. Custom
output membership functions are not
supported for Sugeno systems.

“Build Fuzzy Systems Using Custom
Functions” on page 2-86

Function handle Handle to a custom membership
function in the current working folder
or on the MATLAB path. Custom
output membership functions are not
supported for Sugeno systems.

Note When you change Type using dot notation, the values in Parameters are automatically
converted for the new membership function type.

UpperParameters — Upper membership function parameters
[0 0.5 1] (default) | vector

Upper membership function parameters, specified as a vector. The length of the parameter vector
depends on the membership function type. When you specify Parameters, you must also specify
Type.

LowerScale — Lower membership function scaling factor
1 (default) | positive scalar less than or equal to 1

Lower membership function scaling factor, specified as a positive scalar less than or equal to 1. Use
LowerScale to define the maximum value of the lower membership function.

Depending on the value of LowerLag, the actual maximum lower membership function value can be
less than LowerScale.

LowerLag — Lower membership function delay factor
scalar value between 0 and 1 | vector of length 2

Lower membership function delay factor, specified as a scalar value or a vector of length two. You can
specify lag values between 0 and 1, inclusive.

The following membership function types support only a scalar LowerLag value:

 fismftype2

9-19

• Symmetric MFs — gaussmf and gbellmf
• One-sided MFs — sigmf, smf, and zmf

All other built-in membership functions support either a scalar or vector LowerLag value. For these
membership functions, when you specify a:

• Scalar value, the same lag value is used for both the left and right side of the membership
function.

• Vector value, you can define different lag values for the left and right sides of the membership
function.

The lag value defines the point at which the lower membership function value starts increasing from
zero based on the value of the upper membership function. For example, a lag value of 0.1 indicates
that the lower membership function becomes positive when the upper membership function has a
membership value of 0.1.

By default, the lag value is 0.2. However, for some membership function types and upper
membership function parameters, the software is unable to set a lower lag value to 0.2. In such a
case, the default lag value is set to a different valid value..

When the lag value is zero, the lower membership function starts increasing at the same point as the
upper membership function.

Some membership function types restrict the maximum lag value. For example, LowerLag must be
less than 1 for the gaussmf, gauss2mf, gbellmf, sigmf, dsigmf, and psigmf membership
functions.

Object Functions
evalmf Evaluate fuzzy membership function

Examples

Create Type-2 Membership Function

Create type-2 membership function with default settings.

mf = fismftype2;

To modify the membership function settings, use dot notation. For example, specify a Gaussian upper
membership function with a standard deviation of 2 and a mean of 10.

mf.Type = "gaussmf";
mf.UpperParameters = [2 10];

Specify the maximum lower membership function value as 0.8.

mf.LowerScale = 0.8;

Configure the lower membership function to start increasing when the upper membership function
reaches 0.3.

mf.LowerLag = 0.3;

9 Objects

9-20

Create Type-2 Membership Function with Specified Upper MF Parameters

Create a trapezoidal type-2 membership function with specified upper MF parameters.

mf = fismftype2("trapmf",[3 4 6 7])

mf =
 fismftype2 with properties:

 Type: "trapmf"
 UpperParameters: [3 4 6 7]
 LowerScale: 1
 LowerLag: [0.2000 0.2000]
 Name: "mf"

By default, the lower membership function has a maximum value of 1 and starts increasing when the
upper MF is 0.2.

Configure Lower MF Parameters

Create a triangular type-2 membership function, specifying a maximum lower MF value of 0.9 and a
membership function lag of 0.1.

mf = fismftype2("trimf",[1 2 3],'LowerScale',0.9,'LowerLag',0.1);

Version History
Introduced in R2019b

See Also
mamfistype2 | sugfistype2 | fisvar | fisrule | fismf

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77
“Type-2 Fuzzy Inference Systems” on page 2-8

 fismftype2

9-21

fisrule
Fuzzy rule

Description
Use fisrule objects to represent fuzzy if-then rules that relate input membership function
conditions to corresponding output membership functions. The if portion of a fuzzy rule is the
antecedent, which specifies the membership function for each input variable. The then portion of a
fuzzy rule is the consequent, which specifies the membership function for each output variable. For
more information on membership functions and fuzzy rules, see “Foundations of Fuzzy Logic” on page
1-7.

Creation
To create fuzzy rule objects, use the fisrule function. Using this function, you can create a single
fuzzy rule or a vector of multiple fuzzy rules.

Syntax
rule = fisrule
rule = fisrule(ruleText)
rule = fisrule(ruleValues,numInputs)

Description

rule = fisrule creates a single fuzzy rule with the default description "input1==mf1 =>
output1=mf1".

rule = fisrule(ruleText) creates one or more fuzzy rules using the text descriptions in
ruleText.

rule = fisrule(ruleValues,numInputs) creates one or more fuzzy rules using the numeric
rule values in ruleValues. Specify the number of rule input variables using numInputs.

Input Arguments

ruleText — Text rule description
string | character vector | string array | character array

Text rule description, specified as one of the following:

• String or character vector specifying a single rule.

rule = "If service is poor or food is rancid then tip is cheap";
• String array, where each element corresponds to a rule.

ruleList = ["If service is poor or food is rancid then tip is cheap";
 "If service is good then tip is average";
 "If service is excellent or food is delicious then tip is generous"];

9 Objects

9-22

• Character array where each row corresponds to a rule.
rule1 = 'If service is poor or food is rancid then tip is cheap';
rule2 = 'If service is good then tip is average';
rule3 = 'If service is excellent or food is delicious then tip is generous';
ruleList = char(rule1,rule2,rule3);

For each rule, use one of the following rule text formats.

• Verbose — Linguistic expression in the following format, using the IF and THEN keywords:

"IF <antecedent> THEN <consequent> (<weight>)"

In <antecedent>, specify the membership function for each input variable using the IS or IS
NOT keyword. Connect these conditions using the AND or OR keywords. If a rule does not use a
given input variable, omit it from the antecedent.

In <consequent>, specify the condition for each output variable using the IS or IS NOT
keyword, and separate these conditions using commas. The IS NOT keyword is not supported for
Sugeno outputs. If a rule does not use a given output variable, omit it from the consequent.

Specify the weight using a positive numerical value.

"IF A IS a AND B IS NOT b THEN X IS x, Y IS NOT y (1)"

• Symbolic — Expression that uses the symbols in the following table instead of keywords. There is
no symbol for the IF keyword.

Symbol Keyword
== IS (in rule antecedent)
~= IS NOT
& AND
| OR
=> THEN
= IS (in rule consequent)

For example, the following symbolic rule is equivalent to the previous verbose rule.

"A==a & B~=b => X=x, Y~=y (1)"

When you specify a rule using a text description, fisrule sets the Description, Weight, and
Connection properties of the rule based on the description.

ruleValues — Numeric rule description
row vector | numeric array

Numeric rule description, specified as one of the following:

• Row vector to specify a single fuzzy rule
• Array, where each row of ruleValues specifies one rule

For each row, the numeric rule description has M+N+2 columns, where M is the number of input
variables and N is the number of output variables. Each column contains the following information:

 fisrule

9-23

• The first M columns specify input membership function indices and correspond to the
Antecedent property of the rule. To indicate a NOT condition, specify a negative value. If a rule
does not use a given input, set the corresponding index to 0. For each rule, at least one input
membership function index must be nonzero.

• The next N columns specify output membership function indices and correspond to the
Consequent property of the rule. To indicate a NOT condition for Mamdani systems, specify a
negative value. NOT conditions are not supported for Sugeno outputs. If a rule does not use a
given output, set the corresponding index to 0. For each rule, at least one output membership
function index must be nonzero.

• Column M+N+1 specifies the rule weight and corresponds to the Weight property of the rule.
• The final column specifies the antecedent fuzzy operator and corresponds to the Connection

property of the rule.

When you specify a rule using ruleVlaues, fisrule sets the Description property using default
variable and membership function names.

numInputs — Number of input variables
positive integer

Number of input variables for the rule, specified as a positive integer. If you specify the rule
description using ruleValues, you must also specify the number of input variables. fisrule parses
the rule antecedent values into the membership function indices for the input and output variables
using numInputs.

Properties
Description — Text rule description
string | character vector

Text rule description, specified as a string or character vector. The rule description is stored as a
symbolic expression no matter how you specify the rule. For example, if you specify the following
verbose rule using ruleText:

"IF A IS a AND B IS NOT b THEN X IS x, Y IS NOT y (1)"

The stored rule is:

"A==a & B~=b => X=x, Y~=y (1)"

For more information on the verbose and symbolic rule formats, see the ruleText input argument.

When you specify a rule using ruleVlaues, fisrule sets the Description property using default
variable and membership function names. Before using the rule in a fuzzy system, you must update
the description to use the variable and membership function names from that fuzzy system using the
update function.

Antecedent — Rule antecedent
numeric vector

Rule antecedent, specified as a numeric vector of length M, where M is the number of input variables.
Each element of Antecedent contains one of the following values:

• Positive integer — The index of an input membership function, which represents an IS condition

9 Objects

9-24

• Negative integer — The negative of an input membership function, which represents an IS NOT
condition

• 0 — A don't care condition, which means that the rule does not use the corresponding input
variable

This value is set when you create a fuzzy rule using ruleValues. If you create a fuzzy rule using
ruleText, before using the rule in a fuzzy system, you must populate the Antecedent property
using the update function.

If you update the indices in the rule antecedent using dot notation, the Description property is not
updated to reflect the changes. To update the rule description, use the update function.

Consequent — Rule consequent
numeric vector

Rule consequent, specified as a numeric vector of length N, where N is the number of output
variables. Each element of Consequent contains one of the following values.

• Positive integer — The index of an output membership function, which represents an IS condition.
• Negative integer — The negative of an output membership function, which represents an IS NOT

condition. Sugeno systems do not support rules with NOT logic in the consequent.
• 0 — A don't care condition, which means that the rule does not use the corresponding output

variable.

This value is set when you create a fuzzy rule using ruleValues. If you create a fuzzy rule using
ruleText, before using the rule in a fuzzy system, you must populate the Consequent property
using the update function.

If you update the indices in the rule consequent using dot notation, the Description property is not
updated to reflect the changes. To update the rule description, use the update function.

Weight — Rule weight
1 (default) | positive numeric scalar

Rule weight, specified as a positive numeric scalar in the range [0 1].

If you update the rule weight using dot notation, the weight value in the Description property text
is also updated.

Connection — Rule antecedent connection
1 | 2

Rule antecedent connection, specified as one of the following:

• 1 — Evaluate rule antecedents using the AND operator.
• 2 — Evaluate rule antecedents using the OR operator.

If you update the rule connection using dot notation, the antecedent operators in the Description
property text are also updated.

Object Functions
update Update fuzzy rule using fuzzy inference system

 fisrule

9-25

Examples

Create Fuzzy Rule

Create a default fuzzy rule.

rule = fisrule

rule =
 fisrule with properties:

 Description: "input1==mf1 => output1=mf1 (1)"
 Antecedent: 1
 Consequent: 1
 Weight: 1
 Connection: 1

To modify the rule properties, use dot notation. For example, specify a rule weight of 0.5.

rule.Weight = 0.5;

Create Fuzzy Rule Using Text Description

Create a fuzzy rule using a verbose text description.

rule = fisrule("if service is poor and food is delicious then tip is average (1)");

Alternatively, you can specify the same rule using a symbolic text description.

rule = fisrule("service==poor & food==delicious => tip=average")

rule =
 fisrule with properties:

 Description: "service==poor & food==delicious => tip=average (1)"
 Antecedent: []
 Consequent: []
 Weight: 1
 Connection: 1

Before using rule with a fuzzy system, update the rule Antecedent and Consequent properties
using the update function.

fis = readfis("tipper");
rule = update(rule,fis)

rule =
 fisrule with properties:

 Description: "service==poor & food==delicious => tip=average (1)"
 Antecedent: [1 2]
 Consequent: 2
 Weight: 1

9 Objects

9-26

 Connection: 1

Create Fuzzy Rule Using Numeric Description

Create a fuzzy rule using a numeric description. Specify that the rule has two input variables.

rule = fisrule([1 2 2 0.5 1],2)

rule =
 fisrule with properties:

 Description: "input1==mf1 & input2==mf2 => output1=mf2 (0.5)"
 Antecedent: [1 2]
 Consequent: 2
 Weight: 0.5000
 Connection: 1

Before using rule with a fuzzy system, update the rule Description property using the update
function.

fis = readfis("tipper");
rule = update(rule,fis)

rule =
 fisrule with properties:

 Description: "service==poor & food==delicious => tip=average (0.5)"
 Antecedent: [1 2]
 Consequent: 2
 Weight: 0.5000
 Connection: 1

Create Multiple Fuzzy Rules

Create a string array of text rule descriptions.

rules1 = ["if service is poor or food is rancid then tip is cheap (0.5)"...
 "if service is excellent and food is not rancid then tip is generous (0.75)"];

Create an array of fuzzy rules using these descriptions.

fuzzyRules1 = fisrule(rules1)

fuzzyRules1 =
 1x2 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight

 fisrule

9-27

 Connection

 Details:
 Description
 __

 1 "service==poor | food==rancid => tip=cheap (0.5)"
 2 "service==excellent & food~=rancid => tip=generous (0.75)"

Alternatively, you can specify multiple rules using an array of numeric rule descriptions.

rules2 = [1 1 1 0.5 2;
 2 -1 3 0.75 1];
fuzzyRules2 = fisrule(rules2,2)

fuzzyRules2 =
 1x2 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 Details:
 Description

 1 "input1==mf1 | input2==mf1 => output1=mf1 (0.5)"
 2 "input1==mf2 & input2~=mf1 => output1=mf3 (0.75)"

Version History
Introduced in R2018b

See Also
mamfis | sugfis | mamfistype2 | sugfistype2 | fisvar | fismf

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77

9 Objects

9-28

fistree
Network of connected fuzzy inference systems

Description
Use a fistree object to represent a tree of interconnected fuzzy inference systems.

Creation

Syntax
fisTree = fistree(fis,connections)
fisTree = fistree(___ ,Name,Value)

Description

fisTree = fistree(fis,connections) creates a network of interconnected fuzzy inference
system objects, setting its FIS and Connections properties

fisTree = fistree(___ ,Name,Value) sets the Name or DisableStructuralChecks property
of the FIS tree using name-value arguments. Specify these arguments after the arguments described
in the previous syntax. For example, fistree(__,'Name',"mytree") sets the name of the FIS tree
to "mytree". You can specify both properties using two name-value arguments.

Properties
Name — FIS tree name
"fistreemodel" (default) | string | character vector

FIS tree name, specified as a string or character vector.

FIS — Fuzzy inference systems
array

This property is read-only.

Fuzzy inference systems, specified as an array of FIS objects. You can specify any combination of
mamfis, sugfis, mamfistype2, and sugfistype2 objects. Each fuzzy inference system in the fis
array must have at least one input and one output for fistree construction. To evaluate a fistree,
each fuzzy inference system must have at least one rule.

Connections — Connections between fuzzy inference systems
two-column string array

Connections between fuzzy inference systems, specified as a two-column string array. Each row
represents a connection between two FIS objects. You can specify two types of connections.

 fistree

9-29

1 Output-to-input connections — Specify a connection from the output of one FIS to the input of a
different FIS.

2 Input-to-input connections — Specify a connection between two inputs so that they use the same
input value.

To define a connection, specify the FIS name and variable name for both the source a destination of
the connection. For example, ["fisFrom/out1" "fisTo/in1"] defines a connection from output
out1 of FIS fisFrom to input in1 of FIS fisTo.

The following figure demonstrates the different connection types using three FIS objects, fis1,
fis2, and fis3.

This FIS tree includes the following connections.

• ["fis1/output1" "fis3/input1"] — Connection from output output1 of fis1 to input
input1 of fis3

• ["fis2/output1" "fis3/input2"] — Connection from output output1 of fis2 to input
input2 of fis3

• ["fis1/input2" "fis2/input1"] — Connection from input input2 of fis1 to input input1
of fis2

Connections must satisfy the following conditions:

1 A fistree object must have at least one FIS input without any incoming connection and one FIS
output without any outgoing connection.

2 A FIS input cannot have more than one incoming connection.
3 A FIS output can have more than one outgoing connection.

9 Objects

9-30

4 An input and output of the same FIS cannot be connected. In other words, you cannot create
loops between connected FIS objects.

5 Symmetric connections between two inputs are not supported, For example, ["fis1/a"
"fis2/b";"fis2/b" "fis1/a"] is not supported. Instead, specify ["fis1/a" "fis2/b"] or
["fis2/b" "fis1/a"].

6 Self-input loops, such as ["fis1/a" "fis1/a"], are not supported.

Inputs — Inputs to FIS tree
string array

This property is read-only.

Inputs to the FIS tree, specified as an array of strings. Inputs are automatically determined using the
specified connections of the fistree object. FIS inputs with no incoming connections are included in
Inputs.

Update this property by updating the connections of the fistree object.

Outputs — Outputs of FIS tree
string array

Outputs of the FIS tree, specified as a string array. Outputs are automatically determined using the
specified connections of the fistree object. FIS outputs without any outgoing connections are
included in Outputs.

You can update this property after initial construction of the fistree object. You can remove an
existing input or add additional intermediate outputs. Outputs must contain at least one output.

DisableStructuralChecks — Option for disabling structural checks
false (default) | true

Option for disabling structural checks when the FIS tree is updated after initial FIS creation,
specified as one of the following values.

• false — Automatically update connections, inputs, and outputs. This option ensures that the FIS
tree is always valid and can be evaluated.

• true — Do not automatically update connections, inputs, and outputs. In this case, the resulting
FIS tree can be in an invalid state, which can cause an error during evaluation.

Enable this option to improve computational efficiency when you programmatically construct a FIS
tree.

Object Functions
evalfis Evaluate fuzzy inference system
plotfis Display fuzzy inference system
getTunableSettings Obtain tunable settings from fuzzy inference system
getTunableValues Obtain values of tunable parameters from fuzzy inference system
setTunableValues Specify tunable parameter values of a fuzzy inference system

Examples

 fistree

9-31

Create Tree of Connected Fuzzy Inference Systems

Create a Mamdani fuzzy inference system and a Sugeno fuzzy inference system.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);

Define a connection from the output of fis1 to the first input of fis2.

con1 = ["fis1/output1" "fis2/input1"];

Create a FIS tree using the fuzzy inference systems and connection.

tree = fistree([fis1 fis2],con1);

Visualize the tree.

plotfis(tree)

Update Fuzzy Inference Systems in FIS Tree

Create a tree with two FISs and no connections.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);

fisT = fistree([fis1 fis2],[]);

Display the FIS tree configuration.

plotfis(fisT)

9 Objects

9-32

You can add a FIS to a FIS tree by appending a FIS object to the FIS property of the tree.

Add fis3 to the FIS tree.

fis3 = mamfis('Name','fis3','NumInputs',2,'NumOutputs',1);
fisT.FIS(end+1) = fis3;

Connect the outputs of fis1 and fis2 to the inputs of fis3.

fisT.Connections = [
 "fis1/output1" "fis3/input1";
 "fis2/output1" "fis3/input2"];

Display the updated FIS tree configuration.

plotfis(fisT)

 fistree

9-33

Remove the first FIS (fis1) from the FIS tree.

fisT.FIS(1) = [];

Display the updated FIS tree configuration.

plotfis(fisT)

The corresponding connection to the first input of fis3 is also removed.

9 Objects

9-34

Use Same Value for Multiple Inputs of FIS Tree

Create fis1, fis2, and fis3, each with two inputs and one output.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);
fis3 = mamfis('Name','fis3','NumInputs',2,'NumOutputs',1);

Create a connection between output 1 of fis1 and input 1 of fis3.

con1 = ["fis1/output1" "fis3/input1"];

Create a connection between output 1 of fis2 and input 2 of fis3.

con2 = ["fis2/output1" "fis3/input2"];

Create a connection between input 2 of fis1 and input 1 of fis2.

con3 = ["fis1/input2" "fis2/input1"];

Create and display the FIS tree.

fuzzTree = fistree([fis1 fis2 fis3],[con1;con2;con3]);
plotfis(fuzzTree)

 fistree

9-35

Display the inputs of the FIS tree. These inputs correspond to all free inputs that do not have an
incoming connection.

fuzzTree.Inputs

ans = 3x1 string
 "fis1/input1"
 "fis1/input2"
 "fis2/input2"

Evaluate the fuzzy tree. Specify values for input 1 of fis1, input 2 of fis1, and input 2 of fis2. The
value for input 2 of fis1 is also applied to input 1 of fis2.

output = evalfis(fuzzTree,[0.8 0.25 0.7]);

Update FIS Tree Outputs

Create two FIS objects, each with two inputs and one output.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);

Connect the output of fis1 to the second input of fis2.

con = ["fis1/output1" "fis2/input2"];

Create the FIS tree.

fuzzTree = fistree([fis1 fis2],con);

Display outputs of the FIS tree. By default, the open FIS output from fis2 is an output of the FIS
tree.

fuzzTree.Outputs

ans =
"fis2/output1"

Visualize the FIS tree.

plotfis(fuzzTree,Legend="on")

9 Objects

9-36

Add the output of fis1 to the list of outputs.

fuzzTree.Outputs(end+1) = "fis1/output1";

Display the updated output list of the FIS tree.

fuzzTree.Outputs

ans = 2x1 string
 "fis2/output1"
 "fis1/output1"

Visualize the FIS tree. The added intermediate output is highlighted.

plotfis(fuzzTree,Legend="on")

 fistree

9-37

Evaluate the FIS tree. The result contains the outputs from fis2 and fis1.

evalfis(fuzzTree,[0.5 0.2 0.8])

ans = 1×2

 0.1579 0.1579

Remove the first output from the list.

fuzzTree.Outputs(1) = [];

Display the updated output list of the FIS tree.

fuzzTree.Outputs

ans =
"fis1/output1"

Visualize the FIS tree without the removed output. The visualization indicates that the output of fis2
is unused.

plotfis(fuzzTree,Legend="on")

9 Objects

9-38

Evaluate the FIS tree again. The result now contains the output of only fis2.

evalfis(fuzzTree,[0.5 0.2 0.8])

ans = 0.1579

Create Incremental FIS Tree

This example shows the construction of an incremental FIS tree. For more information on the types of
fuzzy tree structures, see “Fuzzy Trees” on page 2-96.

Create fuzzy systems fis1, fis2, and fis3, each with two inputs and one output.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis1.Inputs(1).Name = "color";
fis1.Inputs(2).Name = "doors";
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);
fis2.Inputs(2).Name = "power";
fis3 = mamfis('Name','fis3','NumInputs',2,'NumOutputs',1);
fis3.Inputs(2).Name = "autopilot";
fis3.Outputs(1).Name = "prediction";

Create a connection between output 1 of fis1 and input 1 of fis2.

con1 = ["fis1/output1" "fis2/input1"];

Create a connection between output 1 of fis2 and input 1 of fis3.

con2 = ["fis2/output1" "fis3/input1"];

Create the FIS tree.

incTree = fistree([fis1 fis2 fis3],[con1;con2]);

 fistree

9-39

Visualize the tree structure. At each level of the tree structure, an additional input is combined with
the output of the previous level.

plotfis(incTree)

Create Aggregated FIS Tree

This example shows the construction of an aggregated FIS tree. For more information on the types of
fuzzy tree structures, see “Fuzzy Trees” on page 2-96.

Create fuzzy systems fis1, fis2, and fis3, each with two inputs and one output.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis1.Inputs(1).Name = "dist_obs";
fis1.Inputs(2).Name = "angle_obs";
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);
fis2.Inputs(1).Name = "dist_tar";
fis2.Inputs(2).Name = "angle_tar";
fis3 = mamfis('Name','fis3','NumInputs',2,'NumOutputs',1);
fis3.Outputs(1).Name = "heading_robot";

Create a connection between output 1 of fis1 and input 1 of fis3.

con1 = ["fis1/output1" "fis3/input1"];

Create a connection between output 1 of fis2 and input 2 of fis3.

con2 = ["fis2/output1" "fis3/input2"];

Create the FIS tree.

aggTree = fistree([fis1 fis2 fis3],[con1;con2]);

Visualize the tree structure.

plotfis(aggTree)

9 Objects

9-40

Create Cascaded FIS Tree

This example shows the construction of a cascaded FIS tree. For more information on the types of
fuzzy tree structures, see “Fuzzy Trees” on page 2-96.

Create fuzzy systems fis1, fis2, fis3, and fis4, each with two inputs and one output.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis1.Inputs(1).Name = "dist_obs";
fis1.Inputs(2).Name = "angle_obs";
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);
fis2.Inputs(1).Name = "dist_tar";
fis2.Inputs(2).Name = "angle_tar";
fis3 = mamfis('Name','fis3','NumInputs',2,'NumOutputs',1);
fis4 = mamfis('Name','fis4','NumInputs',2,'NumOutputs',1);
fis4.Inputs(2).Name = "preheading_robot";
fis4.Outputs(1).Name = "heading_robot";

Create a connection between output 1 of fis1 and input 1 of fis3.

con1 = ["fis1/output1" "fis3/input1"];

Create a connection between output 1 of fis2 and input 2 of fis3.

 fistree

9-41

con2 = ["fis2/output1" "fis3/input2"];

Create a connection between output 1 of fis3 and input 1 of fis4.

con3 = ["fis3/output1" "fis4/input1"];

Create the FIS tree.

casTree = fistree([fis1 fis2 fis3 fis4],[con1;con2;con3]);

Visualize the tree structure.

plotfis(casTree)

Create and Evaluate Parallel FIS Tree

This example shows the construction of a parallel FIS tree. For more information on the types of fuzzy
tree structures, see “Fuzzy Trees” on page 2-96.

Create fuzzy systems fis1, fis2, and fis3, each with two inputs and one output.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);

Create the FIS tree such that the FIS objects are in parallel; that is, the tree contains no
interconnections and all the FIS outputs are FIS tree outputs.

parTree = fistree([fis1 fis2],[]);

9 Objects

9-42

Visualize the tree.

plotfis(parTree)

Evaluate the FIS tree.

output = evalfis(parTree,[0.1 0.3 0.8 0.4]);

Generate the final output by summing the FIS tree outputs.

finalOutput = sum(output);

Version History
Introduced in R2019a

R2021b: Name property

To distinguish between FIS trees, you can now specify names for fistree objects using the new
Name property.

See Also
mamfis | sugfis | mamfistype2 | sugfistype2 | tunefis

 fistree

9-43

Topics
“Fuzzy Trees” on page 2-96
“Mamdani and Sugeno Fuzzy Inference Systems” on page 2-2

9 Objects

9-44

fisvar
Fuzzy variable

Description
Use fisvar objects to represent the input and output variables in a fuzzy inference system (FIS). For
more information on creating fuzzy inference systems, see mamfis, sugfis, mamfistype2, and
sugfistype2.

Creation

Syntax
var = fisvar
var = fisvar(range)
var = fisvar('Name',name)
var = fisvar(range,'Name',name)

Description

var = fisvar creates a fuzzy variable with a default name, default range, and no membership
functions. To change the variable properties, use dot notation.

var = fisvar(range) sets the Range property.

var = fisvar('Name',name) sets the Name property.

var = fisvar(range,'Name',name) sets both the Range and Name properties.

Properties
Name — Variable name
"var" (default) | string | character vector

Variable name, specified as a string or character vector.

Range — Variable range
[0 1] (default) | two-element vector

Variable range, specified as a two-element element vector where the first element is less than the
second element. The first element specifies the lower bound of the range, and the second element
specifies the upper bound of the range.

MembershipFunctions — Membership functions
[] (default) | vector of fismf objects | vector of fismftype2 objects

Membership functions, specified as a vector of fismf or fismftype2 objects. To add membership
functions to a fuzzy variable:

 fisvar

9-45

• Use the addMF function.
• Create a vector of fismf objects, and assign it to MembershipFunctions.
• Create a vector of fismftype2 objects, and assign it to MembershipFunctions.

You can modify the properties of the membership functions using dot notation.

Object Functions
addMF Add membership function to fuzzy variable
removeMF Remove membership function from fuzzy variable

Examples

Create Fuzzy Variable

Create a fuzzy variable with default properties.

var = fisvar;

To modify the properties of a fisvar object, use dot notation. For example, specify the range of the
fuzzy variable to be from -5 to 5.

var.Range = [-5 5];

Create Fuzzy Variable with Specified Range

Create a fuzzy variable with an input range from -10 to 10.

var = fisvar([-10 10]);

Create Fuzzy Variable with Specified Name

Create a fuzzy variable with the name "speed".

var = fisvar("Name","speed");

Add Membership Function to Fuzzy Variable

Create a fuzzy variable with a specified range.

var = fisvar([0 1]);

Add a membership function to the variable, specifying a trapezoidal membership function, and set the
membership function parameters.

var = addMF(var,"trapmf",[-0.5 0 0.2 0.4]);

9 Objects

9-46

You can also specify the name of your membership when you add it to a fuzzy variable. For example,
add a membership function called "large".

var = addMF(var,"trapmf",[0.6 0.8 1 1.5],'Name',"large");

View the membership functions.

var.MembershipFunctions

ans =
 1x2 fismf array with properties:

 Type
 Parameters
 Name

 Details:
 Name Type Parameters
 _______ ________ ____________________________

 1 "mf1" "trapmf" -0.5 0 0.2 0.4
 2 "large" "trapmf" 0.6 0.8 1 1.5

Alternatively, you can add a default membership function to a fuzzy variable and set its parameters
using dot notation.

var = fisvar([0 1]);
var = addMF(var);
var.MembershipFunctions(1).Type = "trapmf";
var.MembershipFunctions(1).Parameters = [-0.5 0 0.2 0.4];

Add Type-2 Membership Function to Fuzzy Variable

Create a fuzzy variable with a specified range. By default, this variable has no membership functions.

var = fisvar([0 9]);

To add a type-2 membership function to a variable with no existing membership functions, specify
either a LowerLag or LowerScale value for the membership function. For example specify a lower
scale value.

var = addMF(var,"trimf",[0 3 6],'LowerScale',1);

Once a variable contains a type-2 membership function, you can add additional type-2 membership
functions without specifying one of these parameters.

var = addMF(var,"trimf",[3 6 9]);

View the membership functions.

var.MembershipFunctions

ans =
 1x2 fismftype2 array with properties:

 fisvar

9-47

 Type
 UpperParameters
 LowerScale
 LowerLag
 Name

 Details:
 Name Type Upper Parameters Lower Scale Lower Lag
 _____ _______ ________________ ___________ __________

 1 "mf1" "trimf" 0 3 6 1 0.2 0.2
 2 "mf2" "trimf" 3 6 9 1 0.2 0.2

Version History
Introduced in R2018b

See Also
mamfis | sugfis | mamfistype2 | sugfistype2 | fisrule | fismf | fismftype2

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77

9 Objects

9-48

gensurfOptions
Option set for gensurf function

Description
Use a gensurfOptions object to specify options for creating a surface plot using gensurf. You can
specify options such as the inputs to plot the output against and the number of grid points to plot.

Creation

Syntax
opt = gensurfOptions
opt = gensurfOptions(Name,Value)

Description

opt = gensurfOptions creates a default option set for generating a fuzzy inference system output
surface using gensurf. Use dot notation to modify this option set for your specific application. Any
options that you do not modify retain their default values.

opt = gensurfOptions(Name,Value) sets properties on page 9-49 using one or more name-
value arguments. Enclose the property name in quotes. For example, "NumGridPoints",30 sets the
number of grid points to 30.

Properties
InputIndex — Indices of input variables
'auto' (default) | positive integer less than or equal to the number of inputs | two-element vector of
positive integers

Indices of input variables to plot the output against, specified as one of the following:

• Positive integer less than or equal to the number of inputs — Plot the output against a single input
using a 2-D plot.

• Two-element vector of positive integers — Plot the output against two input variables using a 3-D
surface plot.

When InputIndex is 'auto', gensurf uses the first two input variables by default.

OutputIndex — Index of output variable
'auto' (default) | positive integer less than or equal to the number of outputs

Index of output variable to plot, specified as a positive integer less than or equal to the number of
outputs.

When OutputIndex is 'auto', gensurf uses the first output variable by default.

 gensurfOptions

9-49

NumGridPoints — Number of grid points to plot
15 (default) | integer greater than 1 | two-element vector of integers greater than 1

Number of grid points to plot, specified as one of the following:

• Integer greater than 1 — Specify the number of grid points when using a single input variable, or
the same number of grid points for both inputs when using two inputs variables.

• Two-element vector of integers greater than 1 — Specify a different number of grid points for each
input variable.

If you specify InputIndex as an integer and NumGridPoints as a vector, then gensurf uses the
first element of NumGridPoints as the number of grid points for the specified input variable.

To plot a smoother surface, increase the number of grid points.

ReferenceInputs — Reference values for input variables
'auto' (default) | vector

Reference values for input variables not shown in the surface plot, specified as a vector with length
equal to the number of FIS inputs. Specify NaN for the inputs specified in InputIndex.

When ReferenceInputs is 'auto', gensurf uses the midpoint of the range of each unused
variable as a reference value.

NumSamplePoints — Number of sample points
101 (default) | integer greater than 1

Number of sample points to use when evaluating membership functions over the output variable
range, specified as an integer greater than 1. For more information on membership function
evaluation, see evalfis.

Note NumSamplePoints is not used by Sugeno-type systems.

Object Functions
gensurf Generate fuzzy inference system output surface

Examples

Specify Options for Generating Output Surface

Create a default gensurfOptions option set.

opt = gensurfOptions;

Specify options using dot notation. For example, for a two-input, three-output fuzzy system, specify
options to:

• Plot the surface for the second output against the values of the first and third inputs.
• Specify a reference value of 0.25 for the second input variable.

9 Objects

9-50

opt.OutputIndex = 2;
opt.InputIndex = [1 3];
opt.ReferenceInputs = [NaN 0.25 NaN];

Any values you do not specify remain at their default values.

You can also specify one or more options when creating the option set. For example, create an option
set, specifying 25 grid points for both plotted input variables:

opt2 = gensurfOptions('NumGridPoints',25);

Version History
Introduced in R2017a

R2017b: Smaller number of sample points supported for output variable ranges

Using the NumSamplePoints property, you can specify the number of sample points for evaluating
the output range of a Mamdani fuzzy inference system as any value greater than 1. Previously, the
minimum value was 101.

See Also
gensurf | evalfis

 gensurfOptions

9-51

mamfis
Mamdani fuzzy inference system

Description
Use a mamfis object to represent a type-1 Mamdani fuzzy inference system (FIS).

As an alternative to a type-1 Mamdani system, you can create a:

• Type-1 Sugeno system using a sugfis object
• Type-2 Mamdani system using a mamfistype2 object
• Type-2 Sugeno system using a sugfistype2 object

For more information on the different types of fuzzy inference systems, see “Mamdani and Sugeno
Fuzzy Inference Systems” on page 2-2 and “Type-2 Fuzzy Inference Systems” on page 2-8.

Creation
To create a Mamdani FIS object, use one of the following methods:

• The mamfis function.
• If you have input and output training data (inputData and outputData, respectively), you can

use the genfis function with the FCM clustering method.

opt = genfisOptions('FCMClustering','FISType','mamdani');
fis = genfis(inputData,outputData,opt);

• If you have a FIS file (*.fis) for a Mamdani system, you can use the readfis function.

Syntax
fis = mamfis
fis = mamfis(Name,Value)

Description

fis = mamfis creates a Mamdani FIS with default property values. To modify the properties of the
fuzzy system, use dot notation.

fis = mamfis(Name,Value) specifies FIS configuration information or sets object properties
using name-value pair arguments. You can specify multiple name-value pairs. Enclose names in
quotes.

9 Objects

9-52

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumInputs',2 configures the fuzzy system to have two input variables

NumInputs — Number of FIS inputs
0 (default) | nonnegative integer

Number of FIS inputs, specified as the comma-separated pair consisting of 'NumInputs' and a
nonnegative integer.

NumInputMFs — Number of membership functions for each FIS input
3 (default) | positive integer

Number of membership functions for each FIS input, specified as the comma-separated pair
consisting of 'NumInputMFs' and a positive integer.

NumOutputs — Number of FIS outputs
0 (default) | nonnegative integer

Number of FIS outputs, specified as the comma-separated pair consisting of 'NumOutputs' and a
nonnegative integer.

NumOutputMFs — Number of membership functions for each FIS output
3 (default) | positive integer

Number of membership functions for each FIS output, specified as the comma-separated pair
consisting of 'NumOutputMFs' and a positive integer.

MFType — Membership function type
"trimf" (default) | "gaussmf"

Membership function type for both input and output variables, specified as the comma-separated pair
consisting of "MFType" and either "trimf" (triangular MF) or "gaussmf" (Gaussian MF). For each
input and output variable, the membership functions are uniformly distributed over the variable
range with approximately 80% overlap in the MF supports.

AddRules — Flag for automatically adding rules
"allcombinations" (default) | "none"

Flag for automatically adding rules, specified as the comma-separated pair consisting of "AddRules"
and one of the following:

• "allcombinations" — If both NumInputs and NumOutputs are greater than zero, create rules
with antecedents that contain all input membership function combinations. Each rule consequent
contains all the output variables and uses the first membership function of each output.

• "none" — Create a FIS without any rules.

 mamfis

9-53

Properties
Name — FIS name
"fis" (default) | string | character vector

FIS name, specified as a string or character vector.

AndMethod — AND operator method
"min" (default) | "prod" | string | character vector | function handle

AND operator method for combining fuzzified input values in a fuzzy rule antecedent, specified as one
of the following:

• "min" — Minimum of fuzzified input values
• "prod" — Product of fuzzified input values
• String or character vector — Name of a custom AND function in the current working folder or on

the MATLAB path
• Function handle — Custom AND function in the current working folder or on the MATLAB path

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-86.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-19.

OrMethod — OR operator method
"max" (default) | "probor" | string | character vector | function handle

OR operator method for combining fuzzified input values in a fuzzy rule antecedent, specified as one
of the following:

• "max" — Maximum of fuzzified input values.
• "probor" — Probabilistic OR of fuzzified input values. For more information, see probor.
• String or character vector — Name of a custom OR function in the current working folder or on

the MATLAB path.
• Function handle — Custom OR function in the current working folder or on the MATLAB path.

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-86.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-19.

ImplicationMethod — Implication method
"min" (default) | "prod" | string | character vector | function handle

Implication method for computing the consequent fuzzy set, specified as one of the following:

• "min" — Truncate the consequent membership function at the antecedent result value.
• "prod" — Scale the consequent membership function by the antecedent result value.
• String or character vector — Name of a custom implication function in the current working folder

or on the MATLAB path.

9 Objects

9-54

• Function handle — Custom implication function in the current working folder or on the MATLAB
path.

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-86.

For more information on implication and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-19.

AggregationMethod — Aggregation method
"max" (default) | "sum" | "probor" | string | character vector | function handle

Aggregation method for combining rule consequents, specified as one of the following:

• "max" — Maximum of consequent fuzzy sets
• "sum" — Sum of consequent fuzzy sets
• "probor" — Probabilistic OR of consequent fuzzy sets. For more information, see probor.
• String or character vector — Name of a custom aggregation function in the current working folder

or on the MATLAB path
• Function handle — Custom aggregation function in the current working folder or on the MATLAB

path

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-86.

For more information on aggregation and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-19.

DefuzzificationMethod — Defuzzification method
"centroid" (default) | "bisector" | "mom" | "lom" | "som" | string | character vector | function
handle

Defuzzification method for computing crisp output values from the aggregated output fuzzy set,
specified as one of the following:

• "centroid" — Centroid of the area under the output fuzzy set
• "bisector" — Bisector of the area under the output fuzzy set
• "mom" — Mean of the values for which the output fuzzy set is maximum
• "lom" — Largest value for which the output fuzzy set is maximum
• "som" — Smallest value for which the output fuzzy set is maximum
• String or character vector — Name of a custom defuzzification function in the current working

folder or on the MATLAB path
• Function handle — Custom defuzzification function in the current working folder or on the

MATLAB path

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-86.

For more information on defuzzification and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-19.

 mamfis

9-55

DisableStructuralChecks — Option to disabling consistency checks
false (default) | true

Option to disabling consistency checks when property values change, specified as a logical value.

By default, when you change the value of a property of a mamfis object, the software verifies
whether the new property value is consistent with the other object properties. These checks can
affect performance, particularly when creating and updating fuzzy systems within loops.

To disable these checks, which results in faster FIS construction, set DisableStructuralChecks to
true.

Note Disabling structural checks can result in an invalid mamfis object.

To reenable the consistency checks, first verify that the changes you made to the FIS are consistent
and produce a valid mamfis object. Then, set DisableStructuralChecks to false. If the mamfis
object is invalid, reenabling the consistency checks generates an error.

Inputs — FIS input variables
vector of fisvar objects

FIS input variables, specified as a vector of fisvar objects. To add and remove input variables, use
addInput and removeInput, respectively.

You can also create a vector of fisvar objects and assign it to Inputs using dot notation.

You can add membership functions to input variables using the addMF function.

Outputs — FIS output variables
vector of fisvar objects

FIS output variables, specified as a vector of fisvar objects. To add and remove output variables,
use addOutput and removeOutput, respectively.

You can also create a vector of fisvar objects and assign it to Outputs using dot notation.

You can add membership functions to output variables using the addMF function.

Rules — FIS rules
vector of fisrule objects

FIS input variables, specified as a vector of fisrule objects. To add fuzzy rules, use the addRule
function.

You can also create a vector of fisrule objects and assign it to Rules using dot notation.

To remove a rule, set the corresponding rule vector element to []. For example, to remove the tenth
rule from the rule list, type:

fis.Rules(10) = [];

Object Functions
addInput Add input variable to fuzzy inference system

9 Objects

9-56

removeInput Remove input variable from fuzzy inference system
addOutput Add output variable to fuzzy inference system
removeOutput Remove output variable from fuzzy inference system
addRule Add rule to fuzzy inference system
addMF Add membership function to fuzzy variable
removeMF Remove membership function from fuzzy variable
evalfis Evaluate fuzzy inference system
writeFIS Save fuzzy inference system to file
convertToType2 Convert type-1 fuzzy inference system into type-2 fuzzy inference system

Examples

Create Mamdani Fuzzy Inference System

Create a Mamdani fuzzy inference system with default property values.

fis = mamfis;

Modify the system properties using dot notation. For example, configure fis to use centroid
defuzzification.

fis.DefuzzificationMethod = "centroid";

Alternatively, you can specify one of more FIS properties when you create a fuzzy system. For
example, create a Mamdani fuzzy system with specified AND and OR methods.

fis = mamfis("AndMethod","prod","OrMethod","probor");

Specify Number of Inputs and Outputs for Mamdani System

Create a Mamdani fuzzy inference system with three inputs and one output.

fis = mamfis("NumInputs",3,"NumOutputs",1)

fis =
 mamfis with properties:

 Name: "fis"
 AndMethod: "min"
 OrMethod: "max"
 ImplicationMethod: "min"
 AggregationMethod: "max"
 DefuzzificationMethod: "centroid"
 DisableStructuralChecks: 0
 Inputs: [1x3 fisvar]
 Outputs: [1x1 fisvar]
 Rules: [1x27 fisrule]

 See 'getTunableSettings' method for parameter optimization.

By default, the software creates a rule for each possible input combination.

 mamfis

9-57

Alternative Functionality
App

You can interactively create a Mamdani FIS using the Fuzzy Logic Designer app. You can then
export the system to the MATLAB workspace.

Version History
Introduced in R2018b

R2018b: Replaces newfis

This function replaces newfis for creating Mamdani fuzzy inference systems.

See Also
sugfis | fisvar | fisrule | fismf

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77

9 Objects

9-58

mamfistype2
Interval type-2 Mamdani fuzzy inference system

Description
Use a mamfistype2 object to represent an interval type-2 Mamdani fuzzy inference system (FIS).

As an alternative to a type-2 Mamdani system, you can create a:

• Type-2 Sugeno system using a sugfistype2 object
• Type-1 Mamdani system using a mamfis object
• Type-1 Sugeno system using a sugfis object

For more information on the different types of fuzzy inference systems, see “Mamdani and Sugeno
Fuzzy Inference Systems” on page 2-2 and “Type-2 Fuzzy Inference Systems” on page 2-8.

Creation
To create a type-2 Mamdani FIS object, use one of the following methods:

• The mamfistype2 function.
• If you have input and output training data, you can create a type-1 FIS using the genfis function

with the FCM clustering method. You can then convert this FIS to a type-2 system using
convertToType2.

opt = genfisOptions('FCMClustering','FISType','mamdani');
fis1 = genfis(inputData,outputData,opt);
fis = convertToType2(fis1);

• If you have a FIS file (*.fis) for a type-2 Mamdani system, you can use the readfis function.

Syntax
fis = mamfistype2
fis = mamfistype2(Name,Value)

Description

fis = mamfistype2 creates a type-2 Mamdani FIS with default property values. To modify the
properties of the fuzzy system, use dot notation.

fis = mamfistype2(Name,Value) specifies FIS configuration information or sets object
properties using name-value pair arguments. You can specify multiple name-value pairs. Enclose
names in quotes.

 mamfistype2

9-59

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumInputs',2 configures the fuzzy system to have two input variables

NumInputs — Number of FIS inputs
0 (default) | nonnegative integer

Number of FIS inputs, specified as the comma-separated pair consisting of 'NumInputs' and a
nonnegative integer.

NumInputMFs — Number of membership functions for each FIS input
3 (default) | positive integer

Number of membership functions for each FIS input, specified as the comma-separated pair
consisting of 'NumInputMFs' and a positive integer.

NumOutputs — Number of FIS outputs
0 (default) | nonnegative integer

Number of FIS outputs, specified as the comma-separated pair consisting of 'NumOutputs' and a
nonnegative integer.

NumOutputMFs — Number of membership functions for each FIS output
3 (default) | positive integer

Number of membership functions for each FIS output, specified as the comma-separated pair
consisting of 'NumOutputMFs' and a positive integer.

MFType — Membership function type
"trimf" (default) | "gaussmf"

Membership function type for both input and output variables, specified as the comma-separated pair
consisting of "MFType" and either "trimf" (triangular MF) or "gaussmf" (Gaussian MF). For each
input and output variable, the membership functions are uniformly distributed over the variable
range with approximately 80% overlap in the MF supports.

AddRules — Flag for automatically adding rules
"allcombinations" (default) | "none"

Flag for automatically adding rules, specified as the comma-separated pair consisting of "AddRules"
and one of the following:

• "allcombinations" — If both NumInputs and NumOutputs are greater than zero, create rules
with antecedents that contain all input membership function combinations. Each rule consequent
contains all the output variables and uses the first membership function of each output.

• "none" — Create a FIS without any rules.

9 Objects

9-60

Properties
Name — FIS name
"fis" (default) | string | character vector

FIS name, specified as a string or character vector.

AndMethod — AND operator method
"min" (default) | "prod" | string | character vector | function handle

AND operator method for combining fuzzified input values in a fuzzy rule antecedent, specified as one
of the following:

• "min" — Minimum of fuzzified input values
• "prod" — Product of fuzzified input values
• String or character vector — Name of a custom AND function in the current working folder or on

the MATLAB path
• Function handle — Custom AND function in the current working folder or on the MATLAB path

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-86.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-19.

OrMethod — OR operator method
"max" (default) | "probor" | string | character vector | function handle

OR operator method for combining fuzzified input values in a fuzzy rule antecedent, specified as one
of the following:

• "max" — Maximum of fuzzified input values.
• "probor" — Probabilistic OR of fuzzified input values. For more information, see probor.
• String or character vector — Name of a custom OR function in the current working folder or on

the MATLAB path.
• Function handle — Custom OR function in the current working folder or on the MATLAB path.

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-86.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-19.

ImplicationMethod — Implication method
"min" (default) | "prod" | string | character vector | function handle

Implication method for computing the consequent fuzzy set, specified as one of the following:

• "min" — Truncate the consequent membership function at the antecedent result value.
• "prod" — Scale the consequent membership function by the antecedent result value.
• String or character vector — Name of a custom implication function in the current working folder

or on the MATLAB path.

 mamfistype2

9-61

• Function handle — Custom implication function in the current working folder or on the MATLAB
path.

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-86.

For more information on implication and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-19.

AggregationMethod — Aggregation method
"max" (default) | "sum" | "probor" | string | character vector | function handle

Aggregation method for combining rule consequents, specified as one of the following:

• "max" — Maximum of consequent fuzzy sets
• "sum" — Sum of consequent fuzzy sets
• "probor" — Probabilistic OR of consequent fuzzy sets. For more information, see probor.
• String or character vector — Name of a custom aggregation function in the current working folder

or on the MATLAB path
• Function handle — Custom aggregation function in the current working folder or on the MATLAB

path

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-86.

For more information on aggregation and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-19.

DefuzzificationMethod — Defuzzification method
"centroid" (default)

Defuzzification method for computing crisp output values from the aggregated output fuzzy set.
Type-2 Mamdani systems support only centroid defuzzification.

DisableStructuralChecks — Option to disabling consistency checks
false (default) | true

Option to disabling consistency checks when property values change, specified as a logical value.

By default, when you change the value of a property of a mamfistype2 object, the software verifies
whether the new property value is consistent with the other object properties. These checks can
affect performance, particularly when creating and updating fuzzy systems within loops.

To disable these checks, which results in faster FIS construction, set DisableStructuralChecks to
true.

Note Disabling structural checks can result in an invalid mamfistype2 object.

To reenable the consistency checks, first verify that the changes you made to the FIS are consistent
and produce a valid mamfistype2 object. Then, set DisableStructuralChecks to false. If the
mamfistype2 object is invalid, reenabling the consistency checks generates an error.

9 Objects

9-62

Inputs — FIS input variables
vector of fisvar objects

FIS input variables, specified as a vector of fisvar objects. To add and remove input variables, use
addInput and removeInput, respectively.

You can also create a vector of fisvar objects and assign it to Inputs using dot notation.

You can add membership functions to input variables using the addMF function.

Outputs — FIS output variables
vector of fisvar objects

FIS output variables, specified as a vector of fisvar objects. To add and remove output variables,
use addOutput and removeOutput, respectively.

You can also create a vector of fisvar objects and assign it to Outputs using dot notation.

You can add membership functions to output variables using the addMF function.

Rules — FIS rules
vector of fisrule objects

FIS input variables, specified as a vector of fisrule objects. To add fuzzy rules, use the addRule
function.

You can also create a vector of fisrule objects and assign it to Rules using dot notation.

To remove a rule, set the corresponding rule vector element to []. For example, to remove the tenth
rule from the rule list, type:

fis.Rules(10) = [];

TypeReductionMethod — Type-reduction method
"karnikmendel" (default) | "ekm" | "iasc" | "eiasc" | string | function handle

Type-reduction method for converting a type-2 output fuzzy set to an interval type-1 fuzzy set,
specified as one of the following:

• "karnikmendel" — Karnik-Mendel
• "ekm" — Enhanced Karnik-Mendel
• "iasc" — Iterative algorithm with stop condition
• "eiasc" — Enhanced iterative algorithm
• String — Name of a custom type-reduction function in the current working directory or on the

MATLAB path.
• Function handle — Function handle to a custom type-reduction function in the current working

folder or on the MATLAB path.

For more information on type reduction, see “Type-2 Fuzzy Inference Systems” on page 2-8.

Object Functions
addInput Add input variable to fuzzy inference system

 mamfistype2

9-63

removeInput Remove input variable from fuzzy inference system
addOutput Add output variable to fuzzy inference system
removeOutput Remove output variable from fuzzy inference system
addRule Add rule to fuzzy inference system
addMF Add membership function to fuzzy variable
removeMF Remove membership function from fuzzy variable
evalfis Evaluate fuzzy inference system
writeFIS Save fuzzy inference system to file
convertToType1 Convert type-2 fuzzy inference system into type-1 fuzzy inference system

Examples

Create Type-2 Mamdani Fuzzy Inference System

Create a type-2 Mamdani fuzzy inference system with default property values.

fis = mamfistype2;

Modify the system properties using dot notation. For example, set the type reduction method to use
the enhanced Karnik-Mendel method.

fis.TypeReductionMethod = "ekm";

Alternatively, you can specify one of more FIS properties when you create a fuzzy system.

fis = mamfistype2('TypeReductionMethod',"ekm");

Specify Number of Inputs and Outputs for Type-2 Mamdani System

Create a type-2 Mamdani fuzzy inference system with three inputs and one output.

fis = mamfis("NumInputs",3,"NumOutputs",1)

fis =
 mamfis with properties:

 Name: "fis"
 AndMethod: "min"
 OrMethod: "max"
 ImplicationMethod: "min"
 AggregationMethod: "max"
 DefuzzificationMethod: "centroid"
 DisableStructuralChecks: 0
 Inputs: [1x3 fisvar]
 Outputs: [1x1 fisvar]
 Rules: [1x27 fisrule]

 See 'getTunableSettings' method for parameter optimization.

By default, the software creates a rule for each possible input combination.

9 Objects

9-64

Alternative Functionality
App

You can interactively create a type-2 Mamdani FIS using the Fuzzy Logic Designer app. You can
then export the system to the MATLAB workspace.

Version History
Introduced in R2019b

See Also
fisvar | fisrule | fismftype2

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77

 mamfistype2

9-65

MembershipFunctionSettings
Tunable parameter settings for fuzzy membership functions

Description
A MembershipFunctionSettings object contains tunable parameter settings for a type-1
membership function. Using this object, you can specify the tunability settings for the parameters of
the corresponding membership function.

For more information on the tunable settings of a type-2 membership function, see
MembershipFunctionSettingsType2.

Creation
Create MembershipFunctionSettings objects using the getTunableSettings function with a
mamfis, sugfis, or fistree object. The first and second outputs of getTunableSettings contain
VariableSettings objects for input and output variables, respectively. If a VariableSettings
object corresponds to a variable with type-1 membership functions, then its MembershipFunctions
property contains MembershipFunctionSettings objects.

Properties
Parameters — Membership function parameter tunable settings
NumericParameters object

Membership function parameter tunable settings, specified as a NumericParameters object.

Object Functions
setTunable Set specified parameter settings as tunable or nontunable

Examples

Obtain Tunable Settings of Input and Output Variables from FIS

Create a fuzzy inference system.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);

Obtain the tunable settings of input and output variables of the fuzzy inference system.

[in,out] = getTunableSettings(fis1);

You can use dot notation to specify the tunable settings of input and output variables.

For the first membership function of input 1, set the first and third parameters to tunable.

in(1).MembershipFunctions(1).Parameters.Free = [1 0 1];

9 Objects

9-66

For the first membership function of input 2, set the minimum parameter range to 0.

in(2).MembershipFunctions(1).Parameters.Minimum = 0;

For the first membership function of the output variable, set the maximum parameter range to 1.

out(1).MembershipFunctions(1).Parameters.Maximum = 1;

Version History
Introduced in R2019a

See Also
getTunableSettings | VariableSettings | NumericParameters

 MembershipFunctionSettings

9-67

MembershipFunctionSettingsType2
Tunable parameter settings for type-2 fuzzy membership functions

Description
A MembershipFunctionSettingsType2 object contains tunable parameter settings for a type-2
membership function. Using this object, you can specify the tunability settings for the corresponding
MF, including the upper MF parameters, the lower MF scale, and the lower MF lag.

For more information on the tunable settings of a type-1 membership function, see
MembershipFunctionSettings.

Creation
Create MembershipFunctionSettingsType2 objects using the getTunableSettings function
with a mamfistype2, sugfistype2, or fistree object. The first and second outputs of
getTunableSettings contain VariableSettings objects for input and output variables,
respectively. If a VariableSettings object corresponds to a variable with type-2 membership
functions, then its MembershipFunctions property contains
MembershipFunctionSettingsType2 objects.

Properties
UpperParameters — Upper membership function parameter tunable settings
NumericParameters object

Upper membership function parameter tunable settings, specified as a NumericParameters object.

LowerScale — Lower membership function scale tunable settings
NumericParameters object

Lower membership function scale tunable settings, specified as a NumericParameters object.

LowerLag — Lower membership function lag tunable settings
NumericParameters object

Lower membership function lag tunable settings, specified as a NumericParameters object.

Object Functions
setTunable Set specified parameter settings as tunable or nontunable

Examples

Obtain Tunable Settings of Input and Output Variables from Type-2 FIS

Create a type-2 fuzzy inference system.

9 Objects

9-68

fis = mamfistype2('Name','fis1','NumInputs',2,'NumOutputs',1);

Obtain the tunable settings of the input and output variables of the fuzzy inference system.

[in,out] = getTunableSettings(fis);

You can use dot notation to specify the tunable settings of the membership functions of the input and
output variables.

For the first membership function of input 1, set the first and third upper membership function
parameters as tunable.

in(1).MembershipFunctions(1).UpperParameters.Free = [1 0 1];

For the first membership function of input 2, set the tunable range of the lower membership function
scale to be between 0.7 and 0.9.

in(2).MembershipFunctions(1).LowerScale.Minimum = 0.7;
in(2).MembershipFunctions(1).LowerScale.Maximum = 0.9;

For the first membership function of output 1, set the tunable range of the lower membership
function lag to be between 0.1 and 0.4.

in(2).MembershipFunctions(1).LowerLag.Minimum = 0.1;
in(2).MembershipFunctions(1).LowerLag.Maximum = 0.4;

By default, the tunable settigns for a type-2 FIS produce symmetric lag results in the tuned system.
To allow for asymmetric lag results, specify the AsymmetricLag name-value argument.

[in2,out2] = getTunableSettings(fis,'AsymmetricLag',true);

Version History
Introduced in R2019b

See Also
getTunableSettings | VariableSettings | NumericParameters |
MembershipFunctionSettings

 MembershipFunctionSettingsType2

9-69

NumericParameters
Tunable numeric parameter settings of membership functions

Description
A NumericParameters object contains tunable settings for the numeric properties of a fuzzy
membership function.

Creation
Create a NumericParameters object using the getTunableSettings function. The first and
second outputs of getTunableSettings contain VariableSettings objects for input and output
variables, respectively. The MembershipFunctions property of each VariableSettings object
contains NumericParameters objects for specifying the tunable settings of the membership function
properties.

Properties
Free — Parameter values available for tuning
vector of logical values | 1 | 0

Parameter values available for tuning, specified as one of the following:

• Vector of logical values when the NumericParameters contains tunable settings for the
Parameters property of a type-1 membership function or the UpperParameters property of a
type-2 membership function

• Logical 1 or 0 when the NumericParameters object contains tunable settings for either the
LowerScale or LowerLag properties of a type-2 membership function

Minimum — Minimum parameter values
vector | scalar

Minimum parameter values, specified as one of the following:

• Vector when the NumericParameters contains tunable settings for the Parameters property of
a type-1 membership function or the UpperParameters property of a type-2 membership
function

• Scalar value when the NumericParameters object contains tunable settings for either the
LowerScale or LowerLag properties of a type-2 membership function

Maximum — Maximum parameter values
vector | scalar

Maximum parameter values, specified as one of the following:

• Vector when the NumericParameters contains tunable settings for the Parameters property of
a type-1 membership function or the UpperParameters property of a type-2 membership
function

9 Objects

9-70

• Scalar value when the NumericParameters object contains tunable settings for either the
LowerScale or LowerLag properties of a type-2 membership function.

Examples

Obtain Tunable Settings of Input and Output Variables from FIS

Create a fuzzy inference system.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);

Obtain the tunable settings of input and output variables of the fuzzy inference system.

[in,out] = getTunableSettings(fis1);

You can use dot notation to specify the tunable settings of input and output variables.

For the first membership function of input 1, set the first and third parameters to tunable.

in(1).MembershipFunctions(1).Parameters.Free = [1 0 1];

For the first membership function of input 2, set the minimum parameter range to 0.

in(2).MembershipFunctions(1).Parameters.Minimum = 0;

For the first membership function of the output variable, set the maximum parameter range to 1.

out(1).MembershipFunctions(1).Parameters.Maximum = 1;

Obtain Tunable Settings of Input and Output Variables from Type-2 FIS

Create a type-2 fuzzy inference system.

fis = mamfistype2('Name','fis1','NumInputs',2,'NumOutputs',1);

Obtain the tunable settings of the input and output variables of the fuzzy inference system.

[in,out] = getTunableSettings(fis);

You can use dot notation to specify the tunable settings of the membership functions of the input and
output variables.

For the first membership function of input 1, set the first and third upper membership function
parameters as tunable.

in(1).MembershipFunctions(1).UpperParameters.Free = [1 0 1];

For the first membership function of input 2, set the tunable range of the lower membership function
scale to be between 0.7 and 0.9.

in(2).MembershipFunctions(1).LowerScale.Minimum = 0.7;
in(2).MembershipFunctions(1).LowerScale.Maximum = 0.9;

 NumericParameters

9-71

For the first membership function of output 1, set the tunable range of the lower membership
function lag to be between 0.1 and 0.4.

in(2).MembershipFunctions(1).LowerLag.Minimum = 0.1;
in(2).MembershipFunctions(1).LowerLag.Maximum = 0.4;

By default, the tunable settigns for a type-2 FIS produce symmetric lag results in the tuned system.
To allow for asymmetric lag results, specify the AsymmetricLag name-value argument.

[in2,out2] = getTunableSettings(fis,'AsymmetricLag',true);

Version History
Introduced in R2019a

See Also
getTunableSettings | VariableSettings | MembershipFunctionSettings

9 Objects

9-72

RuleSettings
Tunable parameter settings of fuzzy rules

Description
A RuleSettings object is created using the getTunableSettings function with a mamfis,
sugfis, or fistree object. When the third output is specified, getTunableSettings returns
tunable parameter settings of fuzzy rules. Specify the settings of the Antecedent and Consequent
properties.

Creation
Create a RuleSettings object using getTunableSettings with three outputs.

Properties
FISName — Name of fuzzy inference system
string

This property is read-only.

Name of fuzzy inference system, specified as a string.

Index — Index of rule in fuzzy inference system
double

This property is read-only.

Index of rule in fuzzy inference system, specified as an integer.

Antecedent — Antecedent parameter settings of rule
ClauseParameters object

Antecedent parameter settings of rule, specified as a ClauseParameters object. Each antecedent
parameter consists of the properties AllowNot, AllowEmpty, and Free. You can specify these
properties.

Consequent — Consequent parameter settings of rule
ClauseParameters object

Consequent parameter settings of rule, specified as a ClauseParameters object. Each consequent
parameter consists of the properties AllowNot, AllowEmpty, and Free. You can specify these
properties.

Object Functions
setTunable Set specified parameter settings as tunable or nontunable

 RuleSettings

9-73

Examples

Obtain Tunable Settings of Rules from FIS

Create two fuzzy inference systems, and define the connection between the two.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);
con = ["fis1/output1" "fis2/input1"];

Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],con);

Obtain the tunable settings of rules of the fuzzy inference system.

[~,~,rule] = getTunableSettings(tree)

rule=18×1 object
 16x1 RuleSettings array with properties:

 Index
 Antecedent
 Consequent
 FISName
 ⋮

You can use dot notation to specify the tunable settings of rules.

For the first rule, do not tune input 1 membership function index and do not ignore output 1
membership function index.

rule(1).Antecedent.Free(1) = false;
rule(1).Consequent.AllowEmpty(1) = false;

For the second rule, allow NOT logic for input 2 membership function index.

rule(2).Antecedent.AllowNot(2) = true;

Version History
Introduced in R2019a

See Also
getTunableSettings | ClauseParameters | VariableSettings

9 Objects

9-74

sugfis
Sugeno fuzzy inference system

Description
Use a sugfis object to represent a type-1 Sugeno fuzzy inference system (FIS).

As an alternative to a type-1 Sugeno system, you can create a:

• Type-1 Mamdani system using a mamfis object
• Type-2 Sugeno system using a sugfistype2 object
• Type-2 Mamdani system using a mamfistype2 object

For more information on the different types of fuzzy inference systems, see “Mamdani and Sugeno
Fuzzy Inference Systems” on page 2-2 and “Type-2 Fuzzy Inference Systems” on page 2-8.

Creation
To create a Sugeno FIS object, use one of the following methods:

• The sugfis function.
• If you have input/output data, you can use the genfis function.
• If you have a FIS file (*.fis) for a Sugeno system, you can use the readfis function.
• Convert an existing Mamdani FIS to a Sugeno FIS using convertToSugeno.

Syntax
fis = sugfis
fis = sugfis(Name,Value)

Description

fis = sugfis creates a Sugeno FIS with default property values. To modify the properties of the
fuzzy system, use dot notation.

fis = sugfis(Name,Value) specifies FIS configuration information or sets object properties
using name-value pair arguments. You can specify multiple name-value pairs. Enclose names in
quotes.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

 sugfis

9-75

Example: 'NumInputs',2 configures the fuzzy system to have two input variables

NumInputs — Number of FIS inputs
0 (default) | nonnegative integer

Number of FIS inputs, specified as the comma-separated pair consisting of 'NumInputs' and a
nonnegative integer.

NumInputMFs — Number of membership functions for each FIS input
3 (default) | positive integer

Number of membership functions for each FIS input, specified as the comma-separated pair
consisting of 'NumInputMFs' and a positive integer.

NumOutputs — Number of FIS outputs
0 (default) | nonnegative integer

Number of FIS outputs, specified as the comma-separated pair consisting of 'NumOutputs' and a
nonnegative integer.

NumOutputMFs — Number of membership functions for each FIS output
3 (default) | positive integer

Number of membership functions for each FIS output, specified as the comma-separated pair
consisting of 'NumOutputMFs' and a positive integer.

MFType — Membership function type
"trimf" (default) | "gaussmf"

Membership function type for input variables, specified as the comma-separated pair consisting of
'MFType' and either "trimf" (triangular MF) or "gaussmf" (Gaussian MF). For each input
variable, the membership functions are uniformly distributed over the variable range with
approximately 80% overlap in the MF supports.

Output membership functions are set to "constant" and uniformly distributed over the output
variable ranges.

AddRules — Flag for automatically adding rules
"allcombinations" (default) | "none"

Flag for automatically adding rules, specified as the comma-separated pair consisting of "AddRules"
and one of the following:

• "allcombinations" — If both NumInputs and NumOutputs are greater than zero, create rules
with antecedents that contain all input membership function combinations. Each rule consequent
contains all the output variables and uses the first membership function of each output.

• "none" — Create a FIS without any rules.

Properties
Name — FIS name
"fis" (default) | string | character vector

FIS name, specified as a string or character vector.

9 Objects

9-76

AndMethod — AND operator method
"prod" (default) | "min" | string | character vector | function handle

AND operator method for combining fuzzified input values in a fuzzy rule antecedent, specified as one
of the following:

• "prod" — Product of fuzzified input values
• "min" — Minimum of fuzzified input values
• String or character vector — Name of a custom AND function in the current working folder or on

the MATLAB path
• Function handle — Custom AND function in the current working folder or on the MATLAB path

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-86.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-19.

OrMethod — OR operator method
"probor" (default) | "max" | string | character vector | function handle

OR operator method for combining fuzzified input values in a fuzzy rule antecedent, specified as one
of the following:

• "probor" — Probabilistic OR of fuzzified input values. For more information, see probor.
• "max" — Maximum of fuzzified input values.
• String or character vector — Name of a custom OR function in the current working folder or on

the MATLAB path.
• Function handle — Custom OR function in the current working folder or on the MATLAB path.

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-86.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-19.

ImplicationMethod — Implication method
"prod" (default)

Implication method for computing consequent fuzzy set, specified as "prod". Sugeno systems always
use the "prod" implication method, which scales the consequent membership function by the
antecedent result value.

For more information on implication and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-19.

AggregationMethod — Aggregation method
"sum" (default)

Aggregation method for combining rule consequents, specified as "sum". Sugeno systems always use
the "sum" aggregation method, which is the sum of the consequent fuzzy sets.

 sugfis

9-77

For more information on aggregation and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-19.

DefuzzificationMethod — Defuzzification method
"wtaver" (default) | "wtsum"

Defuzzification method for computing crisp output values from the aggregated output fuzzy set,
specified as one of the following:

• "wtaver" — Weighted average of all rule outputs
• "wtsum" — Weighted sum of all rule outputs

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-86.

For more information on defuzzification and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-19.

DisableStructuralChecks — Option to disabling consistency checks
false (default) | true

Option to disabling consistency checks when property values change, specified as a logical value.

By default, when you change the value of a property of a sugfis object, the software verifies
whether the new property value is consistent with the other object properties. These checks can
affect performance, particularly when creating and updating fuzzy systems within loops.

To disable these checks, which results in faster FIS construction, set DisableStructuralChecks to
true.

Note Disabling structural checks can result in an invalid sugfis object.

To reenable the consistency checks, first verify that the changes you made to the FIS are consistent
and produce a valid sugfis object. Then, set DisableStructuralChecks to false. If the sugfis
object is invalid, reenabling the consistency checks generates an error.

Inputs — FIS input variables
vector of fisvar objects

FIS input variables, specified as a vector of fisvar objects. To add and remove input variables, use
addInput and removeInput, respectively. You can modify the properties of the input variables using
dot notation.

You can also create a vector of fisvar objects and assign it to Inputs using dot notation.

You can add membership functions to input variables using the addMF function.

Outputs — FIS output variables
vector of fisvar objects

FIS output variables, specified as a vector of fisvar objects. To add and remove output variables,
use addOutput and removeOutput, respectively.

You can also create a vector of fisvar objects and assign it to Outputs using dot notation.

9 Objects

9-78

You can add membership functions to output variables using the addMF function.

Rules — FIS rules
vector of fisrule objects

FIS input variables, specified as a vector of fisrule objects. To add fuzzy rules, use the addRule
function.

You can also create a vector of fisrule objects and assign it to Rules using dot notation.

To remove a rule, set the corresponding rule vector element to []. For example, to remove the tenth
rule from the rule list, type:

fis.Rules(10) = [];

Sugeno systems do not support rules with NOT logic in the consequent.

Object Functions
addInput Add input variable to fuzzy inference system
removeInput Remove input variable from fuzzy inference system
addOutput Add output variable to fuzzy inference system
removeOutput Remove output variable from fuzzy inference system
addRule Add rule to fuzzy inference system
addMF Add membership function to fuzzy variable
removeMF Remove membership function from fuzzy variable
evalfis Evaluate fuzzy inference system
writeFIS Save fuzzy inference system to file
convertToType2 Convert type-1 fuzzy inference system into type-2 fuzzy inference system

Examples

Create Sugeno Fuzzy Inference System

Create a Sugeno fuzzy inference system with default property values.

fis = sugfis;

Modify the system properties using dot notation. For example, configure fis to use weighted-sum
defuzzification.

fis.DefuzzificationMethod = "wtsum";

Alternatively, you can specify one of more FIS properties when you create a fuzzy system. For
example, create a Sugeno fuzzy system with specified AND and OR methods.

fis = sugfis("AndMethod","min","OrMethod","max");

Specify Number of Inputs and Outputs for Sugeno System

Create a Sugeno fuzzy inference system with three inputs and one output.

 sugfis

9-79

fis = sugfis("NumInputs",3,"NumOutputs",1)

fis =
 sugfis with properties:

 Name: "fis"
 AndMethod: "prod"
 OrMethod: "probor"
 ImplicationMethod: "prod"
 AggregationMethod: "sum"
 DefuzzificationMethod: "wtaver"
 DisableStructuralChecks: 0
 Inputs: [1x3 fisvar]
 Outputs: [1x1 fisvar]
 Rules: [1x27 fisrule]

 See 'getTunableSettings' method for parameter optimization.

By default, the software creates a rule for each possible input combination.

Create Sugeno FIS with Linear Output Membership Functions

Load a Sugeno FIS from a file.

fis = readfis('sugeno1');

The output variable has two membership functions. View the properties of the first membership
function.

fis.Outputs(1).MembershipFunctions(1)

ans =
 fismf with properties:

 Type: "linear"
 Parameters: [-1 -1]
 Name: "line1"

View the properties of the second membership function.

fis.Outputs(1).MembershipFunctions(2)

ans =
 fismf with properties:

 Type: "linear"
 Parameters: [1 -1]
 Name: "line2"

The input membership functions and rules define which of these output functions are expressed and
when.

fis.Rules

9 Objects

9-80

ans =
 1x2 fisrule array with properties:

 Description
 Antecedent
 Consequent
 Weight
 Connection

 Details:
 Description

 1 "input==low => output=line1 (1)"
 2 "input==high => output=line2 (1)"

Plot the input membership functions of this system. The low membership function generally refers to
input values less than zero, while high refers to values greater than zero.

plotmf(fis,'input',1)

Plot the output surface for this FIS.

gensurf(fis)

 sugfis

9-81

The overall fuzzy system output switches smoothly from the line called line1 to the line called
line2.

Alternative Functionality
App

You can interactively create a Sugeno FIS using the Fuzzy Logic Designer or Neuro-Fuzzy
Designer apps. You can then export the system to the MATLAB workspace.

Version History
Introduced in R2018b

R2018b: Replaces newfis

This function replaces newfis for creating Sugeno fuzzy inference systems.

See Also
mamfis | fisvar | fisrule | fismf

9 Objects

9-82

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77

 sugfis

9-83

sugfistype2
Interval type-2 Sugeno fuzzy inference system

Description
Use a sugfistype2 object to represent an interval type-2 Sugeno fuzzy inference system (FIS).

As an alternative to a type-2 Sugeno system, you can create a:

• Type-2 Mamdani system using a mamfistype2 object
• Type-1 Sugeno system using a sugfis object
• Type-1 Mamdani system using a mamfis object

For more information on the different types of fuzzy inference systems, see “Mamdani and Sugeno
Fuzzy Inference Systems” on page 2-2 and “Type-2 Fuzzy Inference Systems” on page 2-8.

Creation
To create a type-2 Sugeno FIS object, use one of the following methods:

• The sugfistype2 function.
• If you have input/output data, you can use the genfis function. You can then convert this FIS to a

type-2 system using convertToType2.
• If you have a FIS file (*.fis) for a Sugeno system, you can use the readfis function.
• Convert an existing type-2 Mamdani FIS to a Sugeno FIS using convertToSugeno.

Syntax
fis = sugfistype2
fis = sugfistype2(Name,Value)

Description

fis = sugfistype2 creates a type-2 Sugeno FIS with default property values. To modify the
properties of the fuzzy system, use dot notation.

fis = sugfistype2(Name,Value) specifies FIS configuration information or sets object
properties using name-value pair arguments. You can specify multiple name-value pairs. Enclose
names in quotes.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

9 Objects

9-84

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumInputs',2 configures the fuzzy system to have two input variables

NumInputs — Number of FIS inputs
0 (default) | nonnegative integer

Number of FIS inputs, specified as the comma-separated pair consisting of 'NumInputs' and a
nonnegative integer.

NumInputMFs — Number of membership functions for each FIS input
3 (default) | positive integer

Number of membership functions for each FIS input, specified as the comma-separated pair
consisting of 'NumInputMFs' and a positive integer.

NumOutputs — Number of FIS outputs
0 (default) | nonnegative integer

Number of FIS outputs, specified as the comma-separated pair consisting of 'NumOutputs' and a
nonnegative integer.

NumOutputMFs — Number of membership functions for each FIS output
3 (default) | positive integer

Number of membership functions for each FIS output, specified as the comma-separated pair
consisting of 'NumOutputMFs' and a positive integer.

MFType — Membership function type
"trimf" (default) | "gaussmf"

Membership function type for input variables, specified as the comma-separated pair consisting of
'MFType' and either "trimf" (triangular MF) or "gaussmf" (Gaussian MF). For each input
variable, the membership functions are uniformly distributed over the variable range with
approximately 80% overlap in the MF supports.

Output membership functions are set to "constant" and uniformly distributed over the output
variable ranges.

AddRules — Flag for automatically adding rules
"allcombinations" (default) | "none"

Flag for automatically adding rules, specified as the comma-separated pair consisting of "AddRules"
and one of the following:

• "allcombinations" — If both NumInputs and NumOutputs are greater than zero, create rules
with antecedents that contain all input membership function combinations. Each rule consequent
contains all the output variables and uses the first membership function of each output.

• "none" — Create a FIS without any rules.

Properties
Name — FIS name
"fis" (default) | string | character vector

 sugfistype2

9-85

FIS name, specified as a string or character vector.

AndMethod — AND operator method
"prod" (default) | "min" | string | character vector | function handle

AND operator method for combining fuzzified input values in a fuzzy rule antecedent, specified as one
of the following:

• "prod" — Product of fuzzified input values
• "min" — Minimum of fuzzified input values
• String or character vector — Name of a custom AND function in the current working folder or on

the MATLAB path
• Function handle — Custom AND function in the current working folder or on the MATLAB path

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-86.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-19.

OrMethod — OR operator method
"probor" (default) | "max" | string | character vector | function handle

OR operator method for combining fuzzified input values in a fuzzy rule antecedent, specified as one
of the following:

• "probor" — Probabilistic OR of fuzzified input values. For more information, see probor.
• "max" — Maximum of fuzzified input values.
• String or character vector — Name of a custom OR function in the current working folder or on

the MATLAB path.
• Function handle — Custom OR function in the current working folder or on the MATLAB path.

For more information on using custom functions, see “Build Fuzzy Systems Using Custom Functions”
on page 2-86.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy Inference
Process” on page 1-19.

ImplicationMethod — Implication method
"prod" (default)

Implication method for computing consequent fuzzy set, specified as "prod". Sugeno systems always
use the "prod" implication method, which scales the consequent membership function by the
antecedent result value.

For more information on implication and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-19.

AggregationMethod — Aggregation method
"sum" (default)

Aggregation method for combining rule consequents, specified as "sum". Sugeno systems always use
the "sum" aggregation method, which is the sum of the consequent fuzzy sets.

9 Objects

9-86

For more information on aggregation and the fuzzy inference process, see “Fuzzy Inference Process”
on page 1-19.

DefuzzificationMethod — Defuzzification method
"wtaver" (default)

Defuzzification method for computing crisp output values from the aggregated output fuzzy set.
Type-2 Sugeno systems support only weighted-average defuzzification.

DisableStructuralChecks — Option to disabling consistency checks
false (default) | true

Option to disabling consistency checks when property values change, specified as a logical value.

By default, when you change the value of a property of a sugfistype2 object, the software verifies
whether the new property value is consistent with the other object properties. These checks can
affect performance, particularly when creating and updating fuzzy systems within loops.

To disable these checks, which results in faster FIS construction, set DisableStructuralChecks to
true.

Note Disabling structural checks can result in an invalid sugfistype2 object.

To reenable the consistency checks, first verify that the changes you made to the FIS are consistent
and produce a valid sugfistype2 object. Then, set DisableStructuralChecks to false. If the
sugfistype2 object is invalid, reenabling the consistency checks generates an error.

Inputs — FIS input variables
vector of fisvar objects

FIS input variables, specified as a vector of fisvar objects. To add and remove input variables, use
addInput and removeInput, respectively. You can modify the properties of the input variables using
dot notation.

You can also create a vector of fisvar objects and assign it to Inputs using dot notation.

You can add membership functions to input variables using the addMF function.

Outputs — FIS output variables
vector of fisvar objects

FIS output variables, specified as a vector of fisvar objects. To add and remove output variables,
use addOutput and removeOutput, respectively.

You can also create a vector of fisvar objects and assign it to Outputs using dot notation.

You can add membership functions to output variables using the addMF function.

Rules — FIS rules
vector of fisrule objects

FIS input variables, specified as a vector of fisrule objects. To add fuzzy rules, use the addRule
function.

 sugfistype2

9-87

You can also create a vector of fisrule objects and assign it to Rules using dot notation.

To remove a rule, set the corresponding rule vector element to []. For example, to remove the tenth
rule from the rule list, type:

fis.Rules(10) = [];

Sugeno systems do not support rules with NOT logic in the consequent.

TypeReductionMethod — Type-reduction method
"karnikmendel" (default) | "ekm" | "iasc" | "eiasc" | string | function handle

Type-reduction method for converting a type-2 output fuzzy set to an interval type-1 fuzzy set,
specified as one of the following:

• "karnikmendel" — Karnik-Mendel
• "ekm" — Enhanced Karnik-Mendel
• "iasc" — Iterative algorithm with stop condition
• "eiasc" — Enhanced iterative algorithm
• String — Name of a custom type-reduction function in the current working directory or on the

MATLAB path.
• Function handle — Function handle to a custom type-reduction function in the current working

folder or on the MATLAB path.

For more information on type reduction, see “Type-2 Fuzzy Inference Systems” on page 2-8.

Object Functions
addInput Add input variable to fuzzy inference system
removeInput Remove input variable from fuzzy inference system
addOutput Add output variable to fuzzy inference system
removeOutput Remove output variable from fuzzy inference system
addRule Add rule to fuzzy inference system
addMF Add membership function to fuzzy variable
removeMF Remove membership function from fuzzy variable
evalfis Evaluate fuzzy inference system
writeFIS Save fuzzy inference system to file
convertToType1 Convert type-2 fuzzy inference system into type-1 fuzzy inference system

Examples

Create Type-2 Sugeno Fuzzy Inference System

Create a type-2 Sugeno fuzzy inference system with default property values.

fis = sugfistype2;

Modify the system properties using dot notation. For example, set the type reduction method to use
the enhanced Karnik-Mendel method.

fis.TypeReductionMethod = "ekm";

Alternatively, you can specify one of more FIS properties when you create a fuzzy system.

9 Objects

9-88

fis = sugfistype2('TypeReductionMethod',"ekm");

Specify Number of Inputs and Outputs for Type-2 Sugeno System

Create a type-2 Sugeno fuzzy inference system with three inputs and one output. A type-2 Sugeno
system uses type-2 membership functions only for its input variables.

fis = sugfistype2("NumInputs",3,"NumOutputs",1)

fis =
 sugfistype2 with properties:

 Name: "fis"
 AndMethod: "prod"
 OrMethod: "probor"
 ImplicationMethod: "prod"
 AggregationMethod: "sum"
 DefuzzificationMethod: "wtaver"
 DisableStructuralChecks: 0
 Inputs: [1x3 fisvar]
 Outputs: [1x1 fisvar]
 Rules: [1x27 fisrule]
 TypeReductionMethod: "karnikmendel"

 See 'getTunableSettings' method for parameter optimization.

By default, the software creates a rule for each possible input combination.

Alternative Functionality
App

You can interactively create a type-2 Sugeno FIS using the Fuzzy Logic Designer app. You can then
export the system to the MATLAB workspace.

Version History
Introduced in R2019b

See Also
fisvar | fisrule | fismftype2

Topics
“Build Fuzzy Systems at the Command Line” on page 2-77

 sugfistype2

9-89

tunefisOptions
Option set for tunefis function

Description
Use a tunefisOptions object to specify options for tuning fuzzy systems using the tunefis
function. You can specify options such as the optimization method, optimization type, and distance
metric for optimization cost calculation.

Creation

Syntax
opt = tunefisOptions
opt = tunefisOptions(Name,Value)

Description

opt = tunefisOptions creates a default option set for tuning a fuzzy inference system using the
tunefis function. To modify the properties of this option set for your specific application, use dot
notation.

opt = tunefisOptions(Name,Value) creates an option set with “Properties” on page 9-90
specified using one or more name-value pair arguments.

Properties
Method — Tuning algorithm
"ga" (default) | "particleswarm" | "patternsearch" | "simulannealbnd" | "anfis"

Tuning algorithm, specified as one of the following:

• "ga" — genetic algorithm
• "particleswarm" — particle swarm
• "patternsearch" — pattern search
• "simulannealbnd" — simulated annealing algorithm
• "anfis" — adaptive neuro-fuzzy

These tuning algorithms use solvers from the Global Optimization Toolbox software, except for
"anfis". The MethodOptions property differs for each algorithm, and corresponds to the options
input argument for the respective solver. If you specify MethodOptions without specifying Method,
then the tuning method is determined based on MethodOptions.

The "anfis" tuning method supports tuning only type-1 Sugeno fuzzy inference systems with one
output variable.

9 Objects

9-90

MethodOptions — Tuning algorithm options
options created using optimoptions | anfisOptions object

Tuning algorithm options, specified as an option object for the tuning algorithm specified by Method.
This property differs for each algorithm and is created using optimoptions. If you do not specify
MethodOptions, tunefis creates a default option object for the tuning method specified in
Method. To modify the options in MethodOptions, use dot notation.

OptimizationType — Type of optimization
"tuning" (default) | "learning"

Type of optimization, specified as one of the following:

• "tuning" — Optimize the existing input, output, and rule parameters without learning new rules.
• "learning" — Learn new rules up to the maximum number of rules specified by NumMaxRules.

The "anfis" algorithm supports only "tuning" optimization.

NumMaxRules — Maximum number of rules in a FIS
Inf (default) | integer

Maximum number of rules in a FIS after optimization, specified as an integer. The number of rules in
a FIS (after optimization) can be less than NumMaxRules, since duplicate rules with the same
antecedent values are removed from the rule base.

When NumMaxRules is Inf, tunefis sets NumMaxRules to the maximum number of possible rules
for the FIS. This maximum value is computed based on the number of input variables and the number
of membership functions for each input variable.

When tuning the parameters of a fistree object, NumMaxRules indicates the maximum number of
rules for each FIS in the fistree.

The "anfis" tuning method ignores this option.

IgnoreInvalidParameters — Flag for ignoring invalid parameters
true (default) | false

Flag for ignoring invalid parameters, specified as either true or false. When
IgnoreInvalideParameters is true, the tunefis function ignores invalid parameter values
generated during the tuning process.

The "anfis" tuning method ignores this option.

DistanceMetric — Type of distance metric
"rmse" (default) | "norm1" | "norm2"

Type of distance metric used for computing the cost for the optimized parameter values with respect
to the training data, specified as one of the following:

• "rmse" — Root-mean-squared error
• "norm1" — Vector 1-norm
• "norm2" — Vector 2-norm

For more information on vector norms, see norm.

 tunefisOptions

9-91

The "anfis" tuning method supports only the "rmse" metric.

UseParallel — Flag for using parallel computing
false (default) | true

Flag for using parallel computing, specified as either true or false. When UseParallel is true,
the tunefis function uses parallel computation in the optimization process. Using parallel
computing requires Parallel Computing Toolbox software.

The "anfis" tuning method does not support parallel computation.

KFoldValue — Number of cross validations to perform
0 (default) | nonnegative integer

Number of cross validations to perform, specified as a nonnegative integer less than or equal to the
number of rows in the training data.

When KFoldValue is 0 or 1, tunefis uses the entire input data set for training and does not
perform validation.

Otherwise, tunefis randomly partitions the input data into KFoldValue subsets of approximately
equal size. The function then performs KFoldValue training-validation iterations. For each iteration,
one data subset is used as validation data with the remaining subsets used as training data. The
following figure shows the data partition and iterations for KFoldValue = 4.

For an example that tunes a fuzzy inference system using k-fold cross validation, see “Optimize FIS
Parameters with K-Fold Cross-Validation” on page 3-82.

The "anfis" tuning method ignores this option.

ValidationTolerance — Maximum allowable increase in validation cost
0.1 (default) | value in the range [0,1]

9 Objects

9-92

Maximum allowable increase in validation cost when using k-fold cross validation, specified as a
scalar value in the range [0,1]. A higher ValidationTolerance value produces a longer training-
validation iteration, with an increased possibility of data overfitting.

The increase in validation cost, ΔC, is the difference between the average validation cost and the
minimum validation cost, Cmin, for the current training-validation iteration. The average validation
cost is a moving average with a window size equal to ValidationWindowSize.

tunefis stops the current training-validation iteration when the ratio between ΔC and Cmin exceeds
ValidationTolerance.

ValidationTolerance is ignored when KFoldValue is 0 or 1.

The "anfis" tuning method ignores this option.

ValidationWindowSize — Window size for computing average validation cost
5 (default) | positive integer

Window size for computing average validation cost, specified as a positive integer. The validation cost
moving average is computed over the last N validation cost values, where N is equal to
ValidationWindowSize. A higher ValidationWindowSize value produces a longer training-
validation iteration, with an increased possibility of data overfitting. A lower window size can cause
early termination of the tuning process when the training data is noisy.

ValidationWindowSize is ignored when KFoldValue is 0 or 1.

The "anfis" tuning method ignores this option.

Display — Data to display in command window during training
"all" (default) | "tuningonly" | "validationonly" | "none"

Data to display in command window during training, specified as one of the following values.

• "all" — Display both training and validation results.
• "tuningonly" — Display only training results.
• "validationonly" — Display only validation results.
• "none" — Display neither training nor validation results.

Examples

Specify Options for FIS Tuning

Create a default option set using the particle swarm tuning algorithm.

opt = tunefisOptions("Method","particleswarm")

opt =
 tunefisOptions with properties:

 Method: "particleswarm"
 MethodOptions: [1x1 optim.options.Particleswarm]
 OptimizationType: "tuning"
 NumMaxRules: Inf

 tunefisOptions

9-93

 IgnoreInvalidParameters: 1
 DistanceMetric: "rmse"
 UseParallel: 0
 KFoldValue: 0
 ValidationTolerance: 0.1000
 ValidationWindowSize: 5
 Display: "all"

You can modify the options using dot notation. For example, set the maximum number of iterations to
20.

opt.MethodOptions.MaxIterations = 20;

You can also specify other options when creating the option set. In this example, set the
OptimizationType to "learning" to learn new rules.

opt2 = tunefisOptions("Method","particleswarm","OptimizationType","learning")

opt2 =
 tunefisOptions with properties:

 Method: "particleswarm"
 MethodOptions: [1x1 optim.options.Particleswarm]
 OptimizationType: "learning"
 NumMaxRules: Inf
 IgnoreInvalidParameters: 1
 DistanceMetric: "rmse"
 UseParallel: 0
 KFoldValue: 0
 ValidationTolerance: 0.1000
 ValidationWindowSize: 5
 Display: "all"

Version History
Introduced in R2019a

See Also
tunefis | getTunableSettings

9 Objects

9-94

VariableSettings
Tunable parameter settings of fuzzy variables

Description
A VariableSettings object contains tunable parameter settings for either an input or output
variable of a fuzzy inference system. Using this object, you can specify the tunability settings for the
membership functions of the corresponding variable.

Creation
Create a VariableSettings object using the getTunableSettings function. The first and second
outputs of getTunableSettings contain VariableSettings objects for input and output
variables, respectively.

Properties
FISName — Name of fuzzy inference system
string

This property is read-only.

Name of fuzzy inference system, specified as a string.

Type — Type of variable
"input" | "output"

This property is read-only.

Type of variable, specified as either "input" or "output" for input and output variables,
respectively.

VariableName — Name of variable
string

This property is read-only.

Name of variable, specified as a string.

MembershipFunctions — Membership function settings
MembershipFunctionSettings object | MembershipFunctionSettingsType2 object

Membership function settings, specified as one of the following:

• MembershipFunctionSettings object when the corresponding variable contains type-1
membership functions

• MembershipFunctionSettingsType2 object when the corresponding variable contains type-2
membership functions

 VariableSettings

9-95

Object Functions
setTunable Set specified parameter settings as tunable or nontunable

Examples

Obtain Tunable Settings of Input and Output Variables from FIS

Create a fuzzy inference system.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);

Obtain the tunable settings of input and output variables of the fuzzy inference system.

[in,out] = getTunableSettings(fis1);

You can use dot notation to specify the tunable settings of input and output variables.

For the first membership function of input 1, set the first and third parameters to tunable.

in(1).MembershipFunctions(1).Parameters.Free = [1 0 1];

For the first membership function of input 2, set the minimum parameter range to 0.

in(2).MembershipFunctions(1).Parameters.Minimum = 0;

For the first membership function of the output variable, set the maximum parameter range to 1.

out(1).MembershipFunctions(1).Parameters.Maximum = 1;

Version History
Introduced in R2019a

See Also
getTunableSettings | MembershipFunctionSettings |
MembershipFunctionSettingsType2 | RuleSettings

9 Objects

9-96

Blocks

10

Diff. Sigmoidal MF
Difference of two sigmoids membership function

Libraries:
Fuzzy Logic Toolbox / Membership Functions

Description
The Diff. Sigmoidal MF block implements a membership function in Simulink based on the difference
between two sigmoids. The sigmoid curves are defined by the following equation.

f x; ak, ck = 1
1 + e−ak(x− ck)

where k = 1,2. The parameters a1 and a2 control the slopes of the left and right curves. The
parameters c1 and c2 control the points of inflection for the left and right curves.

To define a unimodal membership function with a maximum value of 1, specify the same signs for a1
and a2, and select c values far enough apart to allow for both transition areas to reach 1.

This block is related to the Sigmoidal MF and Prod. Sigmoidal MF membership function blocks.

Ports
Input

x — Input value
scalar | vector

Input value for which to compute membership values, specified as a scalar or vector.

Output

MF — Membership value
scalar | vector

Membership value, returned as a scalar or a vector. The dimensions of MF match the dimensions of x.
Each element of MF is the membership value computed for the corresponding element of x.

Parameters
Left curve a1 — Transition area shape parameter for left curve
3 (default) | scalar

Parameter a1 that controls the transition area shape for the left curve. The magnitude of a1 controls
the width of the transition area.

10 Blocks

10-2

When the sign of a1 is positive, the curve increases from left to right. Conversely, when the sign of a1
is negative, the curve decreases from left to right.

Programmatic Use
Block Parameter: a1
Type: string, character vector
Default: "3"

Left curve c1 — Transition area center for left curve
-5 (default) | scalar

Transition area center c1 for the left curve.

Programmatic Use
Block Parameter: c1
Type: string, character vector
Default: "-5"

Right curve a2 — Transition area shape parameter for right curve
1 (default) | scalar

Parameter a2 that controls the transition area shape for the right curve. The magnitude of a2 controls
the width of the transition area.

When the sign of a2 is positive, the curve increases from left to right. Conversely, when the sign of a2
is negative, the curve decreases from left to right.

Programmatic Use
Block Parameter: a2
Type: string, character vector
Default: "1"

Right curve c2 — Transition area center for right curve
5 (default) | scalar

Transition area center c2 for the right curve.

Programmatic Use
Block Parameter: c2
Type: string, character vector
Default: "5"

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

 Diff. Sigmoidal MF

10-3

See Also
Functions
dsigmf

Topics
“Membership Functions” on page 1-9

10 Blocks

10-4

Fuzzy Logic Controller
Evaluate fuzzy inference system

Libraries:
Fuzzy Logic Toolbox

Description
The Fuzzy Logic Controller block implements a fuzzy inference system (FIS) in Simulink. You specify
the FIS to evaluate using the FIS name parameter.

For more information on fuzzy inference, see “Fuzzy Inference Process” on page 1-19.

To display the fuzzy inference process in the Rule Viewer during simulation, use the Fuzzy Logic
Controller with Ruleviewer block.

Ports
Input

in — Input signal
scalar | vector

For a single-input fuzzy inference system, the input is a scalar signal. For a multi-input fuzzy system,
combine the inputs into a vector signal using blocks such as:

• Mux
• Vector Concatenate
• Bus Creator

Output

out — Defuzzified output signal
scalar | vector

For a single-output FIS, the output is a scalar signal. For a multi-output FIS, the output is a vector
signal. To split system outputs into scalar signals, use the Demux block.

fi — Fuzzified input values
matrix

Fuzzified input values, obtained by evaluating the input membership functions of each rule at the
current input values.

For a type-1 FIS, fi is an NR-by-NU matrix signal, where NR is the number of FIS rules. Element (i,j)
of fi is the value of the input membership function for the jth input in the ith rule.

 Fuzzy Logic Controller

10-5

For a type-2 FIS, fi is an NR-by-(2*NU) matrix signal. The first NU columns contain the fuzzified
values of the upper membership function for each rule, and the last NU columns contain the fuzzified
values from the lower membership functions.

For more information on fuzzifying input values, see “Fuzzify Inputs” on page 1-19.

Dependencies

To enable this port, select the Fuzzified inputs (fi) parameter.

rfs — Rule firing strengths
column vector

Rule firing strengths, obtained by evaluating the antecedent of each rule; that is, applying the fuzzy
operator to the values of the fuzzified inputs.

For a type-1 FIS, rfs is a column vector signal of length NR, where NR is the number of rules, and
element i is the firing strength of the ith rule.

For a type-2 FIS, rfs is an NR-by-2 matrix signal. The first column contains the rule firing strengths
generated using upper membership functions, and the second column contains the rule firing
strengths generated using lower membership functions.

For more information on applying fuzzy operators, see “Apply Fuzzy Operator” on page 1-20.

Dependencies

To enable this port, select the Rule firing strengths (rfs) parameter.

ro — Rule outputs
matrix

Rule outputs, obtained by applying the rule firing strengths to the output membership functions using
the implication method specified in the FIS.

For a type-1 Mamdani FIS, ro is an NS-by-(NRNY) matrix signal, where NR is the number of rules, NY is
the number of outputs, and NS is the number of sample points used for evaluating output variable
ranges. Each column of ro contains the output fuzzy set for one rule. The first NR columns contain
the rule outputs for the first output variable, the next NR columns correspond to the second output
variable, and so on.

For a type-2 Mamdani FIS, ro is an NS-by-(2*NR*NY) matrix signal. The first NR*NY columns contain
the rule outputs generated using upper membership functions, and the last NR*NY columns contain
the rule outputs generated using lower membership functions.

For a type-1 Sugeno system, each rule output is a scalar value. In this case, ro is an NR-by-NY matrix
signal. Element (j,k) of ro is the value of the kth output variable for the jth rule.

For a type-2 Sugeno system, ro is an NR-by-(3*NY) array. The first NY columns contain the rule output
levels. The next NY columns contain the corresponding rule firing strengths generated using upper
membership functions. The last NY columns contain the rule firing strengths generated using lower
membership functions. For example, in a three-output system, columns 4 and 7 contain the firing
strengths for the output levels in column 1.

For more information on fuzzy implication, see “Apply Implication Method” on page 1-21.

10 Blocks

10-6

Dependencies

• To enable this port, select the Rule outputs (ro) parameter.
• To specify NS, use the Number of samples for output discretization parameter.

ao — Aggregated output
matrix | row vector

Aggregate output for each output variable, obtained by combining the corresponding outputs from all
the rules using the aggregation method specified in the FIS.

For a type-1 Mamdani fuzzy inference system, the aggregate result for each output variable is a fuzzy
set. In this case, ao is as an NS-by-NY matrix signal, where NY is the number of outputs and NS is the
number of sample points used for evaluating output variable ranges. Each column of ao contains the
aggregate fuzzy set for one output variable.

For a type-2 Mamdani FIS, the aggregate result for each output variable is a fuzzy set. In this case,
ao is as an NS-by-(2*NY) matrix signal. The first NY columns contain the aggregated outputs
generated using upper membership functions, and the last NY columns contain the aggregated
outputs generated using lower membership functions.

For a type-1 Sugeno system, the aggregate result for each output variable is a scalar value. In this
case, ao is a row vector of length NY, where element k is the sum of the rule outputs for the kth
output variable.

For a type-2 Sugeno system, ao is an NR-by-(3*NY) array. aggregatedOut contains the same data as
ro with the columns sorted based on the output levels. For example, in a three-output system, when
the output levels in column 1 are sorted, the corresponding firing strengths in columns 4 and 7 are
adjusted accordingly.

For more information on fuzzy aggregation, see “Aggregate All Outputs” on page 1-22.

Dependencies

• To enable this port, select the Aggregated outputs (ao) parameter.
• To specify NS, use the Number of samples for output discretization parameter.

Parameters
General

FIS name — Fuzzy inference system
mamfis object | sugfis object | mamfistype2 object | sugfistype2 object | file name

Fuzzy inference system to evaluate, specified as one of the following:

• mamfis or sugfis object — Specify the name of a type-1 FIS object in the MATLAB workspace.
• mamfistype2 or sugfistype2 object — Specify the name of a type-2 FIS object in the MATLAB

workspace.
• File name — Specify the name of a FIS file (*.fis) in the current working folder or on the

MATLAB path. Including the file extension in the file name is optional.

To save a fuzzy inference system to a FIS file:

 Fuzzy Logic Controller

10-7

• In Fuzzy Logic Designer, on the Design tab, under Save, select the system to save.
• At the command line, use writeFIS.
• In or Neuro-Fuzzy Designer, select File > Export > To File.

Programmatic Use
Block Parameter: FIS
Type: string, character vector
Default: "'tipper.fis'"

Number of samples for output discretization — Number of points in output fuzzy sets
101 (default) | integer greater than 1

Number of samples for discretizing the range of output variables, specified as an integer greater than
1. This value corresponds to the number of points in the output fuzzy set for each rule.

To reduce memory usage while evaluating a Mamdani FIS, specify a lower number of samples. Doing
so sacrifices the accuracy of the defuzzified output value. Specifying a low number of samples can
make the output area for defuzzification zero. In this case, the defuzzified output value is the
midpoint of the output variable range.

Note The block ignores this parameter when evaluating a Sugeno FIS.

Programmatic Use
Block Parameter: OutputSampleNumber
Type: string, character vector
Default: "101"

Data type — Signal data type
double (default) | single | fixed-point | expression

Signal data type, specified as one of the following:

• double — Double-precision signals
• single — Single-precision signals
• fixdt(1,16,0) — Fixed-point signals with binary point scaling
• fixdt(1,16,2^0,0) — Fixed-point signals with slope and bias scaling
• Expression — Expression that evaluates to one of these data types

For fixed-point data types, you can configure the signedness, word length, and scaling parameters
using the Data Type Assistant. For more information, see “Specifying a Fixed-Point Data Type”
(Simulink).
Programmatic Use
Block Parameter: DataType
Type: string, character vector
Values: "double", "single", "fixdt(1,16,0)", "fixdt(1,16,2^0,0)"
Default: "double"

Fuzzified inputs (fi) — Enable fi output port
off (default) | on

Enable output port for accessing intermediate fuzzified input data.

10 Blocks

10-8

Programmatic Use
Block Parameter: FuzzifiedInputs
Type: string, character vector
Values: "off", "on"
Default: "off"

Rule firing strengths (rfs) — Enable rfs output port
off (default) | on

Enable output port for accessing intermediate rule firing strength data.

Programmatic Use
Block Parameter: RuleFiringStrengths
Type: string, character vector
Values: "off", "on"
Default: "off"

Rule outputs (ro) — Enable ro output port
off (default) | on

Enable output port for accessing intermediate rule output data.

Programmatic Use
Block Parameter: RuleOutputs
Type: string, character vector
Values: "off", "on"
Default: "off"

Aggregated outputs (ao) — Enable ao output port
off (default) | on

Enable output port for accessing intermediate aggregate output data.

Programmatic Use
Block Parameter: AggregatedOutputs
Type: string, character vector
Values: "off", "on"
Default: "off"

Simulate using — Simulation mode
Interpreted execution (default) | Code generation

Simulation mode, specified as one of the following:

• Interpreted execution — Simulate fuzzy systems using precompiled MEX files for single
and double data types. Using this option reduces the initial compilation time of the model.

• Code generation — Simulate fuzzy system without precompiled MEX files. Use this option
when simulating fuzzy systems for code generation applications.

For fixed-point data types, the Fuzzy Logic Controller block always simulates using Code
generation mode.

Programmatic Use
Block Parameter: SimulateUsing
Type: string, character vector

 Fuzzy Logic Controller

10-9

Values: "Interpreted execution", "Code generation"
Default: "Interpreted execution"

Diagnostics

Out of range input value — Diagnostic message behavior when an input is out of range
warning (default) | error | none

Diagnostic message behavior when an input is out of range, specified as one of the following:

• warning — Report the diagnostic message as a warning.
• error — Report the diagnostic message as an error.
• none — Do not report the diagnostic message.

When an input value is out of range, corresponding rules in the fuzzy system can have unexpected
firing strengths.
Dependencies

• Diagnostic messages are provided only when the Simulate using parameter is Interpreted
execution.

Programmatic Use
Block Parameter: OutOfRangeInputValueMessage
Type: string, character vector
Values: "warning", "error", "none"
Default: "warning"

No rule fired — Diagnostic message behavior when no rules fire
warning (default) | error | none

Diagnostic message behavior when no rules fire for a given output variable, specified as one of the
following:

• warning — Report the diagnostic message as a warning.
• error — Report the diagnostic message as an error.
• none — Do not report the diagnostic message.

When No rule fired is warning or none and no rules fire for a given output, the defuzzified output
value is set to its mean range value.
Dependencies

• Diagnostic messages are provided only when the Simulate using parameter is Interpreted
execution.

Programmatic Use
Block Parameter: NoRuleFiredMessage
Type: string, character vector
Values: "warning", "error", "none"
Default: "warning"

Empty output fuzzy set — Diagnostic message behavior when an output fuzzy set is empty
warning (default) | error | none

Diagnostic message behavior when an output fuzzy set is empty, specified as one of the following:

10 Blocks

10-10

• warning — Report the diagnostic message as a warning.
• error — Report the diagnostic message as an error.
• none — Do not report the diagnostic message.

When Empty output fuzzy set is warning or none and an output fuzzy set is empty, the defuzzified
value for the corresponding output is set to its mean range value.

Dependencies

• This diagnostic message applies to Mamdani systems only.
• Diagnostic messages are provided only when the Simulate using parameter is Interpreted

execution.

Programmatic Use
Block Parameter: EmptyOutputFuzzySetMessage
Type: string, character vector
Values: "warning", "error", "none"
Default: "warning"

Version History
Introduced before R2006a

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this block
issues a warning starting in R2019b.

R2017b: Access intermediate fuzzy inference results

Using the Fuzzy Logic Controller block, you can access intermediate fuzzy inference results by
enabling the following output ports.

• fi — Fuzzified input values
• rfs — Rule firing strengths
• ro — Rule outputs
• ao — Aggregated membership function for each output variable

R2017b: Expanded data type support

The Fuzzy Logic Controller block supports double-precision, single-precision, and fixed-point data
types.

R2017b: Improved code generation support

 Fuzzy Logic Controller

10-11

When generating code using Simulink Coder, the Fuzzy Logic Controller block supports code
generation for fuzzy systems that use:

• Single-precision data.
• Fixed-point data. To generate code for fixed-point data, you need Fixed-Point Designer™ software.
• Custom membership functions and custom inference functions. For more information on

specifying custom functions for a fuzzy system, see “Build Fuzzy Systems Using Custom
Functions” on page 2-86.

R2017b: PLC code generation support

The Fuzzy Logic Controller block supports generation of IEC 61131-3 Structured Text for PLC
deployment using Simulink PLC Coder software.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Fuzzy Logic Controller with Ruleviewer

Apps
Fuzzy Logic Designer | Neuro-Fuzzy Designer

Functions
mamfis | sugfis | mamfistype2 | sugfistype2 | readfis | evalfis | genfis | writeFIS

Topics
“Fuzzy Inference Process” on page 1-19
“Simulate Fuzzy Inference Systems in Simulink” on page 5-2

10 Blocks

10-12

Fuzzy Logic Controller with Ruleviewer
Evaluate fuzzy inference system and view rules

Libraries:
Fuzzy Logic Toolbox

Description
The Fuzzy Logic Controller with Ruleviewer block implements a fuzzy inference system (FIS) in
Simulink and displays the fuzzy inference process in the Rule Viewer during the simulation. You
specify the FIS to evaluate using the FIS matrix parameter. To change the time between Rule Viewer
updates, specify the Refresh rate in seconds.

For more information on fuzzy inference, see “Fuzzy Inference Process” on page 1-19.

The Fuzzy Logic Controller with Ruleviewer block does not support all the features supported by the
Fuzzy Logic Controller block. The Fuzzy Logic Controller with Ruleviewer block:

• Only supports double-precision data.
• Uses 101 points for discretizing output variable ranges.
• Only supports Interpreted execution simulation mode.
• Does not have additional output ports for accessing intermediate fuzzy inference results.

Ports
Input

Port_1(In1) — Input signal
scalar | vector

For a single-input fuzzy inference system, the input is a scalar. For a multi-input fuzzy system,
combine the inputs into a vector signal using blocks such as:

• Mux
• Vector Concatenate
• Bus Creator

Output

Port_1(Out1) — Defuzzified output signal
scalar | vector

For a single-output fuzzy inference system, the output is a scalar. For a multi-output fuzzy system, the
output is a vector. To split system outputs into scalar signals, use the Demux block.

 Fuzzy Logic Controller with Ruleviewer

10-13

Parameters
FIS structure — Fuzzy inference system
mamfisobject | sugfisobject

Fuzzy inference system to evaluate, specified as a mamfis or sugfis object. Specify the name of a
FIS object in the MATLAB workspace.

Programmatic Use
Block Parameter: fismatrix
Type: string, character vector
Default: "fis"

Refresh rate — Time between rule viewer updates
scalar

Time between rule viewer updates in seconds, specified as a scalar. During simulation, the Rule
Viewer display updates at the specified rate to show the inference process for the latest input signal
values.

Programmatic Use
Block Parameter: Ts
Type: string, character vector
Default: "2"

Version History
Introduced before R2006a

R2019b: Support for fuzzy inference system structures will be removed
Warns starting in R2019b

Support for representing fuzzy inference systems as structures will be removed in a future release.
Use mamfis and sugfis objects with this function instead. To convert existing fuzzy inference
system structures to objects, use the convertfis function.

This change was announced in R2018b. Using fuzzy inference system structures with this block
issues a warning starting in R2019b.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• Generating code using the Fuzzy Logic Controller with Ruleviewer block produces the same code
as using the Fuzzy Logic Controller block. However, the Fuzzy Logic Controller with Ruleviewer
block does not support:

• Generating code for single-point or fixed-point data.
• Changing the number of samples for discretizing the output variable range.

10 Blocks

10-14

See Also
Blocks
Fuzzy Logic Controller

Apps
Fuzzy Logic Designer | Neuro-Fuzzy Designer

Functions
mamfis | sugfis | readfis | evalfis

Topics
“Fuzzy Inference Process” on page 1-19
“Simulate Fuzzy Inference Systems in Simulink” on page 5-2

 Fuzzy Logic Controller with Ruleviewer

10-15

Gaussian MF
Gaussian membership function

Libraries:
Fuzzy Logic Toolbox / Membership Functions

Description
The Gaussian MF block implements a membership function based on a symmetric Gaussian function.

f x; σ, c = e
− x− c 2

2σ2

Here, c is the mean and σ is the standard deviation of the Gaussian function.

A Gaussian membership function is not the same as a Gaussian probability distribution. For example,
a Gaussian membership function always has a maximum value of 1. For more information on
Gaussian probability distributions, see “Normal Distribution” (Statistics and Machine Learning
Toolbox).

Ports
Input

x — Input value
scalar | vector

Input value for which to compute membership values, specified as a scalar or vector.

Output

MF — Membership value
scalar | vector

Membership value, returned as a scalar or a vector. The dimensions of MF match the dimensions of x.
Each element of MF is the membership value computed for the corresponding element of x.

Parameters
Standard deviation sigma — Standard deviation
1 (default) | scalar

Standard deviation σ of the Gaussian function.

Programmatic Use
Block Parameter: sigma
Type: string, character vector
Default: "1"

10 Blocks

10-16

Mean c — Mean
0 (default) | scalar

Mean c of the Gaussian function.

Programmatic Use
Block Parameter: mu
Type: string, character vector
Default: "0"

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Functions
gaussmf

Blocks
Diff. Sigmoidal MF | Gaussian2 MF | Generalized Bell MF | Linear S-shaped MF | Linear Z-shaped MF
| Pi-shaped MF | Prod. Sigmoidal MF | S-shaped MF | Sigmoidal MF | Trapezoidal MF | Triangular MF
| Z-shaped MF

Topics
“Membership Functions” on page 1-9

 Gaussian MF

10-17

Gaussian2 MF
Combination of two Gaussian membership functions

Libraries:
Fuzzy Logic Toolbox / Membership Functions

Description
The Gaussian2 MF block implements a membership function based on a combination of two Gaussian
functions. The two Gaussian functions are given by the following equation.

f x; σk, ck = e
− x− ck

2

2σk
2

where k = 1,2. The parameters c1 and σ1 are the mean and standard deviation defining the left-most
curve. The parameters c2 and σ2 are the mean and standard deviation defining the right-most curve.

Ports
Input

x — Input value
scalar | vector

Input value for which to compute membership values, specified as a scalar or vector.

Output

MF — Membership value
scalar | vector

Membership value, returned as a scalar or a vector. The dimensions of MF match the dimensions of x.
Each element of MF is the membership value computed for the corresponding element of x.

When c1 ≤ c2, the membership function reaches a maximum value of 1 over the range [c1, c2].

Otherwise, when c1 > c2, the maximum value is less than one.

Parameters
Standard deviation for left curve sigma1 — Left Gaussian standard deviation
3 (default) | scalar

Standard deviation σ1 of the left Gaussian function.

Programmatic Use
Block Parameter: sigma1
Type: string, character vector

10 Blocks

10-18

Default: "3"

Mean for left curve c1 — Left Gaussian mean
-1 (default) | scalar

Mean c1 of the left Gaussian function.

Programmatic Use
Block Parameter: mu1
Type: string, character vector
Default: "-1"

Standard deviation for right curve sigma2 — Right Gaussian standard deviation
1 (default) | scalar

Standard deviation σ2 of the right Gaussian function.

Programmatic Use
Block Parameter: sigma2
Type: string, character vector
Default: "1"

Mean for right curve c2 — Right Gaussian mean
5 (default) | scalar

Mean c2 of the right Gaussian function.

Programmatic Use
Block Parameter: mu2
Type: string, character vector
Default: "5"

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Functions
gauss2mf

Blocks
Diff. Sigmoidal MF | Gaussian MF | Generalized Bell MF | Linear S-shaped MF | Linear Z-shaped MF |
Pi-shaped MF | Prod. Sigmoidal MF | S-shaped MF | Sigmoidal MF | Trapezoidal MF | Triangular MF |
Z-shaped MF

 Gaussian2 MF

10-19

Topics
“Membership Functions” on page 1-9

10 Blocks

10-20

Generalized Bell MF
Generalized bell membership function

Libraries:
Fuzzy Logic Toolbox / Membership Functions

Description
The Generalized Bell MF block implements a membership function based on a generalized bell-
shaped function.

f x; a, b, c = 1
1 + x− c

a
2b

Here, a and b control the width of the function and c controls the center of the function.

Ports
Input

x — Input value
scalar | vector

Input value for which to compute membership values, specified as a scalar or vector.

Output

MF — Membership value
scalar | vector

Membership value, returned as a scalar or a vector. The dimensions of MF match the dimensions of x.
Each element of MF is the membership value computed for the corresponding element of x.

Parameters
a — Function shape parameter
5 (default) | scalar

Parameter that, together with b, defines the shape of the membership function.

Programmatic Use
Block Parameter: a
Type: string, character vector
Default: "5"

b — Function shape parameter
4 (default) | positive scalar

 Generalized Bell MF

10-21

Parameter that, together with a, defines the shape of the membership function.

Programmatic Use
Block Parameter: b
Type: string, character vector
Default: "4"

c — Center point
0 (default) | scalar

Function center point.

Programmatic Use
Block Parameter: c
Type: string, character vector
Default: "0"

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Functions
gbellmf

Blocks
Diff. Sigmoidal MF | Gaussian MF | Gaussian2 MF | Linear S-shaped MF | Linear Z-shaped MF | Pi-
shaped MF | Prod. Sigmoidal MF | S-shaped MF | Sigmoidal MF | Trapezoidal MF | Triangular MF | Z-
shaped MF

Topics
“Membership Functions” on page 1-9

10 Blocks

10-22

Linear S-shaped MF
Linear s-shaped saturation membership function

Libraries:
Fuzzy Logic Toolbox / Membership Functions

Description
The Linear S-Shaped MF block implements a linear s-shaped saturation membership function.

• When a < b:

f x; a, b =

0, x < a
x− a
b− a , a ≤ x ≤ b

1, x > b
• When a = b:

f x; a, b =
0, x < a
1, x ≥ a

The parameters a and b control the foot and shoulder of the membership function, respectively.
Setting a equal to b produces a crisp membership function.

This block is related to the Triangular MF, Trapezoidal MF, and Linear Z-shaped MF blocks.

Ports
Input

x — Input value
scalar | vector

Input value for which to compute membership values, specified as a scalar or vector.

Output

MF — Membership value
scalar | vector

Membership value, returned as a scalar or a vector. The dimensions of MF match the dimensions of x.
Each element of MF is the membership value computed for the corresponding element of x.

Parameters
Left point a — Leftmost point of transition area
4 (default) | scalar

 Linear S-shaped MF

10-23

Leftmost point a of the transition area.

Programmatic Use
Block Parameter: a
Type: string, character vector
Default: "4"

Right point b — Rightmost point of transition area
6 (default) | scalar

Rightmost point b of the transition area.

Programmatic Use
Block Parameter: b
Type: string, character vector
Default: "6"

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Functions
linsmf

Blocks
Diff. Sigmoidal MF | Gaussian MF | Gaussian2 MF | Generalized Bell MF | Linear Z-shaped MF | Pi-
shaped MF | Prod. Sigmoidal MF | S-shaped MF | Sigmoidal MF | Trapezoidal MF | Triangular MF | Z-
shaped MF

Topics
“Membership Functions” on page 1-9

10 Blocks

10-24

Linear Z-shaped MF
Linear z-shaped saturation membership function

Libraries:
Fuzzy Logic Toolbox / Membership Functions

Description
The Linear Z-Shaped MF block implements a linear z-shaped saturation membership function.

• When a < b:

f x; a, b =

1, x < a
a− x
a− b , a ≤ x ≤ b

0, x > b
• When a = b:

f x; a, b =
1, x < a
0, x ≥ a

The parameters a and b control the shoulder and foot of the membership function, respectively.
Setting a equal to b produces a crisp membership function.

This block is related to the Triangular MF, Trapezoidal MF, and Linear S-shaped MF blocks.

Ports
Input

x — Input value
scalar | vector

Input value for which to compute membership values, specified as a scalar or vector.

Output

MF — Membership value
scalar | vector

Membership value, returned as a scalar or a vector. The dimensions of MF match the dimensions of x.
Each element of MF is the membership value computed for the corresponding element of x.

Parameters
Left point a — Leftmost point of transition area
4 (default) | scalar

 Linear Z-shaped MF

10-25

Leftmost point a of the transition area.

Programmatic Use
Block Parameter: a
Type: string, character vector
Default: "4"

Right point b — Rightmost point of transition area
6 (default) | scalar

Rightmost point b of the transition area.

Programmatic Use
Block Parameter: b
Type: string, character vector
Default: "6"

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Functions
linzmf

Blocks
Diff. Sigmoidal MF | Gaussian MF | Gaussian2 MF | Generalized Bell MF | Linear S-shaped MF | Pi-
shaped MF | Prod. Sigmoidal MF | S-shaped MF | Sigmoidal MF | Trapezoidal MF | Triangular MF | Z-
shaped MF

Topics
“Membership Functions” on page 1-9

10 Blocks

10-26

Pi-shaped MF
Pi-shaped membership function

Libraries:
Fuzzy Logic Toolbox / Membership Functions

Description
The Pi-shaped MF block implements a pi-shaped membership function.

f (x; a, b, c, d) =

0, x ≤ a

2 x− a
b− a

2
, a ≤ x ≤ a + b

2

1−2 x− b
b− a

2
, a + b

2 ≤ x ≤ b

1, b ≤ x ≤ c

1 − 2 x− c
d− c

2
, c ≤ x ≤ c + d

2

2 x− d
d− c

2
, c + d

2 ≤ x ≤ d

0, x ≥ d

The parameters a and d control the left and right base points or feet of the curve. The parameters b
and c control the left and right top points or shoulders of the curve.

This block is related to the Z-shaped MF and S-shaped MF blocks.

Ports
Input

x — Input value
scalar | vector

Input value for which to compute membership values, specified as a scalar or vector.

Output

Pi MF — Membership value
scalar | vector

Membership value, returned as a scalar or a vector. The dimensions of Pi MF match the dimensions
of x. Each element of Pi MF is the membership value computed for the corresponding element of x.

 Pi-shaped MF

10-27

Parameters
Left base point a — Foot of left transition area
-9 (default) | scalar

Foot a of the left transition area.

Programmatic Use
Block Parameter: a
Type: string, character vector
Default: "-9"

Left top point b — Shoulder of left transition area
-7 (default) | scalar

Shoulder b of the left transition area.

Programmatic Use
Block Parameter: b
Type: string, character vector
Default: "-7"

Right top point c — Shoulder of right transition area
-9 (default) | scalar

Shoulder c of the right transition area.

Programmatic Use
Block Parameter: c
Type: string, character vector
Default: "2"

Right base point d — Foot of right transition area
-7 (default) | scalar

Foot d of the right transition area.

Programmatic Use
Block Parameter: d
Type: string, character vector
Default: "8"

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

10 Blocks

10-28

See Also
Functions
pimf

Blocks
Diff. Sigmoidal MF | Gaussian MF | Gaussian2 MF | Generalized Bell MF | Linear S-shaped MF |
Linear Z-shaped MF | Prod. Sigmoidal MF | S-shaped MF | Sigmoidal MF | Trapezoidal MF |
Triangular MF | Z-shaped MF

Topics
“Membership Functions” on page 1-9

 Pi-shaped MF

10-29

Probabilistic OR
Probabilistic OR function

Libraries:
Fuzzy Logic Toolbox / Membership Functions

Description
The Probabilistic OR block returns the probabilistic OR value, or algebraic sum, for the input signal.

Ports
Input

In1 — Input values
array | row vector

Input values, specified as an array or row vector x.

Output

Out1 — Probabilistic OR values
row vector

Probabilistic OR values, returned as a row vector y with the same number of columns as the input x.
Each element of y contains the probabilistic OR value for the corresponding column in x.

If x has one row, then y = x.

If x = [A;B], where A and B are row vectors, then the ith element of y is the following algebraic sum.

y(i) = A(i) + B(i) - A(i)*B(i);

If x has more than two rows, the probabilistic OR is initially calculated for the first two rows. Then,
the probabilistic OR is computed between the result and the next row. This process repeats for each
subsequent row.

x = [A;B;C;D]
y(i) = A(i) + B(i) - A(i)*B(i);
y(i) = y(i) + C(i) - y(i)*C(i);
y(i) = y(i) + D(i) - y(i)*D(i);

Version History
Introduced before R2006a

10 Blocks

10-30

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Blocks
Probabilistic Rule Agg

Functions
probor

 Probabilistic OR

10-31

Probabilistic Rule Agg
Probabilistic OR function for rule aggregation

Libraries:
Fuzzy Logic Toolbox / Membership Functions

Description
The Probabilistic Rule Agg block returns the element-wise probabilistic OR, or algebraic sum, of the
two input vectors.

Ports
Input

In1 — Input values
row vector

Input values, specified as a row vector with the same number of elements as In2.

In2 — Input values
row vector

Input values, specified as a row vector with the same number of elements as In1.

Output

Out1 — Probabilistic OR values
row vector

Probabilistic OR values, returned as a row vector y with the same number of elements as both In1
and In2. Each element of y contains the probabilistic OR of the corresponding elements from the
input vectors.

Let A = In1 and B = In2. Then, the probabilistic OR of the ith elements of the input vectors is the
following algebraic sum.

y(i) = A(i) + B(i) - A(i)*B(i);

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

10 Blocks

10-32

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Blocks
Probabilistic OR

Functions
probor

 Probabilistic Rule Agg

10-33

Prod. Sigmoidal MF
Product of two sigmoid membership functions

Libraries:
Fuzzy Logic Toolbox / Membership Functions

Description
The Prod. Sigmoidal MF block implements a membership function based on the product of two
sigmoidal curves. The sigmoidal curves are defined by the following equation.

f x; ak, ck = 1
1 + e−ak(x− ck)

where k = 1,2 The parameters a1 and a2 control the slopes of the left and right curves. The
parameters c1 and c2 control the points of inflection for the left and right curves.

To define a unimodal membership function with a maximum value of 1, specify opposite signs for a1
and a2, and select c values far enough apart to allow for both transition areas to reach 1.

This block is related to the Diff. Sigmoidal MF and Sigmoidal MF blocks.

Ports
Input

x — Input value
scalar | vector

Input value for which to compute membership values, specified as a scalar or vector.

Output

MF — Membership value
scalar | vector

Membership value, returned as a scalar or a vector. The dimensions of MF match the dimensions of x.
Each element of MF is the membership value computed for the corresponding element of x.

Parameters
Left curve a1 — Transition area shape parameter for left curve
2 (default) | scalar

Parameter a1 that controls the transition area shape for the left curve. The magnitude of a1 controls
the width of the transition area.

10 Blocks

10-34

When the sign of a1 is positive, the curve increases from left to right. Conversely, when the sign of a1
is negative, the curve decreases from left to right.

Programmatic Use
Block Parameter: a1
Type: string, character vector
Default: "2"

Left curve c1 — Transition area center for left curve
-5 (default) | scalar

Transition area center c1 for the left curve.

Programmatic Use
Block Parameter: c1
Type: string, character vector
Default: "-5"

Right curve a2 — Transition area shape parameter for right curve
-5 (default) | scalar

Parameter a2 that controls the transition area shape for the right curve. The magnitude of a2 controls
the width of the transition area.

When the sign of a2 is positive, the curve increases from left to right. Conversely, when the sign of a2
is negative, the curve decreases from left to right.

Programmatic Use
Block Parameter: a2
Type: string, character vector
Default: "-5"

Right curve c2 — Transition area center for right curve
5 (default) | scalar

Transition area center c2 for the right curve.

Programmatic Use
Block Parameter: c2
Type: string, character vector
Default: "5"

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

 Prod. Sigmoidal MF

10-35

See Also
Functions
psigmf

Blocks
Diff. Sigmoidal MF | Gaussian MF | Gaussian2 MF | Generalized Bell MF | Linear S-shaped MF |
Linear Z-shaped MF | Pi-shaped MF | S-shaped MF | Sigmoidal MF | Trapezoidal MF | Triangular MF
| Z-shaped MF

Topics
“Membership Functions” on page 1-9

10 Blocks

10-36

S-shaped MF
S-shaped membership function

Libraries:
Fuzzy Logic Toolbox / Membership Functions

Description
The S-shaped MF block implements an s-shaped membership function.

f (x; a, b) =

0, x ≤ a

2 x− a
b− a

2
, a ≤ x ≤ a + b

2

1−2 x− b
b− a

2
, a + b

2 ≤ x ≤ b

1, x ≥ b

Going from left to right the function increases from 0 to 1. The parameters a and b control the left
and right extremes of the sloped portion of the curve.

This block is related to the Z-shaped MF and Pi-shaped MF blocks.

Ports
Input

x — Input value
scalar | vector

Input value for which to compute membership values, specified as a scalar or vector.

Output

S MF — Membership value
scalar | vector

Membership value, returned as a scalar or a vector. The dimensions of S MF match the dimensions of
x. Each element of S MF is the membership value computed for the corresponding element of x.

Parameters
Left point a — Leftmost point of transition area
-3 (default) | scalar

Leftmost point a of the transition area.

 S-shaped MF

10-37

Programmatic Use
Block Parameter: a
Type: string, character vector
Default: "-3"

Right point b — Rightmost point of transition area
3 (default) | scalar

Rightmost point b of the transition area.

Programmatic Use
Block Parameter: b
Type: string, character vector
Default: "3"

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Functions
smf

Blocks
Diff. Sigmoidal MF | Gaussian MF | Gaussian2 MF | Generalized Bell MF | Linear S-shaped MF |
Linear Z-shaped MF | Pi-shaped MF | Prod. Sigmoidal MF | Sigmoidal MF | Trapezoidal MF |
Triangular MF | Z-shaped MF

Topics
“Membership Functions” on page 1-9

10 Blocks

10-38

Sigmoidal MF
Sigmoidal membership function

Libraries:
Fuzzy Logic Toolbox / Membership Functions

Description
The Sigmoidal MF block implements a sigmoidal membership function.

f x; a, c = 1
1 + e−a(x− c)

When the sign of a is positive, the curve increases from left to right. Conversely, when the sign of a is
negative, the curve decreases from left to right. The parameter c sets the point of inflection for the
curve.

This block is related to the Diff. Sigmoidal MF and Prod. Sigmoidal MF blocks.

Ports
Input

x — Input value
scalar | vector

Input value for which to compute membership values, specified as a scalar or vector.

Output

MF — Membership value
scalar | vector

Membership value, returned as a scalar or a vector. The dimensions of MF match the dimensions of x.
Each element of MF is the membership value computed for the corresponding element of x.

Parameters
a — Transition area shape parameter
1 (default) | scalar

Parameter that controls the transition area shape. The magnitude of a controls the width of the
transition area.

When the sign of a is positive, the curve increases from left to right. Conversely, when the sign of a is
negative, the curve decreases from left to right.

 Sigmoidal MF

10-39

Programmatic Use
Block Parameter: a
Type: string, character vector
Default: "1"

c — Transition area center
0 (default) | scalar

Transition area center.

Programmatic Use
Block Parameter: c
Type: string, character vector
Default: "0"

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Functions
sigmf

Blocks
Diff. Sigmoidal MF | Gaussian MF | Gaussian2 MF | Generalized Bell MF | Linear S-shaped MF |
Linear Z-shaped MF | Pi-shaped MF | Prod. Sigmoidal MF | S-shaped MF | Trapezoidal MF |
Triangular MF | Z-shaped MF

Topics
“Membership Functions” on page 1-9

10 Blocks

10-40

Trapezoidal MF
Trapezoidal membership function

Libraries:
Fuzzy Logic Toolbox / Membership Functions

Description
The Trapezoidal MF block implements a trapezoid-shaped membership function.

f x; a, b, c, d = max min x− a
b− a , 1, d− x

d− c , 0

The parameters a and d control the left and right feet or base points of the trapezoid. The parameters
b and c control the left and right shoulders or top points of the trapezoid.

The shape of the membership function depends on the relative values of b and c.

• When c is greater than b, the resulting membership function is trapezoidal.
• When b is equal to c, the resulting membership function is equivalent to a triangular membership

function with parameters [a b d].
• When c is less than b, the resulting membership function is triangular with a maximum value less

than 1.

This block is related to the Triangular MF, Linear S-shaped MF, and Linear Z-shaped MF blocks.

Ports
Input

x — Input value
scalar | vector

Input value for which to compute membership values, specified as a scalar or vector.

Output

MF — Membership value
scalar | vector

Membership value, returned as a scalar or a vector. The dimensions of MF match the dimensions of x.
Each element of MF is the membership value computed for the corresponding element of x.

Parameters
Left base point a — Left foot of trapezoid
-8 (default) | scalar

 Trapezoidal MF

10-41

Left foot a of the trapezoid.

Programmatic Use
Block Parameter: a
Type: string, character vector
Default: "-8"

Left top point b — Left shoulder of trapezoid
-4 (default) | scalar

Left shoulder b of the trapezoid.

Programmatic Use
Block Parameter: b
Type: string, character vector
Default: "-4"

Right top point c — Right shoulder of trapezoid
2 (default) | scalar

Right shoulder c of the trapezoid.

Programmatic Use
Block Parameter: c
Type: string, character vector
Default: "2"

Right base point d — Right foot of trapezoid
9 (default) | scalar

Right foot d of the trapezoid.

Programmatic Use
Block Parameter: d
Type: string, character vector
Default: "9"

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Functions
trapmf

10 Blocks

10-42

Blocks
Diff. Sigmoidal MF | Gaussian MF | Gaussian2 MF | Generalized Bell MF | Linear S-shaped MF |
Linear Z-shaped MF | Pi-shaped MF | Prod. Sigmoidal MF | S-shaped MF | Sigmoidal MF | Triangular
MF | Z-shaped MF

Topics
“Membership Functions” on page 1-9

 Trapezoidal MF

10-43

Triangular MF
Triangular membership function

Libraries:
Fuzzy Logic Toolbox / Membership Functions

Description
The Triangular MF block implements a triangle-shaped membership function.

f x; a, b, c =

0, x ≤ a
x− a
b− a , a ≤ x ≤ b

c− x
c− b , b ≤ x ≤ c

0, c ≤ x

More compactly, the function is as follows.

f x; a, b, c = max min x− a
b− a , c− x

c− b , 0

The parameters a and c set the left and right feet or base points of the triangle. The parameter b sets
the location of the triangle peak.

This block is related to the Trapezoidal MF, Linear S-shaped MF, and Linear Z-shaped MF blocks.

Ports
Input

x — Input value
scalar | vector

Input value for which to compute membership values, specified as a scalar or vector.

Output

MF — Membership value
scalar | vector

Membership value, returned as a scalar or a vector. The dimensions of MF match the dimensions of x.
Each element of MF is the membership value computed for the corresponding element of x.

Parameters
Left base point a — Left foot of triangle
1 (default) | scalar

10 Blocks

10-44

Left foot a of the triangle.

Programmatic Use
Block Parameter: a
Type: string, character vector
Default: "1"

Peak location b — Triangle peak
3 (default) | scalar

Triangle peak b.

Programmatic Use
Block Parameter: b
Type: string, character vector
Default: "3"

Right base point c — Right foot of triangle
6 (default) | scalar

Right foot c of the triangle.

Programmatic Use
Block Parameter: c
Type: string, character vector
Default: "6"

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Functions
trimf

Blocks
Diff. Sigmoidal MF | Gaussian MF | Gaussian2 MF | Generalized Bell MF | Linear S-shaped MF |
Linear Z-shaped MF | Pi-shaped MF | Prod. Sigmoidal MF | S-shaped MF | Sigmoidal MF |
Trapezoidal MF | Z-shaped MF

Topics
“Membership Functions” on page 1-9

 Triangular MF

10-45

Z-shaped MF
Z-shaped membership function

Libraries:
Fuzzy Logic Toolbox / Membership Functions

Description
The Z-shaped MF block implements a z-shaped membership function.

f x; a, b =

1, x ≤ a

1 − 2 x− a
b− a

2
, a ≤ x ≤ a + b

2

2 x− b
b− a

2
, a + b

2 ≤ x ≤ b

0 x ≥ b

Going from left to right the function decreases from 1 to 0. The parameters a and b control the left
and right extremes of the sloped portion of the curve.

This block is related to the S-shaped MF and Pi-shaped MF blocks.

Ports
Input

x — Input value
scalar | vector

Input value for which to compute membership values, specified as a scalar or vector.

Output

Z MF — Membership value
scalar | vector

Membership value, returned as a scalar or a vector. The dimensions of Z MF match the dimensions of
x. Each element of Z MF is the membership value computed for the corresponding element of x.

Parameters
Left point a — Leftmost point of transition area
-3 (default) | scalar

Leftmost point a of the transition area.

10 Blocks

10-46

Programmatic Use
Block Parameter: a
Type: string, character vector
Default: "-3"

Right point b — Rightmost point of transition area
3 (default) | scalar

Rightmost point b of the transition area.

Programmatic Use
Block Parameter: b
Type: string, character vector
Default: "3"

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Functions
zmf

Blocks
Diff. Sigmoidal MF | Gaussian MF | Gaussian2 MF | Generalized Bell MF | Linear S-shaped MF |
Linear Z-shaped MF | Pi-shaped MF | Prod. Sigmoidal MF | S-shaped MF | Sigmoidal MF |
Trapezoidal MF | Triangular MF

Topics
“Membership Functions” on page 1-9

 Z-shaped MF

10-47

	Getting Started
	Fuzzy Logic Toolbox Product Description
	What Is Fuzzy Logic?
	Description of Fuzzy Logic
	Why Use Fuzzy Logic?
	When Not to Use Fuzzy Logic
	What Can Fuzzy Logic Toolbox Software Do?

	Foundations of Fuzzy Logic
	Overview
	Fuzzy Sets
	Membership Functions
	Logical Operations
	If-Then Rules
	References

	Fuzzy Inference Process
	Fuzzify Inputs
	Apply Fuzzy Operator
	Apply Implication Method
	Aggregate All Outputs
	Defuzzify
	Fuzzy Inference Diagram

	Defuzzification Methods
	Fuzzy vs. Nonfuzzy Logic

	Fuzzy Inference System Modeling
	Mamdani and Sugeno Fuzzy Inference Systems
	Mamdani Fuzzy Inference Systems
	Sugeno Fuzzy Inference Systems
	Convert Between FIS Types

	Type-2 Fuzzy Inference Systems
	Interval Type-2 Membership Functions
	Type-2 Fuzzy Inference Systems
	Fuzzy Inference Process for Type-2 Fuzzy Systems
	Type-Reduction Methods

	Build Fuzzy Systems Using Fuzzy Logic Designer
	Create FIS Structure
	Define Input Variables
	Define Output Variables
	Define Membership Functions
	Define Rule Base
	Analyze Design
	Store and Modify Designs
	Export FIS

	Get Started Using Fuzzy Logic Designer
	Open Existing FIS
	Create Template FIS Structure
	Create FIS from Data
	Automatically Generate Rules

	Define Membership Functions Using Fuzzy Logic Designer
	Add MFs
	View MFs
	Configure MFs
	Delete MFs

	Define Fuzzy Rules Using Fuzzy Logic Designer
	Add Rules
	Edit Rules
	Delete Rules

	Analyze Fuzzy System Using Fuzzy Logic Designer
	Control Surface
	Rule Inference
	System Validation
	Error Distribution
	Specify Validation Data

	Export FIS and Simulation Data from Fuzzy Logic Designer
	Export FIS to Workspace
	Save FIS to File
	Export Simulation Data

	Build Fuzzy Systems at the Command Line
	Build Fuzzy Systems Using Custom Functions
	Define Custom Membership Functions
	Define Custom Inference Functions
	Use Custom Functions in Code Generation

	Fuzzy Trees
	Types of Hierarchical Structures
	Add or Remove FIS Tree Outputs
	Use the Same Value for Multiple inputs of FIS Tree
	Update Fuzzy Inference Systems in FIS Tree
	Tune a Fuzzy Tree

	Fuzzy PID Control with Type-2 FIS
	Fuzzy Logic Image Processing

	Fuzzy Inference System Tuning
	Tuning Fuzzy Inference Systems
	Tuning Methods
	Prevent Overfitting of Tuned System
	Improve Tuning Results

	Tune Fuzzy Inference System Using Fuzzy Logic Designer
	Load Example Data
	Define Initial FIS Structure
	Import Training Data
	Learn Rules
	Tune MF and Rule Parameters
	Export Tuned FIS

	Tune Fuzzy Inference System at the Command Line
	Select Rules and Parameters to Tune in Fuzzy Logic Designer
	Tune MF Parameters
	Tune Rule Parameters
	Learn Rules

	Select FIS Rules and Parameters to Tune at the Command Line
	Tune Fuzzy Trees
	Configure Tuning Options in Fuzzy Logic Designer
	Optimization Type and Method
	Global Optimization Toolbox Method Options
	ANFIS Tuning Options
	K-Fold Cross Validation

	Customize FIS Tuning Process
	Specify Custom Cost Function in Fuzzy Logic Designer
	Tune FIS Using Custom Cost Function
	Tune FIS Using Custom Optimization Method

	Tune FIS Tree for Gas Mileage Prediction
	Optimize FIS Parameters with K-Fold Cross-Validation
	Predict Chaotic Time Series Using Type-2 FIS
	Tune Fuzzy Robot Obstacle Avoidance System Using Custom Cost Function
	Classify Pixels Using Fuzzy Systems
	Autonomous Parking Using Fuzzy Inference System
	Design Controller for Artificial Pancreas Using Fuzzy Logic
	Explain Black-Box Model Using Fuzzy Support System
	Explainable Fuzzy Support System for Black-Box Model of Robot Obstacle Avoidance
	Neuro-Adaptive Learning and ANFIS
	FIS Structure
	Training Data
	Training Options
	Training Validation

	Train Adaptive Neuro-Fuzzy Inference Systems
	Import Example Data
	Generate Initial FIS
	Select Data for Training
	Train FIS
	Validate Trained FIS
	Importance of Checking Data

	Predict Chaotic Time-Series Using ANFIS
	Modeling Inverse Kinematics in a Robotic Arm
	Adaptive Noise Cancellation Using ANFIS
	Nonlinear System Identification
	Gas Mileage Prediction

	Data Clustering
	Fuzzy Clustering
	Fuzzy C-Means Clustering
	Subtractive Clustering
	References

	Cluster Quasi-Random Data Using Fuzzy C-Means Clustering
	Adjust Fuzzy Overlap in Fuzzy C-Means Clustering
	Fuzzy C-Means Clustering
	Fuzzy C-Means Clustering for Iris Data
	Brain Tumor Segmentation Using Fuzzy C-Means Clustering
	Model Suburban Commuting Using Subtractive Clustering and ANFIS
	Cluster Data Using Clustering Tool
	Load and Plot Data
	Cluster Data
	Save Cluster Centers

	Fuzzy Logic in Simulink
	Simulate Fuzzy Inference Systems in Simulink
	Simulate Fuzzy Inference System
	Access Intermediate Fuzzy Inference Results
	Simulation Modes
	Map Command-Line Functionality to Fuzzy Logic Controller Block

	Water Level Control in a Tank
	Temperature Control in a Shower
	Implement Fuzzy PID Controller in Simulink Using Lookup Table

	Deployment
	Deploy Fuzzy Inference Systems
	Generate Code in MATLAB
	Generate Code in Simulink
	Deploy Fuzzy Systems

	Generate Code for Fuzzy System Using Simulink Coder
	Generate Structured Text for Fuzzy System Using Simulink PLC Coder
	Generate Code for Fuzzy System Using MATLAB Coder

	Apps
	Fuzzy Logic Designer
	Neuro-Fuzzy Designer

	Functions
	addInput
	addMF
	addOutput
	addRule
	addvar
	anfis
	convertfis
	convertToStruct
	convertToSugeno
	convertToType1
	convertToType2
	defuzz
	dsigmf
	evalfis
	evalmf
	fcm
	findcluster
	fuzarith
	gauss2mf
	gaussmf
	gbellmf
	genfis
	genfis1
	genfis2
	genfis3
	genfisOptions
	gensurf
	getfis
	getFISCodeGenerationData
	getTunableSettings
	getTunableValues
	linsmf
	linzmf
	mam2sug
	mf2mf
	mfedit
	newfis
	parsrule
	pimf
	plotfis
	plotmf
	probor
	psigmf
	readfis
	removeInput
	removeMF
	removeOutput
	rmmf
	rmvar
	ruleedit
	ruleview
	setfis
	setTunable
	setTunableValues
	showfis
	showrule
	sigmf
	smf
	subclust
	surfview
	trapmf
	trimf
	tunefis
	update
	writeFIS
	zmf

	Objects
	anfisOptions
	ClauseParameters
	evalfisOptions
	fcmOptions
	fismf
	fismftype2
	fisrule
	fistree
	fisvar
	gensurfOptions
	mamfis
	mamfistype2
	MembershipFunctionSettings
	MembershipFunctionSettingsType2
	NumericParameters
	RuleSettings
	sugfis
	sugfistype2
	tunefisOptions
	VariableSettings

	Blocks
	Diff. Sigmoidal MF
	Fuzzy Logic Controller
	Fuzzy Logic Controller with Ruleviewer
	Gaussian MF
	Gaussian2 MF
	Generalized Bell MF
	Linear S-shaped MF
	Linear Z-shaped MF
	Pi-shaped MF
	Probabilistic OR
	Probabilistic Rule Agg
	Prod. Sigmoidal MF
	S-shaped MF
	Sigmoidal MF
	Trapezoidal MF
	Triangular MF
	Z-shaped MF

